Ca -Desensitizing Effect of a Deletion Mutation K210 in Cardiac Troponin T

Total Page:16

File Type:pdf, Size:1020Kb

Ca -Desensitizing Effect of a Deletion Mutation K210 in Cardiac Troponin T Ca2؉-desensitizing effect of a deletion mutation ⌬K210 in cardiac troponin T that causes familial dilated cardiomyopathy S. Morimoto*†‡, Q.-W. Lu*‡, K. Harada*‡§, F. Takahashi-Yanaga*‡, R. Minakami¶, M. Ohta*ʈ, T. Sasaguri*, and I. Ohtsuki* *Laboratory of Clinical Pharmacology, Department of Pharmacology, Graduate School of Medicine, and ¶School of Health Sciences, Kyushu University, Fukuoka 812-8582, Japan Communicated by Setsuro Ebashi, National Institute for Physiological Sciences, Okazaki, Japan, November 26, 2001 (received for review August 27, 2001) A deletion mutation ⌬K210 in cardiac troponin T (cTnT) was reported Ca2ϩ-sensitizing effects of the HCM-linked mutations recently found to cause familial dilated cardiomyopathy (DCM). To in cTnT and cTnI. Tobacman et al. (17) reported that ⌬E160 ϩ explore the effect of this mutation on cardiac muscle contraction cTnT mutant increased the Ca2 sensitivity of acto-S1 MgAT- ,under physiological conditions, we determined the Ca2؉-activated Pase activity. Szczesna et al. (18) reconstituted I79N, R92Q force generation in permeabilized rabbit cardiac muscle fibers into F110I, and R278C cTnT mutants into skinned cardiac muscle ϩ which the mutant and wild-type cTnTs were incorporated by using fibers and reported that these mutations increased Ca2 sensi- our TnT exchange technique. The free Ca2؉ concentrations re- tivity. Redwood et al. (19) also reported that one of the two 2ϩ quired for the force generation were higher in the mutant cTnT- truncated cTnT mutants had a Ca -sensitizing effect on acto-S1 exchanged fibers than in the wild-type cTnT-exchanged ones, with MgATPase activity. Recently, Miller et al. (20) and Chandra et no statistically significant differences in maximal force-generating al. (21) reported that transgenic mice expressing I79N and R92Q 2ϩ capability and cooperativity. Exchanging the mutant cTnT into cTnT mutants did exhibit increased Ca sensitivity in skinned 2؉ muscle fibers. Elliott et al. (22) reported that R145G and R162W isolated cardiac myofibrils also increased the free Ca concentra- 2ϩ tions required for the activation of ATPase. In contrast, a deletion mutations in cTnI increased the Ca sensitivity of actin- tropomyosin-activated myosin S-1 ATPase activity, and James et mutation ⌬E160 in cTnT that causes familial hypertrophic cardio- ؉ al. (23) reported that transgenic mice expressing R145G (R146G myopathy (HCM) decreased the free Ca2 concentrations required ϩ in the mouse sequence) cTnI mutant exhibit increased Ca2 for force generation, just as in the case of the other HCM-causing sensitivity in skinned muscle fibers. These studies strongly mutations in cTnT. The results indicate that cTnT mutations found suggest that Ca2ϩ sensitization of force generation in sarcomere in the two distinct forms of cardiomyopathy (i.e., HCM and DCM) is a primary mechanism for the pathogenesis of HCM with the -change the Ca2؉ sensitivity of cardiac muscle contraction in oppo ؉ mutations in Tn subunits (24, 25). Recently, however, a novel site directions. The present study strongly suggests that Ca2 mutation (⌬K210) in the cTnT gene was found to cause a quite