Troponin C Fast Skeletal (E-7): Sc-48347
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appropriate Roles of Cardiac Troponins in Evaluating Patients with Chest Pain
J Am Board Fam Pract: first published as 10.3122/jabfm.12.3.214 on 1 May 1999. Downloaded from MEDICAL PRACTICE Appropriate Roles of Cardiac Troponins in Evaluating Patients With Chest Pain Matthew S. Rice, MD, CPT, Me, USA, and David C. MacDonald, DO, Me, USA Background: Diagnosis of acute myocardial infarction relies upon the clinical history, interpretation of the electrocardiogram, and measurement of serum levels of cardiac enzymes. Newer biochemical markers of myocardial injury, such as cardiac troponin I and cardiac troponin T, are now being used instead of or along with the standard markers, the MB isoenzyme of creatine kinase (CK-MB) and lactate dehydrogenase. Methods: We performed a MEDLINE literature search (1987 to 1997) using the key words "troponin I," "troponin T," and "acute myocardial infarction." We reviewed selected articles related to the diagnostic and prognostic usefulness of these cardiac markers in evaluating patients with suspected myocardial infarction. Results: We found that (1) troponin I is a better cardiac marker than CK-MB for myocardial infarction because it is equally sensitive yet more specific for myocardial injury; (2) troponin T is a relatively poorer cardiac marker than CK-MB because it is less sensitive and less specific for myocardial injury; and (3) both troponin I and troponin T may be used as independent prognosticators of future cardiac events. Conclusions: Troponin I is a sensitive and specific marker for myocardial injury and can be used to predict the likelihood of future cardiac events. It is not much more expensive to measure than CK-MB. Over all, troponin I is a better cardiac marker than CK-MB and should become the preferred cardiac enzyme when evaluating patients with suspected myocardial infarction. -
Gene Therapy Rescues Cardiac Dysfunction in Duchenne Muscular
JACC: BASIC TO TRANSLATIONAL SCIENCE VOL.4,NO.7,2019 ª 2019 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). PRECLINICAL RESEARCH Gene Therapy Rescues Cardiac DysfunctioninDuchenneMuscular Dystrophy Mice by Elevating Cardiomyocyte Deoxy-Adenosine Triphosphate a b c d,e Stephen C. Kolwicz, JR,PHD, John K. Hall, PHD, Farid Moussavi-Harami, MD, Xiolan Chen, PHD, d,e b,d,e e,f,g, b,e,g, Stephen D. Hauschka, PHD, Jeffrey S. Chamberlain, PHD, Michael Regnier, PHD, * Guy L. Odom, PHD * VISUAL ABSTRACT Kolwicz, S.C. Jr. et al. J Am Coll Cardiol Basic Trans Science. 2019;4(7):778–91. HIGHLIGHTS rAAV vectors increase cardiac-specific expression of RNR and elevate cardiomyocyte 2-dATP levels. Elevated myocardial RNR and subsequent increase in 2-dATP rescues the performance of failing myocardium, an effect that persists long term. ISSN 2452-302X https://doi.org/10.1016/j.jacbts.2019.06.006 JACC: BASIC TO TRANSLATIONAL SCIENCE VOL. 4, NO. 7, 2019 Kolwicz, Jr., et al. 779 NOVEMBER 2019:778– 91 Nucleotide-Based Cardiac Gene Therapy Restores Function in dmd Mice We show the ability to increase both cardiac baseline function and high workload contractile performance in ABBREVIATIONS aged (22- to 24-month old) mdx4cv mice, by high-level muscle-specific expression of either microdystrophin AND ACRONYMS or RNR. mDys = microdystrophin Five months post-treatment, mice systemically injected with rAAV6 vector carrying a striated muscle-specific CK8 regulatory cassette driving expression of microdystrophin in both skeletal and cardiac muscle, exhibited the = miniaturized murine creatine kinase regulatory greatest effect on systolic function. -
Hypertrophic Cardiomyopathy- Associated Mutations in Genes That Encode Calcium-Handling Proteins
Current Molecular Medicine 2012, 12, 507-518 507 Beyond the Cardiac Myofilament: Hypertrophic Cardiomyopathy- Associated Mutations in Genes that Encode Calcium-Handling Proteins A.P. Landstrom and M.J. Ackerman* Departments of Medicine, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Cardiovascular Diseases and Pediatric Cardiology, and the Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA Abstract: Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium- handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins. -
