Disease-Proportional Proteasomal Degradation of Missense Dystrophins

Total Page:16

File Type:pdf, Size:1020Kb

Disease-Proportional Proteasomal Degradation of Missense Dystrophins Disease-proportional proteasomal degradation of missense dystrophins Dana M. Talsness, Joseph J. Belanto, and James M. Ervasti1 Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota–Twin Cities, Minneapolis, MN 55455 Edited by Louis M. Kunkel, Children’s Hospital Boston, Harvard Medical School, Boston, MA, and approved September 1, 2015 (received for review May 5, 2015) The 427-kDa protein dystrophin is expressed in striated muscle insertions or deletions (indels) represent ∼7% of the total DMD/ where it physically links the interior of muscle fibers to the BMD population (13). When indel mutations cause a frameshift, they extracellular matrix. A range of mutations in the DMD gene encod- can specifically be targeted by current exon-skipping strategies (15). ing dystrophin lead to a severe muscular dystrophy known as Du- Patients with missense mutations account for only a small percentage chenne (DMD) or a typically milder form known as Becker (BMD). of dystrophinopathies (<1%) (13), yet they represent an orphaned Patients with nonsense mutations in dystrophin are specifically tar- subpopulation with an undetermined pathomechanism and no cur- geted by stop codon read-through drugs, whereas out-of-frame de- rent personalized therapies. letions and insertions are targeted by exon-skipping therapies. Both The first missense mutation reported to cause DMD was L54R treatment strategies are currently in clinical trials. Dystrophin mis- in ABD1 of an 8-y-old patient (16). Another group later reported sense mutations, however, cause a wide range of phenotypic se- L172H, a missense mutation in a structurally analogous location of verity in patients. The molecular and cellular consequences of such ABD1 (17), yet this patient presented with mild symptoms at 42 mutations are not well understood, and there are no therapies spe- years of age. We first hypothesized that differential effects on cifically targeting this genotype. Here, we have modeled two rep- actin-binding affinity could account for differences in disease se- resentative missense mutations, L54R and L172H, causing DMD and verity between L54R and L172H. However, biochemical assays BMD, respectively, in full-length dystrophin. In vitro, the mutation reported only nominal effects of six different missense mutations, associated with the mild phenotype (L172H) caused a minor de- including L54R and L172H, on actin-binding affinity (18). In crease in tertiary stability, whereas the L54R mutation associated vitro biophysical analyses of the full-length proteins instead with a severe phenotype had a more dramatic effect. When stably revealed that each of the mutations rendered dystrophin more expressed in mammalian muscle cells, the mutations caused steady- insoluble and less stable during thermal denaturation. Missense state decreases in dystrophin protein levels inversely proportional mutations analyzed in purified ABD1 fragments also exhibited to the tertiary stability and directly caused by proteasomal degra- significant aggregation as assessed by thioflavin T fluorescence, dation. Both proteasome inhibitors and heat shock activators were Congo red staining, and electron microscopy (19). able to increase mutant dystrophin to WT levels, establishing the Although previous research indicates that missense mutations new cell lines as a platform to screen for potential therapeutics personalized to patients with destabilized dystrophin. in dystrophin ABD1 cause protein instability and aggregation, no in vitro measurements were able to distinguish between missense Duchenne muscular dystrophy | missense mutation | protein folding | mutations that cause severe DMD versus those that cause mild proteasome inhibitor | heat shock activator BMD symptoms. There is also currently no understanding of the in vivo cellular consequences of dystrophin instability. If such protein instability does indeed cause protein aggregation in the n striated muscle cells, the contraction of sarcomeres is coupled cell, therapeutic methods may aim at removal or resolubilization Ito the sarcolemma through the costamere protein network (1). One substructure of the costamere, known as the dystrophin– glycoprotein complex (DGC), physically links the cytoskeleton to Significance