desensitization of force generation in sarcomere is a primary different form of cardiomyopathy, dilated cardiomyopathy mechanism for the pathogenesis of DCM associated with the (DCM), which is characterized by cardiac dilation and reduced MEDICAL SCIENCES deletion mutation ⌬K210 in cTnT. systolic function leading to heart failure with high mortality (26). In the present study, an attempt was made to directly exchange ⌬ ontraction of the vertebrate-striated muscles (i.e., skeletal the recombinant human K210 cTnT into membrane- Cand cardiac muscles) is regulated by Ca2ϩ through its binding permeabilized (skinned) rabbit cardiac muscle fibers. This tech- to a specific regulatory protein complex, troponin (Tn), which is nique overcomes the potentially significant complications distributed at regular intervals along the entire thin filament (1, caused by compensatory mechanisms expected to occur when 2). Tn is a complex of three different proteins, troponin T (TnT; transgenesis is used in a whole animal. The study revealed that the functional consequence of the mutation ⌬K210 in cTnT is a tropomyosin-binding component), troponin I (TnI; inhibitory 2ϩ ϩ decrease in the Ca sensitivity of cardiac muscle contraction. component), and troponin C (TnC; Ca2 -binding component). 2ϩ 2ϩ The results strongly suggest that the primary mechanism for the On Ca binding to TnC, a Ca -induced interaction of TnC pathogenesis of DCM associated with the mutation ⌬K210 is a with TnI relieves the inhibitory action of TnI exerted on the thin deficiency of force generation by sarcomere in cardiac muscle, in filament and enables the myosin head to cyclically interact with 2ϩ contrast to the enhancement of force generation in HCM actin in the thin filament and generate force. The Ca sensitivity associated with the other mutations in cTnT. of muscle contraction is determined by the Ca2ϩ-binding affinity of TnC, which is dynamically altered through interaction with Materials and Methods TnI and TnT in the myofilament lattice (3–8). Mutagenesis of Recombinant Human cTnT. The cloning and mu- Mutations in genes for cardiac troponin T (cTnT) and cardiac tagenesis of human cTnT cDNA were carried out as described troponin I (cTnI) have been found to cause familial hypertrophic cardiomyopathy (HCM), an autosomal dominant heart disease characterized by asymmetrical ventricular hypertrophy with a Abbreviations: Tn, troponin; cTnT, cardiac Tn T; cTnI, cardiac Tn I; HCM, hypertrophic ϩ high incidence of sudden death in young adults (9). We have cardiomyopathy; DCM, dilated cardiomyopathy; pCa, Ϫlog[Ca2 ]. already examined the effects of eight HCM-linked cTnT muta- †To whom reprint requests should be addressed. E-mail: [email protected] tions (I79N, R92Q, ⌬E160, E244D, R278C, and two truncated u.ac.jp. 3 ‡S.M., Q.-W.L., K.H., and F.T.-Y. contributed equally to this work. mutants produced by a splice donor site mutation Int15G1 A) and six HCM-linked cTnI mutations (R145G, R145Q, R162W, §Present address: Department of Molecular and Cellular Pharmacology, University of Miami ⌬K183, G203S, and K206Q) on the contractile functions of School of Medicine, Miami, FL 33136. ʈ cardiac muscle by using a technique for exchanging the exoge- Postdoctoral fellow on leave of absence from Laboratory for Structural Biochemistry, The Institute of Physical and Chemical Research, Harima Institute at Spring-8, Hyogo 679-5148, nous Tn complex into skinned muscle fibers and isolated myo- Japan. 