The Effects of Cardiac Myosin Binding Protein-C and Inorganic Phosphate on Length-Dependent Activation

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Cardiac Myosin Binding Protein-C and Inorganic Phosphate on Length-Dependent Activation THE EFFECTS OF CARDIAC MYOSIN BINDING PROTEIN-C AND INORGANIC PHOSPHATE ON LENGTH-DEPENDENT ACTIVATION By MILANA LEYGERMAN Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Adviser: Dr. Julian Stelzer Department of Physiology and Biophysics CASE WESTERN RESERVE UNIVERSITY May, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________Milana Leygerman_________________________________ candidate for the ____Master of Science____degree *. (signed)_____________Dr. William Schilling (chair of the committee) __________________ Dr. Thomas Nosek ___________________Dr. Margaret Chandler ___________________ Dr. Saptarsi Haldar ___________________ Dr. Andrea Romani ___________________ Dr. Julian Stelzer (date) __________________03/16/2011_____ *We also certify that written approval has been obtained for any proprietary material contained therein. Acknowledgements I would like to thank my thesis advisor Dr. Julian Stelzer for all his guidance and help during my working on my thesis. I would also like to thank the lab personnel: Brian Ziese and Dr. Arthur Coulton for their help. Additionally, I would like to thank my thesis committee, including Dr. Nosek, Dr. Andrea Romani, Dr. Schilling, Dr. Chandler, and Dr. Haldar for all their support. Table of Contents LIST OF FIGURES...........................................................................................................3 ABSTRACT……………………………………………………………………………..4 INTRODUCTION………………………………………………………………………5 Actin...…………………………………………………………………………………....7 Titin……………………………………………………………………………………....8 Tropomyosin.…………………………………………………………………………….8 Troponins….……………………………………………………………………………..9 Myosin…………………………………………………………………………………...9 Myosin binding protein-C…………………………………………………………….....10 Cross-bridge cycling…………………………………………………………………….12 Frank-Starling Law of the Heart………………………………………………………...16 Role of inorganic phosphate in cross-bridge cycling…………………………………....17 EXPERIMENTAL DESIGN…………………………………………………………..20 Mouse models…………………………………………………………………………...21 Myocardial preparations………………………………………………………………...21 Experimental apparatus…………………………………………………………………22 Solutions………………………………………………………………………………...23 Phosphate studies……………………………………………………………………….27 RESULTS……………………………………………………………………………....27 DISCUSSION………………………………………………………………………….35 BIBLIOGRAPHY……………………………………………………………………..40 1 List of Figures Figure 1…………………………………………………………………………………..6 Figure 2…………………………………………………………………………………..7 Figure 3……………………………………………………………………………….....12 Figure 4………………………………………………………………………………….14 Figure 5………………………………………………………………………………….15 Figure 6………………………………………………………………………………….17 Figure 7………………………………………………………………………………….19 Figure 8………………………………………………………………………………….23 Figure 9………………………………………………………………………………….23 Figure 10………………………………………………………………………………...25 Figure 11………………………………………………………………………………...26 Figure 12………………………………………………………………………………...30 Figure 13………………………………………………………………………………...31 Figure 14………………………………………………………………………………...32 Figure 15………………………………………………………………………………...32 Figure 16………………………………………………………………………………...33 Figure 17………………………………………………………………………………...34 Figure 18………………………………………………………………………………...34 Figure 19………………………………………………………………………………...35 2 The Effects of Cardiac Myosin Binding Protein-C and Inorganic Phosphate on Length Dependent Activation Abstract By MILANA LEYGERMAN The contractile unit of a striated muscle is called the sarcomere and is composed of actin, myosin, titin, the troponin complex, tropomyosin, the myosin light chains, and cardiac myosin binding protein-C (cMyBP-C). Muscle contraction is caused by cross-bridge cycling, which involves the sliding of thick filaments past thin filaments. cMyBP-C is a constituent of the thick filament and is involved in regulation of contraction. Mutations in this protein have been known to lead to hypertrophic cardiomyopathy, an autosomal disease characterized by hypertrophy and fibrosis. Sarcomere length is an important determinant of muscle contractility as increased length results in greater overlap between actin and myosin leading to greater Ca2+-sensitivity and force generation. The Frank- Starling law of the heart is an important relationship for regulation of cardiac muscle contraction and is influenced by sarcomere length. In conditions of heart failure, there is a downward and rightward shift of the Frank-Starling relationship where an increase in end-diastolic volume generates a relatively smaller increase in stroke volume insufficient to meet the demands of the heart. Inorganic phosphate plays an important role in muscle 3 contraction as its release from the acto-myosin complex is a crucial step in the cross- bridge cycle that drives muscle contraction. In this study, to elucidate the effects of cMyBP-C and inorganic phosphate on length dependent activation, we utilized