the extracellular matrix, contributing to myofiber integrity during contraction and relaxation (2). One of the key components of the Duchenne and Becker muscular dystrophies occur at a frequency DGC, dystrophin, is a 427-kDa structural protein composed of an of 1:4,000 live male births. Patients experience progressive muscle N-terminal actin binding domain (ABD1), a central rod region weakness and often succumb to cardiac or respiratory failure. made of 24 spectrin-like repeats that contain binding domains for Many laboratories are investigating potential treatments, in- several proteins (3–6), a cysteine-rich (CR) globular domain, and cluding several therapies that target subsets of patients with an intrinsically disordered C-terminal tail (CT) (7). Dystrophin is certain types of mutations. Yet there are currently no treatments encoded by the DMD gene, which is located on the X chromo- specific to patients with missense mutations in the affected pro- some and spans over 2.4 Mb of DNA, making it the largest in the tein, dystrophin. Here, we have shown missense mutant dystro- human genome (8). phin is degraded by the cell, which can be prevented by several Males who harbor a disease-causing mutation in their single copy small molecules targeting the cellular degradation machinery. In of the DMD gene develop a muscular dystrophy either with severe addition to determining disease mechanism, this work has gen- erated new cell-based models that may aid in the discovery of symptoms known as Duchenne (DMD) or typically milder symp- personalized medicines for dystrophinopathy patients afflicted toms referred to as Becker (BMD) (9), occurring with an incidence with missense mutations. of ∼1 in 4,000 live male births (10). Muscle degeneration is pro- gressive and boys lose ambulation in their teenage years. Death Author contributions: J.M.E. designed research; D.M.T. performed research; D.M.T. and occurs in the second or third decade of life, commonly due to J.J.B. contributed new reagents/analytic tools; D.M.T. analyzed data; and D.M.T. and J.M.E. cardiac or respiratory failure (11). The types of mutations causing wrote the paper. DMD and BMD include insertions, deletions, point mutations, and The authors declare no conflict of interest. splice site mutations (12). A recent collaborative data bank has This article is a PNAS Direct Submission. calculated that patients with nonsense mutations account for ∼10% 1To whom correspondence should be addressed. Email: [email protected]. of dystrophinopathies (13), all of whom are the target population This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. for stop codon read-through therapies (14). Patients with small 1073/pnas.1508755112/-/DCSupplemental. 12414–12419 | PNAS | October 6, 2015 | vol. 112 | no. 40 www.pnas.org/cgi/doi/10.1073/pnas.1508755112 Downloaded by guest on September 25, 2021 of aggregates akin to treatments for polyglutamine diseases or protein submissions to the SNP database (rs145668843). To determine the aggregate myopathies (20, 21). If, however, the unstable dystrophin stability of the tertiary protein structures, each purified protein was protein is degraded, then more effective disease treatments may in- measured by DSF over a temperature gradient from 20 to 90 °C (Fig. stead focus on stabilizing the mutant protein. Here, we use differ- 1B). WT dystrophin showed a cooperative unfolding transition (Tm = ential scanning fluorimetry (DSF) to assess the in vitro tertiary 43.36 °C) and the SNP I232M gave a similar melt curve. Mutant structure of L54R and L172H mutant dystrophins, and found that the dystrophin L172H was slightly left shifted (Tm = 42.08 °C), indicating more severe mutation (L54R) caused greater tertiary instability. asmalldecreaseinproteinstability. L54R was more left-shifted Additionally, we generated stable myoblast lines expressing L54R and (Tm = 40.03 °C), suggesting either greater thermal instability or the L172H dystrophin, which revealed that the mutant proteins are de- presence of a partially unfolded state of the protein at initiation of the graded by the proteasome to a degree that is inversely proportional to experiment. These DSF results indicate that L54R and L172H cause their in vitro stabilities. Flow cytometry used to detect dystrophin improper folding of dystrophin, with the mutation leading to severe showed several small molecules capable of increasing the mutant disease