Typology and Profile of Spine Muscles. Structure of Myofibrils and Role of Protein Components – Review of Current Literature
Ovidius University Annals, Series Physical Education and Sport / SCIENCE, MOVEMENT AND HEALTH Vol. XI, ISSUE 2 Supplement, 2011, Romania The JOURNAL is nationally acknowledged by C.N.C.S.I.S., being included in the B+ category publications, 2008-2011. The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengace Learning TYPOLOGY AND PROFILE OF SPINE MUSCLES. STRUCTURE OF MYOFIBRILS AND ROLE OF PROTEIN COMPONENTS – REVIEW OF CURRENT LITERATURE STRATON ALEXANDRU1, ENE-VOICULESCU CARMEN1, GIDU DIANA1, PETRESCU ANDREI1 Abstract. Muscular profile of spine muscles has a great importance in trunk stability. It seems that muscles which support the spine show a high content of red muscle fiber with a cross section area equal or higher than white muscle fibers. It is possible that lumbar extensor muscles to have different functional capacity between sexes. Most of the myofibril structural proteins except protein actin and protein myosin have a role in maintaining the structural integrity of muscle cell. Key words: muscle, fibres, myofibrils, proteins, spine. thoracic muscle structure lying superficial and deep is Introduction composed of 74% type I fibers, lumbar muscle Proper understanding of muscle fibers profile of structure located superficially is composed of 57% muscles supporting the spine and the role of muscle type I fibers and lumbar muscle structure located deep cell structural proteins leads to better achievements in is composed of 63% type I fibers. Type I muscle fiber performance training and rehabilitation. diameter is significantly larger than that of type II fibers. Another study, conducted on 42 patients Muscle fibers typology divided into two groups - 21 patients with lumbar Skeletal muscle contains two major types of back pain and 21 patients without lumbar back pain muscle fibers: slow twitch red or type I fibers) and almost identical groups as gender, age and body mass fast twitch white or type II fibers). -
Post-Translational Modifications Regulate Cytoskeletal Proteins in Heart Disease Related Publications JULY Research Tools 2016
CYTOSKELETON NEWS NEWS FROM CYTOSKELETON INC. Post-translational Modifications Regulate Cytoskeletal Proteins in Heart Disease Related Publications JULY Research Tools 2016 v Meetings PTMs Regulate Cytoskeletal Proteins in Heart Disease GRC - Muscle and Molecular Cardiovascular disease accounts for roughly one in every three mechanotransduction7. Use of SiR-tubulin technology to perform Motors News deaths in the USA with heart disease accounting for the majority high-speed, sub-diffraction imaging revealed that detyrosination July 17-22. West Dover, VT of these cases1. The pathology of heart disease often involves of α-tubulin was critical for anchoring MTs to sarcomeres in order GRC - Plant and Microbial the death or dysfunction of cardiomyocytes, specialized heart to regulate MT buckling during contraction8 (Fig. 1). Furthermore, Cytoskeleton cells that produce the contractile, beating function of the heart. detyrosination was significantly increased in patients with August 14-19. Andover, NH Many different proteins and cell machinery, such as ion channels clinically diagnosed hypertrophic and dilated cardiomyopathies, and pumps, cytoskeletal proteins, and receptors play a significant while acetylation and glycosylation of α-tubulin did not play a The Triangle Cytoskeleton 8 Meeting role in regulating the contractile ability of cardiomyocytes. significant role in MT buckling . It will be interesting to determine September. NC, USA Interestingly, many of these proteins are regulated through post- which PTMs regulate alternative functions of MTs in heart disease. translational modifications (PTMs), in part because PTMs allow Society for Neuroscience for rapid, but subtle changes to a protein as part of an overall November, 12-16 cellular response2. For example, SUMOylation of the critical Rest 2+ A Booth # 2417 sarco/endoplasmic reticulum Ca -ATPase 2a (SERCA2a) pump Publications San Diego, CA was diminished in failing human heart samples3. -