2ϩ fibrils. We found that Ca sensitization in cardiac muscle The publication costs of this article were defrayed in part by page charge payment. This contractility is a common effect caused by HCM-linked muta- article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. tions in cTnT and cTnI (10–16). Several groups also have §1734 solely to indicate this fact. www.pnas.org͞cgi͞doi͞10.1073͞pnas.022628899 PNAS ͉ January 22, 2002 ͉ vol. 99 ͉ no. 2 ͉ 913–918 Downloaded by guest on September 26, 2021 structed into the pET-3d vector. The complete nucleotide se- quences of the mutant cTnT cDNAs were confirmed by DNA sequencing. Preparation of Skinned Fibers and Force Measurements. Rabbit cardiac skinned muscle fibers were prepared from the left ventricular trabeculae of young male albino rabbits (Ϸ3 mo old) as described (10). In brief, small bundles (0.5–1 mm wide and 5–7 mm long) of trabeculae tied to glass capillary tubes were skinned with relaxing solution containing 0.5% Brij-58 for 30 min at 25°C and were stored up to 3 wk at Ϫ20°C in relaxing solution containing 50% glycerol. A small fiber (Ϸ120 ␮m in diameter) dissected from the stock-skinned trabecula was mounted in a thermostatically controlled chamber with a capacity of 0.2 ml. Fiber length between hooks was Ϸ1 mm, and the resting sarcomere length was set to 2.3 ␮m by using laser diffraction. Fig. 1. SDS͞PAGE of recombinant human cTnT and native rabbit cardiac Tn The force generated by skinned muscle fibers was measured at three components. Lane 1, rabbit skinned cardiac muscle; lane 2, recombinant 25°C with a strain gauge, UL-2GR (Minebea, Japan). The human wild-type cTnT; lane 3, recombinant human ⌬K210 cTnT; lane 4, native ͞ rabbit cTnT; lane 5, native rabbit cTnI, and lane 6, native rabbit cTnC. The gel relaxing solution consisted of (in mM) 50 Mops KOH (pH 7.0), was stained with Coomassie brilliant blue R-250. 100 KCl, 6 MgCl2, 5 ATP, 4 EGTA, 0.5 DTT, and 10 creatine phosphate, as well as 35 units͞ml creatine kinase. Activating solutions with desired free Ca2ϩ concentrations were prepared previously (14). To generate the ⌬K210 and ⌬E160 cDNAs, by adding appropriate amounts of CaCl2, calculated as described mutageneses were first carried out by PCR according to the (28), to the relaxing solution. GeneSOEing method described by Horton (27) by using the following oligonucleotide primers: 5Ј-GGT GGT GGA AGC ATPase Activity Measurement. Porcine cardiac myofibrils were iso- GTA CGA AGA GG-3Ј (18F, SplI site is underlined), 5Ј-CCT lated from left ventricular muscle, and their ATPase activity was CTC AGC CAG AAT CTT CTT CTT TTC CCG (645R), measured in a reaction mixture (150 ␮l) that consisted of 90 mM ͞ 2ϩ 5Ј-AAG AAG ATT CTG GCT GAG AGG AGG AAG GTG KCl, 5 mM MgCl2, 20 mM Mops KOH (pH 7.0), 1 mM Ca - (622F), and 5Ј-GCT GCA GGA TCC TAT TTC CAG CGC EGTA, 4 mM ATP, and 45 ␮g of myofibrils, as described (13). CCG G (878 R, BamHI site is underlined) for ⌬K210; 5Ј-GGT GGT GGA AGC GTA CGA AGA GG-3Ј (18F, SplI site is Purification of Proteins. Expression and purification of the recom- underlined), 5Ј-CCT GTT CTC CTC CTC TCG TCG AGC CCT binant human cTnTs were performed as described previously CTC (495R), 5Ј-CGA CGA GAG GAG GAG AAC AGG AGG (10).