symptoms (L54R) having a greater deleterious effect. protein levels, supporting the cell lines’ potential for future high- As a sensitive measure of protein aggregation, the hydrodynamic throughput screens for dystrophin stabilizers. radius of full-length protein was measured by dynamic light scat- tering (DLS) (Fig. 1 C and D). DLS analysis of dystrophin isoforms Results Dp71 and Dp260, and full-length dystrophin yielded z-average sizes L54R and L172H Cause Different Degrees of Protein Instability in that correlated positively with increasing molecular weight as Vitro. We expressed and purified full-length WT, L54R, and expected (Fig. S1). Boiling full-length WT dystrophin protein in- L172H dystrophins (Fig. 1A) using the previously established bacu- creased its z-average size by approximately fourfold (Fig. 1C), lovirus
Recommended publications
  • Desmin Interacts Directly with Mitochondria
    International Journal of Molecular Sciences Article Desmin Interacts Directly with Mitochondria Alexander A. Dayal 1, Natalia V. Medvedeva 1, Tatiana M. Nekrasova 1, Sergey D. Duhalin 1, Alexey K. Surin 1,2 and Alexander A. Minin 1,* 1 Institute of Protein Research of Russian Academy of Sciences, Vavilova st., 34, 119334 Moscow, Russia; [email protected] (A.A.D.); [email protected] (N.V.M.); [email protected] (T.M.N.); [email protected] (S.D.D.); [email protected] (A.K.S.) 2 Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, 142290 Moscow Region, Russia * Correspondence: [email protected] Received: 14 October 2020; Accepted: 26 October 2020; Published: 30 October 2020 Abstract: Desmin intermediate filaments (IFs) play an important role in maintaining the structural and functional integrity of muscle cells. They connect contractile myofibrils to plasma membrane, nuclei, and mitochondria. Disturbance of their network due to desmin mutations or deficiency leads to an infringement of myofibril organization and to a deterioration of mitochondrial distribution, morphology, and functions. The nature of the interaction of desmin IFs with mitochondria is not clear. To elucidate the possibility that desmin can directly bind to mitochondria, we have undertaken the study of their interaction in vitro. Using desmin mutant Des(Y122L) that forms unit-length filaments (ULFs) but is incapable of forming long filaments and, therefore, could be effectively separated from mitochondria by centrifugation through sucrose gradient, we probed the interaction of recombinant human desmin with mitochondria isolated from rat liver. Our data show that desmin can directly bind to mitochondria, and this binding depends on its N-terminal domain.
    [Show full text]
  • Genetic Mutations and Mechanisms in Dilated Cardiomyopathy
    Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, … , Jessica R. Golbus, Megan J. Puckelwartz J Clin Invest. 2013;123(1):19-26. https://doi.org/10.1172/JCI62862. Review Series Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of congestive heart failure. In hypertrophic cardiomyopathy (HCM), cardiac output is limited by the thickened myocardium through impaired filling and outflow. Mutations in the genes encoding the thick filament components myosin heavy chain and myosin binding protein C (MYH7 and MYBPC3) together explain 75% of inherited HCMs, leading to the observation that HCM is a disease of the sarcomere. Many mutations are “private” or rare variants, often unique to families. In contrast, dilated cardiomyopathy (DCM) is far more genetically heterogeneous, with mutations in genes encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. DCM is characterized by enlarged ventricular dimensions and impaired systolic and diastolic function. Private mutations account for most DCMs, with few hotspots or recurring mutations. More than 50 single genes are linked to inherited DCM, including many genes that also link to HCM. Relatively few clinical clues guide the diagnosis of inherited DCM, but emerging evidence supports the use of genetic testing to identify those patients at risk for faster disease progression, congestive heart failure, and arrhythmia. Find the latest version: https://jci.me/62862/pdf Review series Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, Jessica R. Golbus, and Megan J. Puckelwartz Department of Human Genetics, University of Chicago, Chicago, Illinois, USA. Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of conges- tive heart failure.