a skinned myocardium isolated from a knockout (KO) mouse model that lacks cMyBP-C (cMyBP- C-/-). A total of 85 mechanical experiments were performed in skinned fibers isolated from WT and KO left ventricles. The results showed that increased sarcomere length increases force generation and Ca2+-sensitivity of force in WT and KO animals. The rate of force development, an index of the speed of cross-bridge function was accelerated with increased sarcomere length in the KO fibers but not WT fibers. Treatment of muscle fibers with a low concentration of inorganic phosphate (1mM) did not have an effect on maximum calcium-activated force at short and long sarcomere length in either WT or KO myocardium, but accelerated rates of force development in both WT and KO muscle fibers. These results imply that the effects of sarcomere length are enhanced in KO myocardium due to the increased proximity of myosin to actin in fibers lacking cMyBP- C. Low concentrations of inorganic phosphate may accelerate the transitions from weak to strong binding cross-bridge states in both WT and KO myocardium, thereby accelerating rates of force development. 4 Introduction: The sarcomere (Figure 1) is the contractile unit of striated muscle (skeletal and cardiac) and contains the thin filament, the thick filament, and titin. Muscle contraction and relaxation occurs via the sliding of thick filaments past thin filaments through cross- bridge cycling as can be seen in Figure 2. The thin filament consists of actin, tropomyosin, and the troponin complex, while the thick filament then consists of myosin, an asymmetric dimer that contains a globular head portion ( S1), which is associated with two hetero-dimers light-chain 1 and light-chain 2 (LC-1 and LC-2), a hinged stalk region (S2) and a rod section (de Tombe et al, 2003). The S1 head portion also consists of the actin binding domain and ATP hydrolysis domain, whereas the myosin rod section is associated with the myosin binding protein-C (MyBP-C) (de Tomble et al, 2003). MyBP- C is involved in muscle contraction by stabilizing the thick filament and regulating the number of myosin heads available for involvement in a given contractile cycle. Cardiac myosin binding protein-C (cMyBP-C) increases the stiffness of the heart muscle, which slows early contraction but then allows systole to be sustained so the heart can effectively eject after greater stiffening. Cardiac muscle contraction depends on the properties of cross-bridge cycling, and involves several thin and thick regulatory proteins, which are described below. 5 Figure 1. The structure of a sarcomere. This figure was taken from Boron and Boulpaep, Medical Physiology, 2nd Edition. Reprinted with permission from Walter Boron. 6 Figure 2. Muscle contraction. Thick and thin filaments of the sarcomere slide past one another during contraction and relaxation. Tropomyosin overlays the binding sites of actin on myosin, which inhibits contraction. The troponin complex, which has three subunits (Troponin T-tropomyosin binding, Troponin I-inhibitory, and Troponin C-Ca2+ -binding) plays a role in regulating conformational changes of tropomyosin. This figure was taken from de Tombe et al., 2003. Reprinted with permission from Pieter de Tombe and the Journal of Biomechanics. Key contractile proteins Actin Actin is a constituent of the thin filament and is polymerized to a two-stranded helical structure called F-actin. F-actin is composed of G-actin, which represents individual globular actin subunits. Sub-domain 1 of the actin helix is believed to interact with myosin (Miller et al., 1995). Actin is anchored to the Z line of the sarcomere and its interaction with myosin produces force via formation of a cross-bridge. This protein is 7 known to have interactions with other sarcomeric proteins such as titin and S100A1, which is a calcium binding homodimer protein. Titin Titin is a large sarcomeric protein that extends from Z-line to M-line. A region of titin spans the I band of the sarcomere and can develop passive force in stretched sarcomeres (Granzier and Labeit, 2007) which contributes to the passive tension of the myocardium that determines diastolic filling (Granzier and Labeit, 2007). Titin also plays a role in stabilizing the thick filament during muscle contraction. Studies have suggested that titin may play a role in the sarcomere length-dependent increased Ca2+ sensitivity of active force, which is important for the Frank-Starling law of the heart, either by enhancing acto-myosin interaction through a decrease in interfilament lattice spacing or by increasing strain on the thick filament and influencing cross-bridge
Recommended publications
  • The Wiskott-Aldrich Syndrome: the Actin Cytoskeleton and Immune Cell Function