Recommended publications
  • Desmin Interacts Directly with Mitochondria
    International Journal of Molecular Sciences Article Desmin Interacts Directly with Mitochondria Alexander A. Dayal 1, Natalia V. Medvedeva 1, Tatiana M. Nekrasova 1, Sergey D. Duhalin 1, Alexey K. Surin 1,2 and Alexander A. Minin 1,* 1 Institute of Protein Research of Russian Academy of Sciences, Vavilova st., 34, 119334 Moscow, Russia; [email protected] (A.A.D.); [email protected] (N.V.M.); [email protected] (T.M.N.); [email protected] (S.D.D.); [email protected] (A.K.S.) 2 Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, 142290 Moscow Region, Russia * Correspondence: [email protected] Received: 14 October 2020; Accepted: 26 October 2020; Published: 30 October 2020 Abstract: Desmin intermediate filaments (IFs) play an important role in maintaining the structural and functional integrity of muscle cells. They connect contractile myofibrils to plasma membrane, nuclei, and mitochondria. Disturbance of their network due to desmin mutations or deficiency leads to an infringement of myofibril organization and to a deterioration of mitochondrial distribution, morphology, and functions. The nature of the interaction of desmin IFs with mitochondria is not clear. To elucidate the possibility that desmin can directly bind to mitochondria, we have undertaken the study of their interaction in vitro. Using desmin mutant Des(Y122L) that forms unit-length filaments (ULFs) but is incapable of forming long filaments and, therefore, could be effectively separated from mitochondria by centrifugation through sucrose gradient, we probed the interaction of recombinant human desmin with mitochondria isolated from rat liver. Our data show that desmin can directly bind to mitochondria, and this binding depends on its N-terminal domain.
    [Show full text]
  • Appropriate Roles of Cardiac Troponins in Evaluating Patients with Chest Pain
    J Am Board Fam Pract: first published as 10.3122/jabfm.12.3.214 on 1 May 1999. Downloaded from MEDICAL PRACTICE Appropriate Roles of Cardiac Troponins in Evaluating Patients With Chest Pain Matthew S. Rice, MD, CPT, Me, USA, and David C. MacDonald, DO, Me, USA Background: Diagnosis of acute myocardial infarction relies upon the clinical history, interpretation of the electrocardiogram, and measurement of serum levels of cardiac enzymes. Newer biochemical markers of myocardial injury, such as cardiac troponin I and cardiac troponin T, are now being used instead of or along with the standard markers, the MB isoenzyme of creatine kinase (CK-MB) and lactate dehydrogenase. Methods: We performed a MEDLINE literature search (1987 to 1997) using the key words "troponin I," "troponin T," and "acute myocardial infarction." We reviewed selected articles related to the diagnostic and prognostic usefulness of these cardiac markers in evaluating patients with suspected myocardial infarction. Results: We found that (1) troponin I is a better cardiac marker than CK-MB for myocardial infarction because it is equally sensitive yet more specific for myocardial injury; (2) troponin T is a relatively poorer cardiac marker than CK-MB because it is less sensitive and less specific for myocardial injury; and (3) both troponin I and troponin T may be used as independent prognosticators of future cardiac events. Conclusions: Troponin I is a sensitive and specific marker for myocardial injury and can be used to predict the likelihood of future cardiac events. It is not much more expensive to measure than CK-MB. Over­ all, troponin I is a better cardiac marker than CK-MB and should become the preferred cardiac enzyme when evaluating patients with suspected myocardial infarction.
    [Show full text]
  • Disrupted Mechanobiology Links the Molecular and Cellular Phenotypes
    bioRxiv preprint doi: https://doi.org/10.1101/555391; this version posted February 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Disrupted Mechanobiology Links the Molecular and Cellular 2 Phenotypes in Familial Dilated Cardiomyopathy 3 4 Sarah R. Clippinger1,2, Paige E. Cloonan1,2, Lina Greenberg1, Melanie Ernst1, W. Tom 5 Stump1, Michael J. Greenberg1,* 6 7 1 Department of Biochemistry and Molecular Biophysics, Washington University School 8 of Medicine, St. Louis, MO, 63110, USA 9 10 2 These authors contributed equally to this work 11 12 *Corresponding author: 13 Michael J. Greenberg 14 Department of Biochemistry and Molecular Biophysics 15 Washington University School of Medicine 16 660 S. Euclid Ave., Campus Box 8231 17 St. Louis, MO 63110 18 Phone: (314) 362-8670 19 Email: [email protected] 20 21 22 Running title: A DCM mutation disrupts mechanosensing 23 24 25 Keywords: Mechanosensing, stem cell derived cardiomyocytes, muscle regulation, 26 troponin, myosin, traction force microscopy 1 bioRxiv preprint doi: https://doi.org/10.1101/555391; this version posted February 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 27 Abstract 28 Familial dilated cardiomyopathy (DCM) is a leading cause of sudden cardiac death and a 29 major indicator for heart transplant. The disease is frequently caused by mutations of 30 sarcomeric proteins; however, it is not well understood how these molecular mutations 31 lead to alterations in cellular organization and contractility.