    [Show full text]
  • Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy
    International Journal of Molecular Sciences Review Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy Aoife Gowran 1,*, Maura Brioschi 2, Davide Rovina 1 , Mattia Chiesa 3,4 , Luca Piacentini 3,* , Sara Mallia 1, Cristina Banfi 2,* , Giulio Pompilio 1,5,6,* and Rosaria Santoro 1,4 1 Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] (D.R.); [email protected] (S.M.); [email protected] (R.S.) 2 Unit of Cardiovascular Proteomics, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] 3 Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] 4 Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133 Milan, Italy 5 Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy 6 Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy * Correspondence: [email protected] (A.G.); [email protected] (L.P.); cristina.banfi@cardiologicomonzino.it (C.B.); [email protected] (G.P.) Abstract: Despite major progress in treating skeletal muscle disease associated with dystrophinopathies, cardiomyopathy is emerging as a major cause of death in people carrying dystrophin gene mutations that remain without a targeted cure even with new treatment directions and advances in modelling Citation: Gowran, A.; Brioschi, M.; abilities. The reasons for the stunted progress in ameliorating dystrophin-associated cardiomyopathy Rovina, D.; Chiesa, M.; Piacentini, L.; (DAC) can be explained by the difficulties in detecting pathophysiological mechanisms which can also Mallia, S.; Banfi, C.; Pompilio, G.; Santoro, R.
    [Show full text]
  • Molecular Genetic Analysis of the Adenomatous Polyposis Coli (APC)
    Molecular Genetic Analysis of the Adenomatous Polyposis Coli(APC) gene region by Garret Malcolm Hampton A thesis submitted in requirement for the degree of Doctor of Philosophy at the University of London May, 1992 Cancer Genetics Laboratory (formerly Director's Laboratory) Imperial Cancer Research Fund London and Department of Genetics and Biometry University College London London University Page -1- ProQuest Number: 10609182 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10609182 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 To my parents and my wife, Kate Page -2- Abstract Familial Adenomatous Polyposis (FAP) is a rare, autosomal dominant predisposition to colorectal cancer, affecting about one in ten thousand individuals in all populations studied. The gene responsible for this syndrome, designated APC (for Adenomatous Polyposis Coli) was mapped to 5q21-q22 by linkage analysis following a cytogenetic report of a male patient with polyposis and an interstitial deletion on 5q. The high incidence of allele loss at 5q21-q22 in carcinomas of sporadic patients suggests that mutation of the APC gene is a very frequent step in the tumorigenic pathway to nonfamilial colorectal carcinomas and emphasises the importance of isolating the gene and identifying its function.
    [Show full text]
  • Contralateral Recurrence of Aggressive Fibromatosis in a Young Woman: a Case Report and Review of the Literature
    ONCOLOGY LETTERS 10: 325-328, 2015 Contralateral recurrence of aggressive fibromatosis in a young woman: A case report and review of the literature CHRISTOPHER J. SCHMOYER, HARMAR D. BRERETON and ERIC W. BLOMAIN Clinical Faculty, Department of Medicine, The Commonwealth Medical College, Scranton, PA 18509, USA Received August 9, 2014; Accepted April 24, 2015 DOI: 10.3892/ol.2015.3215 Abstract. Aggressive fibromatosis (AF) is a benign and shoulder girdle. Individuals with familial adenomatous non-encapsulated tumor of mesenchymal origin, with a polyposis (FAP) or Gardner's syndrome have a 1,000 times tendency for local spread along fascial planes. Local inva- greater risk for developing the disease due to inheritance of sion can lead to extensive morbidity and even mortality due the adenomatous polyposis coli (APC) gene (3). These patients to destruction of the bones, organs and soft tissues. This rare may present with intra-abdominal lesions following colonic lesion is observed 1,000 times more frequently in patients with resection (4). While AF does not metastasize, local recurrence familial adenomatous polyposis or Gardner's syndrome due to is common. Distant recurrence is extremely rare, but is typi- the inheritance of the adenomatous polyposis coli (APC) gene. cally observed in those with a new primary tumor associated While AF does not metastasize, local recurrence is common. with the APC mutation. The present study reports the case of Distant recurrence is extremely rare, but is observed in those a 20-year-old female with sporadic contralateral recurrence of with a germ line APC mutation. The present study details clinically diagnosed AF and no familial predisposition.