    Disease Markers 29 (2010) 157–175 157 DOI 10.3233/DMA-2010-0735 IOS Press The Wiskott-Aldrich syndrome: The actin cytoskeleton and immune cell function Michael P. Blundella, Austen Wortha,b, Gerben Boumaa and Adrian J. Thrashera,b,∗ aMolecular Immunology Unit, UCL Institute of Child Health, London, UK bDepartment of Immunology, Great Ormond Street Hospital NHS Trust, Great Ormond Street, London, UK Abstract. Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive primary immunodeficiency characterised by immune dysregulation, microthrombocytopaenia, eczema and lymphoid malignancies. Mutations in the WAS gene can lead to distinct syndrome variations which largely, although not exclusively, depend upon the mutation. Premature termination and deletions abrogate Wiskott-Aldrich syndrome protein (WASp) expression and lead to severe disease (WAS). Missense mutations usually result in reduced protein expression and the phenotypically milder X-linked thrombocytopenia (XLT) or attenuated WAS [1–3]. More recently however novel activating mutations have been described that give rise to X-linked neutropenia (XLN), a third syndrome defined by neutropenia with variable myelodysplasia [4–6]. WASP is key in transducing signals from the cell surface to the actin cytoskeleton, and a lack of WASp results in cytoskeletal defects that compromise multiple aspects of normal cellular activity including proliferation, phagocytosis, immune synapse formation, adhesion and directed migration. Keywords: Wiskott-Aldrich syndrome, actin polymerization, lymphocytes,
    [Show full text]
  • Appropriate Roles of Cardiac Troponins in Evaluating Patients with Chest Pain
    J Am Board Fam Pract: first published as 10.3122/jabfm.12.3.214 on 1 May 1999. Downloaded from MEDICAL PRACTICE Appropriate Roles of Cardiac Troponins in Evaluating Patients With Chest Pain Matthew S. Rice, MD, CPT, Me, USA, and David C. MacDonald, DO, Me, USA Background: Diagnosis of acute myocardial infarction relies upon the clinical history, interpretation of the electrocardiogram, and measurement of serum levels of cardiac enzymes. Newer biochemical markers of myocardial injury, such as cardiac troponin I and cardiac troponin T, are now being used instead of or along with the standard markers, the MB isoenzyme of creatine kinase (CK-MB) and lactate dehydrogenase. Methods: We performed a MEDLINE literature search (1987 to 1997) using the key words "troponin I," "troponin T," and "acute myocardial infarction." We reviewed selected articles related to the diagnostic and prognostic usefulness of these cardiac markers in evaluating patients with suspected myocardial infarction. Results: We found that (1) troponin I is a better cardiac marker than CK-MB for myocardial infarction because it is equally sensitive yet more specific for myocardial injury; (2) troponin T is a relatively poorer cardiac marker than CK-MB because it is less sensitive and less specific for myocardial injury; and (3) both troponin I and troponin T may be used as independent prognosticators of future cardiac events. Conclusions: Troponin I is a sensitive and specific marker for myocardial injury and can be used to predict the likelihood of future cardiac events. It is not much more expensive to measure than CK-MB. Over­ all, troponin I is a better cardiac marker than CK-MB and should become the preferred cardiac enzyme when evaluating patients with suspected myocardial infarction.
    [Show full text]
  • Regulation of NMDA Receptor Activity by F-Actin and Myosin Light Chain Kinase
    The Journal of Neuroscience, November 1, 2001, 21(21):8464–8472 Regulation of NMDA Receptor Activity by F-Actin and Myosin Light Chain Kinase Saobo Lei,1 Elzbieta Czerwinska,1 Waldemar Czerwinski,1 Michael P. Walsh,2 and John F. MacDonald1 1Canadian Institutes of Health Research Group “The Synapse,” Departments of Physiology and Pharmacology, University of Toronto, Toronto M5S 1A8, Canada, and 2Canadian Institutes of Health Research Group in Regulation of Vascular Contractility and The Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada The postsynaptic density (PSD) at excitatory dendritic syn- This MLCK-dependent regulation was observed in cell- apses comprises a protein complex of glutamate receptors, attached patches but was lost after excision to inside-out scaffolding elements, and signaling enzymes. For example, patches. Furthermore, the enhancement induced by constitu- NMDA receptors (NMDARs) are linked to several proteins in the tively active MLCK and the depression of MLCK inhibitors were PSD, such as PSD-95, and are also tethered via binding pro- eliminated after depolymerization of the cytoskeleton. NMDARs teins such as ␣-actinin directly to filamentous actin of the and MLCK did not colocalize in clusters on the dendrites of cytoskeleton. Depolymerization of the cytoskeleton modulates cultured hippocampal neurons, further indicating that the ef- the activity of NMDARs, and, in turn, strong activation of fects of MLCK are mediated indirectly via actomyosin. Our NMDARs can trigger depolymerization of actin. Myosin, the results suggest that MLCK enhances actomyosin contractility motor protein of muscular contraction and nonmuscle motility, to either increase the membrane tension on NMDARs or to alter is also associated with NMDARs and the PSD.