    [Show full text]
  • Profiling of the Muscle-Specific Dystroglycan Interactome Reveals the Role of Hippo Signaling in Muscular Dystrophy and Age-Dependent Muscle Atrophy Andriy S
    Yatsenko et al. BMC Medicine (2020) 18:8 https://doi.org/10.1186/s12916-019-1478-3 RESEARCH ARTICLE Open Access Profiling of the muscle-specific dystroglycan interactome reveals the role of Hippo signaling in muscular dystrophy and age-dependent muscle atrophy Andriy S. Yatsenko1†, Mariya M. Kucherenko2,3,4†, Yuanbin Xie2,5†, Dina Aweida6, Henning Urlaub7,8, Renate J. Scheibe1, Shenhav Cohen6 and Halyna R. Shcherbata1,2* Abstract Background: Dystroglycanopathies are a group of inherited disorders characterized by vast clinical and genetic heterogeneity and caused by abnormal functioning of the ECM receptor dystroglycan (Dg). Remarkably, among many cases of diagnosed dystroglycanopathies, only a small fraction can be linked directly to mutations in Dg or its regulatory enzymes, implying the involvement of other, not-yet-characterized, Dg-regulating factors. To advance disease diagnostics and develop new treatment strategies, new approaches to find dystroglycanopathy-related factors should be considered. The Dg complex is highly evolutionarily conserved; therefore, model genetic organisms provide excellent systems to address this challenge. In particular, Drosophila is amenable to experiments not feasible in any other system, allowing original insights about the functional interactors of the Dg complex. Methods: To identify new players contributing to dystroglycanopathies, we used Drosophila as a genetic muscular dystrophy model. Using mass spectrometry, we searched for muscle-specific Dg interactors. Next, in silico analyses allowed us to determine their association with diseases and pathological conditions in humans. Using immunohistochemical, biochemical, and genetic interaction approaches followed by the detailed analysis of the muscle tissue architecture, we verified Dg interaction with some of the discovered factors.
    [Show full text]
  • Contralateral Recurrence of Aggressive Fibromatosis in a Young Woman: a Case Report and Review of the Literature
    ONCOLOGY LETTERS 10: 325-328, 2015 Contralateral recurrence of aggressive fibromatosis in a young woman: A case report and review of the literature CHRISTOPHER J. SCHMOYER, HARMAR D. BRERETON and ERIC W. BLOMAIN Clinical Faculty, Department of Medicine, The Commonwealth Medical College, Scranton, PA 18509, USA Received August 9, 2014; Accepted April 24, 2015 DOI: 10.3892/ol.2015.3215 Abstract. Aggressive fibromatosis (AF) is a benign and shoulder girdle. Individuals with familial adenomatous non-encapsulated tumor of mesenchymal origin, with a polyposis (FAP) or Gardner's syndrome have a 1,000 times tendency for local spread along fascial planes. Local inva- greater risk for developing the disease due to inheritance of sion can lead to extensive morbidity and even mortality due the adenomatous polyposis coli (APC) gene (3). These patients to destruction of the bones, organs and soft tissues. This rare may present with intra-abdominal lesions following colonic lesion is observed 1,000 times more frequently in patients with resection (4). While AF does not metastasize, local recurrence familial adenomatous polyposis or Gardner's syndrome due to is common. Distant recurrence is extremely rare, but is typi- the inheritance of the adenomatous polyposis coli (APC) gene. cally observed in those with a new primary tumor associated While AF does not metastasize, local recurrence is common. with the APC mutation. The present study reports the case of Distant recurrence is extremely rare, but is observed in those a 20-year-old female with sporadic contralateral recurrence of with a germ line APC mutation. The present study details clinically diagnosed AF and no familial predisposition.