Alterations in Keratin Levels and Modifications in Colorectal Adenomagenesis Ria Rosser
Alterations in Keratin Levels and Modifications in Colorectal Adenomagenesis Ria Rosser January 2016 Supervisors: BM Corfe and KS Chapple Department of Oncology Thesis submitted to the University of Sheffield for the degree of Doctor of Medicine 2 Alterations in Keratin Levels and Modifications in Colorectal Adenomagenesis Table of Contents Abstract ................................................................................................................................. 7 Acknowledgments ............................................................................................................. 9 List of Figures ................................................................................................................... 11 List of Tables .................................................................................................................... 13 Abbreviations .................................................................................................................. 15 Chapter 1 Literature review ....................................................................................... 19 1.1 The History of Adenomatous polyps ................................................................. 19 1.1.1 Origins of the Adenoma ............................................................................................... 20 1.1.2 Adenoma-Carcinogenesis model ......................................................................................... 24 1.2 Field effects – Theory and Definitions ............................................................. -
Prolonged Controlled Mechanical Ventilation in Humans Triggers
Thorax Online First, published on March 31, 2016 as 10.1136/thoraxjnl-2015-207559 Respiratory research ORIGINAL ARTICLE Thorax: first published as 10.1136/thoraxjnl-2015-207559 on 31 March 2016. Downloaded from Prolonged controlled mechanical ventilation in humans triggers myofibrillar contractile dysfunction and myofilament protein loss in the diaphragm Sabah N A Hussain,1,2,3 Anabelle S Cornachione,4 Céline Guichon,1 Auday Al Khunaizi,1 Felipe de Souza Leite,5 Basil J Petrof,3 Mahroo Mofarrahi,1 Nikolay Moroz,1 Benoit de Varennes,6 Peter Goldberg,1,3 Dilson E Rassier7 ▸ Additional material is ABSTRACT published online only. To view Background Prolonged controlled mechanical Key messages please visit the journal online (http://dx.doi.org/10.1136/ ventilation (CMV) in humans and experimental animals thoraxjnl-2015-207559). results in diaphragm fibre atrophy and injury. In animals, fi fi prolonged CMV also triggers signi cant declines in What is the key question? For numbered af liations see fi end of article. diaphragm myo bril contractility. In humans, the impact ▸ Does prolonged controlled mechanical of prolonged CMV on myofibril contractility remains ventilation (CMV) in humans alter the unknown. The objective of this study was to evaluate contractile performance and myofilament Correspondence to the effects of prolonged CMV on active and passive protein expression in diaphragm myofibrils? Professor Dilson Rassier, human diaphragm myofibrillar force generation and Department of Kinesiology, myofilament protein levels. What is the bottom line? McGill University, 475 Pine Ave ▸ Prolonged CMV in humans significantly West, Montréal, Québec, Methods and results Diaphragm biopsies were Canada H2W 1S4; dilson. -
Genetic Restrictive Cardiomyopathy: Causes and Consequences—An Integrative Approach