    [Show full text]
  • Physiologist Physiologist
    Published by The American Physiological Society Integrating the Life Sciences from Molecule to Organism The PhysiologistPhysiologist Generating Support for Science INSIDE in the 111th Congress Rebecca Osthus APS Science Policy Analyst APS The 2008 election cycle brings a new is somewhat more promising. There is a administration to Washington, DC this plan to double the agency’s budget over Bylaw Changes January and also ushers in the 111th the next several years as part of the p. 240 Congress. With many new Members of America COMPETES Act, but so far Congress in both the House of yearly increases have not lived up to Representatives and the Senate, now is the goals laid out by Congress. Annual Meeting of the time for APS members to reach out Lawmakers are also making deci- the Nebraska and communicate the importance of sions about what regulations govern Physiological supporting biomedical research the use of animals in research, whether through strong federal funding and federally funded scientists should con- Society sound policy making. While scientists tinue to consult for and own stock in p. 243 carry out research in labs across the pharmaceutical and biotechnology com- country, many decisions are being made in APS Membership Washington, DC that Statistics will affect how they do p. 244 their jobs. The current fiscal cri- sis means that it is Starting a Lab: more important than How to Develop a ever before to make a strong case for federal Budget and Buy investment in research. Equipment Since the completion of p. 252 the doubling of the NIH budget, yearly increas- es have failed to keep Congress Extends pace with inflation, Current Levels of causing success rates for extramural grants Research Funding to fall into the teens.
    [Show full text]
  • Differential Organization of Desmin and Vimentin in Muscle Is Due to Differences in Their Head Domains Robert B
    Differential Organization of Desmin and Vimentin in Muscle Is Due to Differences in Their Head Domains Robert B. Cary and Michael W. Klymkowsky Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347 Abstract. In most myogenic systems, synthesis of the aggregates. In embryonic epithelial cells, both vimen- intermediate filament (IF) protein vimentin precedes tin and desmin formed extended IF networks. Vimen- the synthesis of the muscle-specific IF protein desmin. tin and desmin differ most dramatically in their NH:- In the dorsal myotome of the Xenopus embryo, how- terminal "head" regions. To determine whether the ever, there is no preexisting vimentin filament system head region was responsible for the differences in the and desmin's initial organization is quite different from behavior of these two proteins, we constructed plas- that seen in vimentin-containing myocytes (Cary and mids encoding chimeric proteins in which the head of Klymkowsky, 1994. Differentiation. In press.). To de- one was attached to the body of the other. In muscle, termine whether the organization of IFs in the Xeno- the vimentin head-desmin body (VDD) polypeptide pus myotome reflects features unique to Xenopus or is formed longitudinal IFs and massive IF bundles like due to specific properties of desmin, we used the in- vimentin. The desmin head-vimentin body (DVV) jection of plasmid DNA to drive the synthesis of polypeptide, on the other hand, formed IF meshworks vimentin or desmin in myotomal cells. At low levels and non-filamentous structures like desmin. In em- of accumulation, exogenous vimentin and desmin both bryonic epithelial cells DVV formed a discrete fila- enter into the endogenous desmin system of the myo- ment network while VDD did not.
    [Show full text]
  • Gene Therapy Rescues Cardiac Dysfunction in Duchenne Muscular
    JACC: BASIC TO TRANSLATIONAL SCIENCE VOL.4,NO.7,2019 ª 2019 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). PRECLINICAL RESEARCH Gene Therapy Rescues Cardiac DysfunctioninDuchenneMuscular Dystrophy Mice by Elevating Cardiomyocyte Deoxy-Adenosine Triphosphate a b c d,e Stephen C. Kolwicz, JR,PHD, John K. Hall, PHD, Farid Moussavi-Harami, MD, Xiolan Chen, PHD, d,e b,d,e e,f,g, b,e,g, Stephen D. Hauschka, PHD, Jeffrey S. Chamberlain, PHD, Michael Regnier, PHD, * Guy L. Odom, PHD * VISUAL ABSTRACT Kolwicz, S.C. Jr. et al. J Am Coll Cardiol Basic Trans Science. 2019;4(7):778–91. HIGHLIGHTS rAAV vectors increase cardiac-specific expression of RNR and elevate cardiomyocyte 2-dATP levels. Elevated myocardial RNR and subsequent increase in 2-dATP rescues the performance of failing myocardium, an effect that persists long term. ISSN 2452-302X https://doi.org/10.1016/j.jacbts.2019.06.006 JACC: BASIC TO TRANSLATIONAL SCIENCE VOL. 4, NO. 7, 2019 Kolwicz, Jr., et al. 779 NOVEMBER 2019:778– 91 Nucleotide-Based Cardiac Gene Therapy Restores Function in dmd Mice We show the ability to increase both cardiac baseline function and high workload contractile performance in ABBREVIATIONS aged (22- to 24-month old) mdx4cv mice, by high-level muscle-specific expression of either microdystrophin AND ACRONYMS or RNR. mDys = microdystrophin Five months post-treatment, mice systemically injected with rAAV6 vector carrying a striated muscle-specific CK8 regulatory cassette driving expression of microdystrophin in both skeletal and cardiac muscle, exhibited the = miniaturized murine creatine kinase regulatory greatest effect on systolic function.