    [Show full text]
  • Differential Organization of Desmin and Vimentin in Muscle Is Due to Differences in Their Head Domains Robert B
    Differential Organization of Desmin and Vimentin in Muscle Is Due to Differences in Their Head Domains Robert B. Cary and Michael W. Klymkowsky Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347 Abstract. In most myogenic systems, synthesis of the aggregates. In embryonic epithelial cells, both vimen- intermediate filament (IF) protein vimentin precedes tin and desmin formed extended IF networks. Vimen- the synthesis of the muscle-specific IF protein desmin. tin and desmin differ most dramatically in their NH:- In the dorsal myotome of the Xenopus embryo, how- terminal "head" regions. To determine whether the ever, there is no preexisting vimentin filament system head region was responsible for the differences in the and desmin's initial organization is quite different from behavior of these two proteins, we constructed plas- that seen in vimentin-containing myocytes (Cary and mids encoding chimeric proteins in which the head of Klymkowsky, 1994. Differentiation. In press.). To de- one was attached to the body of the other. In muscle, termine whether the organization of IFs in the Xeno- the vimentin head-desmin body (VDD) polypeptide pus myotome reflects features unique to Xenopus or is formed longitudinal IFs and massive IF bundles like due to specific properties of desmin, we used the in- vimentin. The desmin head-vimentin body (DVV) jection of plasmid DNA to drive the synthesis of polypeptide, on the other hand, formed IF meshworks vimentin or desmin in myotomal cells. At low levels and non-filamentous structures like desmin. In em- of accumulation, exogenous vimentin and desmin both bryonic epithelial cells DVV formed a discrete fila- enter into the endogenous desmin system of the myo- ment network while VDD did not.
    [Show full text]
  • Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy
    Journal of Clinical Medicine Review Cardiac Filaminopathies: Illuminating the Divergent Role of Filamin C Mutations in Human Cardiomyopathy Matthias Eden 1,2 and Norbert Frey 1,2,* 1 Department of Internal Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; [email protected] 2 German Centre for Cardiovascular Research, Partner Site Heidelberg, 69120 Heidelberg, Germany * Correspondence: [email protected] Abstract: Over the past decades, there has been tremendous progress in understanding genetic alterations that can result in different phenotypes of human cardiomyopathies. More than a thousand mutations in various genes have been identified, indicating that distinct genetic alterations, or combi- nations of genetic alterations, can cause either hypertrophic (HCM), dilated (DCM), restrictive (RCM), or arrhythmogenic cardiomyopathies (ARVC). Translation of these results from “bench to bedside” can potentially group affected patients according to their molecular etiology and identify subclinical individuals at high risk for developing cardiomyopathy or patients with overt phenotypes at high risk for cardiac deterioration or sudden cardiac death. These advances provide not only mechanistic insights into the earliest manifestations of cardiomyopathy, but such efforts also hold the promise that mutation-specific pathophysiology might result in novel “personalized” therapeutic possibilities. Recently, the FLNC gene encoding the sarcomeric protein filamin C has gained special interest since FLNC mutations were found in several distinct and possibly overlapping cardiomyopathy phenotypes. Specifically, mutations in FLNC were initially only linked to myofibrillar myopathy (MFM), but are now increasingly found in various forms of human cardiomyopathy. FLNC thereby Citation: Eden, M.; Frey, N. Cardiac represents another example for the complex genetic and phenotypic continuum of these diseases.