International Journal of Molecular Sciences Review Genetic Restrictive Cardiomyopathy: Causes and Consequences—An Integrative Approach Diana Cimiotti 1,* , Heidi Budde 2, Roua Hassoun 2 and Kornelia Jaquet 2,* 1 Department of Clinical Pharmacology, Ruhr-University Bochum, 44801 Bochum, Germany 2 Experimental and Molecular Cardiology, St. Josef Hospital and BG Bergmannsheil, Clinics of the Ruhr-University Bochum, 44791 Bochum, Germany; [email protected] (H.B.); [email protected] (R.H.) * Correspondence: [email protected] (D.C.); [email protected] (K.J.); Tel.: +49-234-32-27639 (D.C.) Abstract: The sarcomere as the smallest contractile unit is prone to alterations in its functional, structural and associated proteins. Sarcomeric dysfunction leads to heart failure or cardiomyopathies like hypertrophic (HCM) or restrictive cardiomyopathy (RCM) etc. Genetic based RCM, a very rare but severe disease with a high mortality rate, might be induced by mutations in genes of non- sarcomeric, sarcomeric and sarcomere associated proteins. In this review, we discuss the functional effects in correlation to the phenotype and present an integrated model for the development of genetic RCM. Keywords: cardiomyopathy; restrictive cardiomyopathy; pediatric; sarcomere; contractile dysfunc- tion; calcium; aggregation; gene expression 1. The Sarcomere The sarcomere as the substructure of myofibrils is the contractile unit of striated muscles i.e. skeletal and cardiac muscle (Figure1). It forms a symmetric unit with the Citation: Cimiotti, D.; Budde, H.; M-disc in the center and is bordered by the Z-discs. M-disc and Z-disc provide the anchors Hassoun, R.; Jaquet, K. Genetic for thin, thick and elastic filaments. The elastic filament is composed of the giant protein Restrictive Cardiomyopathy: Causes and Consequences—An Integrative titin spanning half the sarcomere. -
Modeling the Response of Troponin C to Calcium in Increasingly Complex Systems
Modeling the response of troponin C to calcium in increasingly complex systems DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jalal Khalid Siddiqui Graduate Program in Biophysics The Ohio State University 2016 Dissertation Committee: Dr. Jonathan Davis, Adviser Dr. Brandon Biesiadecki Dr. Mark Ziolo Dr. Thomas Hund Copyright by Jalal Khalid Siddiqui 2016 Abstract Troponin C (TnC) is a calcium-sensing switch that regulates contraction and relaxation in skeletal and cardiac muscle. Mutations in troponin (TnC, troponin I (TnI), troponin T (TnT)) that alter the apparent Ca2+ binding properties of TnC have been implicated in several cases of cardiomyopathy. Further studies have focused on TnC as a target for pharmacological intervention, and a recently engineered Ca2+-sensitized TnC variant has been shown to enhance contractility in mice with myocardial infarction. Previous studies have shown that the Ca2+ binding properties of TnC depend not only on troponin interactions but also upon interactions of many other myofilament proteins. Furthermore, many of these proteins are targets for phosphorylation and other post-translational modifications that alter the apparent Ca2+ binding properties of TnC. In this regard, TnC is not merely a simple switch, but a central hub receiving input from several other proteins. Studies have shown that while isolated TnC has a low Ca2+ binding affinity, the Tn complex has a high Ca2+ binding affinity. Thin filaments containing the Tn complex and actin/tropomyosin have an intermediate affinity which is restored to high affinity similar to that of the Tn complex by the addition of S1 myosin. -
Ca -Desensitizing Effect of a Deletion Mutation K210 in Cardiac Troponin T
Ca2؉-desensitizing effect of a deletion mutation ⌬K210 in cardiac troponin T that causes familial dilated cardiomyopathy S. Morimoto*†‡, Q.-W. Lu*‡, K. Harada*‡§, F. Takahashi-Yanaga*‡, R. Minakami¶, M. Ohta*ʈ, T. Sasaguri*, and I. Ohtsuki* *Laboratory of Clinical Pharmacology, Department of Pharmacology, Graduate School of Medicine, and ¶School of Health Sciences, Kyushu University, Fukuoka 812-8582, Japan Communicated by Setsuro Ebashi, National Institute for Physiological Sciences, Okazaki, Japan, November 26, 2001 (received for review August 27, 2001) A deletion mutation ⌬K210 in cardiac troponin T (cTnT) was reported Ca2ϩ-sensitizing effects of the HCM-linked mutations recently found to cause familial dilated cardiomyopathy (DCM). To in cTnT and cTnI. Tobacman et al. (17) reported that ⌬E160 ϩ explore the effect of this mutation on cardiac muscle contraction cTnT mutant increased the Ca2 sensitivity of acto-S1 MgAT- ,under physiological conditions, we determined