    [Show full text]
  • Impacts of Dystrophin and Utrophin Domains on Actin Structural Dynamics: Implications for Therapeutic Design
    doi:10.1016/j.jmb.2012.04.005 J. Mol. Biol. (2012) 420,87–98 Contents lists available at www.sciencedirect.com Journal of Molecular Biology journal homepage: http://ees.elsevier.com.jmb Impacts of Dystrophin and Utrophin Domains on Actin Structural Dynamics: Implications for Therapeutic Design Ava Yun Lin, Ewa Prochniewicz, Davin M. Henderson, Bin Li, James M. Ervasti and David D. Thomas⁎ Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA Received 27 January 2012; We have used time-resolved phosphorescence anisotropy (TPA) of actin received in revised form to evaluate domains of dystrophin and utrophin, with implications for 26 March 2012; gene therapy in muscular dystrophy. Dystrophin and its homolog accepted 2 April 2012 utrophin bind to cytoskeletal actin to form mechanical linkages that Available online prevent muscular damage. Because these proteins are too large for most 11 April 2012 gene therapy vectors, much effort is currently devoted to smaller constructs. We previously used TPA to show that both dystrophin and Edited by R. Craig utrophin have a paradoxical effect on actin rotational dynamics— restricting amplitude while increasing rate, thus increasing resilience, Keywords: with utrophin more effective than dystrophin. Here, we have evaluated time-resolved individual domains of these proteins. We found that a “mini-dystrophin,” phosphorescence anisotropy; lacking one of the two actin-binding domains, is less effective than TPA; dystrophin in regulating actin dynamics, correlating with its moderate muscular dystrophy; effectiveness in rescuing the dystrophic phenotype in mice. In contrast, gene therapy we found that a “micro-utrophin,” with more extensive internal deletions, is as effective as full-length dystrophin in the regulation of actin dynamics.
    [Show full text]
  • Identification of Previously Unrecognized FAP in Children With
    European Journal of Human Genetics (2015) 23, 715–718 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg SHORT REPORT Identification of previously unrecognized FAP in children with Gardner fibroma Joana Vieira1,5, Carla Pinto1,5, Mariana Afonso2,5, Maria do Bom Sucesso3, Paula Lopes2, Manuela Pinheiro1, Isabel Veiga1, Rui Henrique2,4 and Manuel R Teixeira*,1,4 Fibromatous soft tissue lesions, namely desmoid-type fibromatosis and Gardner fibroma, may occur sporadically or as a result of inherited predisposition (as part of familial adenomatous polyposis, FAP). Whereas desmoid-type fibromatosis often present b-catenin overexpression (by activating CTNNB1 somatic variants or APC biallelic inactivation), the pathogenetic mechanisms in Gardner fibroma are unknown. We characterized in detail Gardner fibromas diagnosed in two infants to evaluate their role as sentinel lesions of previously unrecognized FAP. In the first infant we found a 5q deletion including APC in the tumor and the novel APC variant c.4687dup in constitutional DNA. In the second infant we found the c.5826_5829del and c.1678A4T APC variants in constitutional and tumor DNA, respectively. None of the constitutional APC variants occurred de novo and both tumors showed nuclear staining for b-catenin and no CTNNB1 variants. We present the first comprehensive characterization of the pathogenetic mechanisms of Gardner fibroma, which may be a sentinel lesion of previously unrecognized FAP families. European Journal of Human Genetics (2015) 23, 715–718; doi:10.1038/ejhg.2014.144; published online 30 July 2014 INTRODUCTION MATERIALS AND METHODS Familial adenomatous polyposis (FAP) is an autosomal dominant The first case was a 5-month-old child who had two lumbar subcutaneous disease caused by APC constitutional variants.