    [Show full text]
  • Peptidomic Profiles of Post Myocardial Infarction
    Wang et al. Clinical and Translational Medicine 2012, 1:11 http://www.clintransmed.com/content/1/1/11 RESEARCH Open Access Peptidomic profiles of post myocardial infarction rats affinity depleted plasma using matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrometry Bing Hui Wang1, Simone Reisman2, Mark Bailey2, Andrew Kompa1,3, Mustafa Ayhan2, Henry Krum1 and Gregory Rice2* Abstract Background: Despite major advances in drug development, effective cardiovascular therapies and suitable cardiovascular biomarkers remain limited. The aim of this study was to leverage mass spectrometry (MS) based peptide profiling strategies to identify changes that occur in peptidomic profiles of rat plasma following coronary artery ligation generated myocardial infarction (MI). Methods: One week after MI, rats were randomized to receive either an ACE inhibitor (ramipril, Ram-1 mg/kg/day), or vehicle (Veh) for 12 weeks. Echocardiography and hemodynamic measurements were made before sacrifice and plasma collection. High abundance proteins were depleted with affinity capture before MS profiling. Differentially expressed peptide ions were identified using proprietary software (ClinProtTools). Results: MI increased heart/body weight (18%), lung/body weight (56%), and left ventricular (LV) end diastolic pressure (LVEDP, 247%); and significantly reduced percentage fractional shortening (FS, 75%) and rate of pressure rise in the LV (dP/dtmax, 20%). Ram treatment significantly attenuated the changes in LVEDP (61%) and FS (27%). Analysis of MALDI-ToF generated mass spectra demonstrated that peptide ions 1271, 1878, 1955, 2041 and 2254 m/z were consistently decreased by Ram treatment (p < 0.001) and thus may be associated with the agent’s therapeutic effects.
    [Show full text]
  • Gene Therapy Rescues Cardiac Dysfunction in Duchenne Muscular
    JACC: BASIC TO TRANSLATIONAL SCIENCE VOL.4,NO.7,2019 ª 2019 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). PRECLINICAL RESEARCH Gene Therapy Rescues Cardiac DysfunctioninDuchenneMuscular Dystrophy Mice by Elevating Cardiomyocyte Deoxy-Adenosine Triphosphate a b c d,e Stephen C. Kolwicz, JR,PHD, John K. Hall, PHD, Farid Moussavi-Harami, MD, Xiolan Chen, PHD, d,e b,d,e e,f,g, b,e,g, Stephen D. Hauschka, PHD, Jeffrey S. Chamberlain, PHD, Michael Regnier, PHD, * Guy L. Odom, PHD * VISUAL ABSTRACT Kolwicz, S.C. Jr. et al. J Am Coll Cardiol Basic Trans Science. 2019;4(7):778–91. HIGHLIGHTS rAAV vectors increase cardiac-specific expression of RNR and elevate cardiomyocyte 2-dATP levels. Elevated myocardial RNR and subsequent increase in 2-dATP rescues the performance of failing myocardium, an effect that persists long term. ISSN 2452-302X https://doi.org/10.1016/j.jacbts.2019.06.006 JACC: BASIC TO TRANSLATIONAL SCIENCE VOL. 4, NO. 7, 2019 Kolwicz, Jr., et al. 779 NOVEMBER 2019:778– 91 Nucleotide-Based Cardiac Gene Therapy Restores Function in dmd Mice We show the ability to increase both cardiac baseline function and high workload contractile performance in ABBREVIATIONS aged (22- to 24-month old) mdx4cv mice, by high-level muscle-specific expression of either microdystrophin AND ACRONYMS or RNR. mDys = microdystrophin Five months post-treatment, mice systemically injected with rAAV6 vector carrying a striated muscle-specific CK8 regulatory cassette driving expression of microdystrophin in both skeletal and cardiac muscle, exhibited the = miniaturized murine creatine kinase regulatory greatest effect on systolic function.
    [Show full text]
  • Hypertrophic Cardiomyopathy- Associated Mutations in Genes That Encode Calcium-Handling Proteins
    Current Molecular Medicine 2012, 12, 507-518 507 Beyond the Cardiac Myofilament: Hypertrophic Cardiomyopathy- Associated Mutations in Genes that Encode Calcium-Handling Proteins A.P. Landstrom and M.J. Ackerman* Departments of Medicine, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Cardiovascular Diseases and Pediatric Cardiology, and the Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA Abstract: Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium- handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins.