the Ca2؉-activated Pase activity. Szczesna et al. (18) reconstituted I79N, R92Q force generation in permeabilized rabbit cardiac muscle fibers into F110I, and R278C cTnT mutants into skinned cardiac muscle ϩ which the mutant and wild-type cTnTs were incorporated by using fibers and reported that these mutations increased Ca2 sensi- our TnT exchange technique. The free Ca2؉ concentrations re- tivity. Redwood et al. (19) also reported that one of the two 2ϩ quired for the force generation were higher in the mutant cTnT- truncated cTnT mutants had a Ca -sensitizing effect on acto-S1 exchanged fibers than in the wild-type cTnT-exchanged ones, with MgATPase activity. Recently, Miller et al. (20) and Chandra et no statistically significant differences in maximal force-generating al. -
The Effects of Cardiac Myosin Binding Protein-C and Inorganic Phosphate on Length-Dependent Activation
THE EFFECTS OF CARDIAC MYOSIN BINDING PROTEIN-C AND INORGANIC PHOSPHATE ON LENGTH-DEPENDENT ACTIVATION By MILANA LEYGERMAN Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Adviser: Dr. Julian Stelzer Department of Physiology and Biophysics CASE WESTERN RESERVE UNIVERSITY May, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________Milana Leygerman_________________________________ candidate for the ____Master of Science____degree *. (signed)_____________Dr. William Schilling (chair of the committee) __________________ Dr. Thomas Nosek ___________________Dr. Margaret Chandler ___________________ Dr. Saptarsi Haldar ___________________ Dr. Andrea Romani ___________________ Dr. Julian Stelzer (date) __________________03/16/2011_____ *We also certify that written approval has been obtained for any proprietary material contained therein. Acknowledgements I would like to thank my thesis advisor Dr. Julian Stelzer for all his guidance and help during my working on my thesis. I would also like to thank the lab personnel: Brian Ziese and Dr. Arthur Coulton for their help. Additionally, I would like to thank my thesis committee, including Dr. Nosek, Dr. Andrea Romani, Dr. Schilling, Dr. Chandler, and Dr. Haldar for all their support. Table of Contents LIST OF FIGURES...........................................................................................................3 ABSTRACT……………………………………………………………………………..4 INTRODUCTION………………………………………………………………………5 -
Effects of 12 Weeks of Hypertrophy Resistance Exercise Training
nutrients Article Effects of 12 Weeks of Hypertrophy Resistance Exercise Training Combined with Collagen Peptide Supplementation on the Skeletal Muscle Proteome in Recreationally Active Men Vanessa Oertzen-Hagemann 1,*, Marius Kirmse 1, Britta Eggers 2 , Kathy Pfeiffer 2, Katrin Marcus 2, Markus de Marées 1 and Petra Platen 1 1 Department of Sports Medicine and Sports Nutrition, Ruhr University Bochum, 44801 Bochum, Germany; [email protected] (M.K.); [email protected] (M.d.M.); [email protected] (P.P.) 2 Medizinisches Proteom-Center, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany; [email protected] (B.E.); kathy.pfeiff[email protected] (K.P.); [email protected] (K.M.) * Correspondence: [email protected]; Tel.: +49-234-32-23170 Received: 10 April 2019; Accepted: 10 May 2019; Published: 14 May 2019 Abstract: Evidence has shown that protein supplementation following resistance exercise training (RET) helps to further enhance muscle mass and strength. Studies have demonstrated that collagen peptides containing mostly non-essential amino acids increase fat-free mass (FFM) and strength in sarcopenic men. The aim of this study was to investigate whether collagen peptide supplementation in combination with RET influences the protein composition of skeletal muscle. Twenty-five young men (age: 24.2 2.6 years, body mass (BM): 79.6 5.6 kg, height: 185.0 5.0 cm, fat mass (FM): ± ± ± 11.5% 3.4%) completed body composition and strength measurements and vastus lateralis biopsies ± were taken before and after a 12-week training intervention. In a double-blind, randomized design, subjects consumed either 15 g of specific collagen peptides (COL) or a non-caloric placebo (PLA) every day within 60 min after their training session.