    [Show full text]
  • Diagnosis and Cell-Based Therapy for Duchenne Muscular Dystrophy in Humans, Mice, and Zebrafish
    J Hum Genet (2006) 51:397–406 DOI 10.1007/s10038-006-0374-9 MINIREVIEW Louis M. Kunkel Æ Estanislao Bachrach Richard R. Bennett Æ Jeffrey Guyon Æ Leta Steffen Diagnosis and cell-based therapy for Duchenne muscular dystrophy in humans, mice, and zebrafish Received: 3 January 2006 / Accepted: 4 January 2006 / Published online: 1 April 2006 Ó The Japan Society of Human Genetics and Springer-Verlag 2006 Abstract The muscular dystrophies are a heterogeneous mutants carries a stop codon mutation in dystrophin, group of genetically caused muscle degenerative disor- and we have recently identified another carrying a ders. The Kunkel laboratory has had a longstanding mutation in titin. We are currently positionally cloning research program into the pathogenesis and treatment of the disease-causative mutation in the remaining 12 mu- these diseases. Starting with our identification of dys- tant strains. We hope that one of these new mutant trophin as the defective protein in Duchenne muscular strains of fish will have a mutation in a gene not previ- dystrophy (DMD), we have continued our work on ously implicated in human muscular dystrophy. This normal dystrophin function and how it is altered in gene would become a candidate gene to be analyzed in muscular dystrophy. Our work has led to the identifi- patients which do not carry a mutation in any of the cation of the defective genes in three forms of limb girdle known dystrophy-associated genes. By studying both muscular dystrophy (LGMD) and a better understand- disease pathology and investigating potential therapies, ing of how muscle degenerates in many of the different we hope to make a positive difference in the lives of dystrophies.
    [Show full text]
  • Loss of Mouse Cardiomyocyte Talin-1 and Talin-2 Leads to Β-1 Integrin
    Loss of mouse cardiomyocyte talin-1 and talin-2 leads PNAS PLUS to β-1 integrin reduction, costameric instability, and dilated cardiomyopathy Ana Maria Mansoa,b,1, Hideshi Okadaa,b, Francesca M. Sakamotoa, Emily Morenoa, Susan J. Monkleyc, Ruixia Lia, David R. Critchleyc, and Robert S. Rossa,b,1 aDivision of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093; bCardiology Section, Department of Medicine, Veterans Administration Healthcare, San Diego, CA 92161; and cDepartment of Molecular Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom Edited by Kevin P. Campbell, Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, and approved May 30, 2017 (received for review January 26, 2017) Continuous contraction–relaxation cycles of the heart require ognized as key mechanotransducers, converting mechanical per- strong and stable connections of cardiac myocytes (CMs) with turbations to biochemical signals (5, 6). the extracellular matrix (ECM) to preserve sarcolemmal integrity. The complex of proteins organized by integrins has been most CM attachment to the ECM is mediated by integrin complexes commonly termed focal adhesions (FA) by studies performed in localized at the muscle adhesion sites termed costameres. The cells such as fibroblasts in a 2D environment. It is recognized that ubiquitously expressed cytoskeletal protein talin (Tln) is a compo- this structure is important for organizing and regulating the me- nent of muscle costameres that links integrins ultimately to the chanical and signaling events that occur upon cellular adhesion to sarcomere. There are two talin genes, Tln1 and Tln2. Here, we ECM (7, 8).
    [Show full text]