    [Show full text]
  • Identification of Previously Unrecognized FAP in Children With
    European Journal of Human Genetics (2015) 23, 715–718 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg SHORT REPORT Identification of previously unrecognized FAP in children with Gardner fibroma Joana Vieira1,5, Carla Pinto1,5, Mariana Afonso2,5, Maria do Bom Sucesso3, Paula Lopes2, Manuela Pinheiro1, Isabel Veiga1, Rui Henrique2,4 and Manuel R Teixeira*,1,4 Fibromatous soft tissue lesions, namely desmoid-type fibromatosis and Gardner fibroma, may occur sporadically or as a result of inherited predisposition (as part of familial adenomatous polyposis, FAP). Whereas desmoid-type fibromatosis often present b-catenin overexpression (by activating CTNNB1 somatic variants or APC biallelic inactivation), the pathogenetic mechanisms in Gardner fibroma are unknown. We characterized in detail Gardner fibromas diagnosed in two infants to evaluate their role as sentinel lesions of previously unrecognized FAP. In the first infant we found a 5q deletion including APC in the tumor and the novel APC variant c.4687dup in constitutional DNA. In the second infant we found the c.5826_5829del and c.1678A4T APC variants in constitutional and tumor DNA, respectively. None of the constitutional APC variants occurred de novo and both tumors showed nuclear staining for b-catenin and no CTNNB1 variants. We present the first comprehensive characterization of the pathogenetic mechanisms of Gardner fibroma, which may be a sentinel lesion of previously unrecognized FAP families. European Journal of Human Genetics (2015) 23, 715–718; doi:10.1038/ejhg.2014.144; published online 30 July 2014 INTRODUCTION MATERIALS AND METHODS Familial adenomatous polyposis (FAP) is an autosomal dominant The first case was a 5-month-old child who had two lumbar subcutaneous disease caused by APC constitutional variants.
    [Show full text]
  • Typology and Profile of Spine Muscles. Structure of Myofibrils and Role of Protein Components – Review of Current Literature
    Ovidius University Annals, Series Physical Education and Sport / SCIENCE, MOVEMENT AND HEALTH Vol. XI, ISSUE 2 Supplement, 2011, Romania The JOURNAL is nationally acknowledged by C.N.C.S.I.S., being included in the B+ category publications, 2008-2011. The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengace Learning TYPOLOGY AND PROFILE OF SPINE MUSCLES. STRUCTURE OF MYOFIBRILS AND ROLE OF PROTEIN COMPONENTS – REVIEW OF CURRENT LITERATURE STRATON ALEXANDRU1, ENE-VOICULESCU CARMEN1, GIDU DIANA1, PETRESCU ANDREI1 Abstract. Muscular profile of spine muscles has a great importance in trunk stability. It seems that muscles which support the spine show a high content of red muscle fiber with a cross section area equal or higher than white muscle fibers. It is possible that lumbar extensor muscles to have different functional capacity between sexes. Most of the myofibril structural proteins except protein actin and protein myosin have a role in maintaining the structural integrity of muscle cell. Key words: muscle, fibres, myofibrils, proteins, spine. thoracic muscle structure lying superficial and deep is Introduction composed of 74% type I fibers, lumbar muscle Proper understanding of muscle fibers profile of structure located superficially is composed of 57% muscles supporting the spine and the role of muscle type I fibers and lumbar muscle structure located deep cell structural proteins leads to better achievements in is composed of 63% type I fibers. Type I muscle fiber performance training and rehabilitation. diameter is significantly larger than that of type II fibers. Another study, conducted on 42 patients Muscle fibers typology divided into two groups - 21 patients with lumbar Skeletal muscle contains two major types of back pain and 21 patients without lumbar back pain muscle fibers: slow twitch red or type I fibers) and almost identical groups as gender, age and body mass fast twitch white or type II fibers).
    [Show full text]