    [Show full text]
  • Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function
    cells Review Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function Cláudia Brito 1,2 and Sandra Sousa 1,* 1 Group of Cell Biology of Bacterial Infections, i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, 4200-135 Porto, Portugal; [email protected] 2 Programa Doutoral em Biologia Molecular e Celular (MCBiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-002 Porto, Portugal * Correspondence: [email protected] Received: 19 May 2020; Accepted: 29 June 2020; Published: 1 July 2020 Abstract: Non-muscle myosin 2A (NM2A) is a motor cytoskeletal enzyme with crucial importance from the early stages of development until adulthood. Due to its capacity to convert chemical energy into force, NM2A powers the contraction of the actomyosin cytoskeleton, required for proper cell division, adhesion and migration, among other cellular functions. Although NM2A has been extensively studied, new findings revealed that a lot remains to be discovered concerning its spatiotemporal regulation in the intracellular environment. In recent years, new functions were attributed to NM2A and its activity was associated to a plethora of illnesses, including neurological disorders and infectious diseases. Here, we provide a concise overview on the current knowledge regarding the structure, the function and the regulation of NM2A. In addition, we recapitulate NM2A-associated diseases and discuss its potential as a therapeutic target. Keywords: non-muscle myosin 2A (NM2A); NM2A activity regulation; NM2A filament assembly; actomyosin cytoskeleton; cell migration; cell adhesion; plasma membrane blebbing 1. Superfamily of Myosins The cell cytoskeleton is an interconnected and dynamic network of filaments essential for intracellular organization and cell shape maintenance.
    [Show full text]
  • Myosin-Driven Actin-Microtubule Networks Exhibit Self-Organized Contractile Dynamics Gloria Lee1, Michael J
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.11.146662; this version posted June 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Myosin-driven actin-microtubule networks exhibit self-organized contractile dynamics Gloria Lee1, Michael J. Rust2, Moumita Das3, Ryan J. McGorty1, Jennifer L. Ross4, Rae M. Robertson-Anderson1* 1Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA 2Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA 3School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA 4Department of Physics, Syracuse University, Syracuse, NY 13244, USA Abstract The cytoskeleton is a dynamic network of proteins, including actin, microtubules, and myosin, that enables essential cellular processes such as motility, division, mechanosensing, and growth. While actomyosin networks are extensively studied, how interactions between actin and microtubules, ubiquitous in the cytoskeleton, influence actomyosin activity remains an open question. Here, we create a network of co-entangled actin and microtubules driven by myosin II. We combine dynamic differential microscopy, particle image velocimetry and particle-tracking to show that both actin and microtubules in the network undergo ballistic contraction with surprisingly indistinguishable characteristics. This controlled contractility is distinct from the faster turbulent motion and rupturing that active actin networks exhibit. Our results suggest that microtubules can enable self-organized myosin-driven contraction by providing flexural rigidity and enhanced connectivity to actin networks.
    [Show full text]
  • Myosin 1E Interacts with Synaptojanin-1 and Dynamin and Is Involved in Endocytosis
    FEBS Letters 581 (2007) 644–650 Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis Mira Krendela,*, Emily K. Osterweila, Mark S. Moosekera,b,c a Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA b Department of Cell Biology, Yale University, New Haven, CT 06511, USA c Department of Pathology, Yale University, New Haven, CT 06511, USA Received 21 November 2006; revised 8 January 2007; accepted 11 January 2007 Available online 18 January 2007 Edited by Felix Wieland Myo1 isoforms (Myo3p and Myo5p) leads to defects in endo- Abstract Myosin 1E is one of two ‘‘long-tailed’’ human Class I myosins that contain an SH3 domain within the tail region. SH3 cytosis [3].InAcanthamoeba, various Myo1 isoforms are domains of yeast and amoeboid myosins I interact with activa- found in association with intracellular vesicles [10].InDictyos- tors of the Arp2/3 complex, an important regulator of actin poly- telium, long-tailed Myo1s (myo B, C, and D) are required for merization. No binding partners for the SH3 domains of myosins fluid-phase endocytosis [11]. I have been identified in higher eukaryotes. In the current study, Myo1e, the mouse homolog of the human long-tailed myo- we show that two proteins with prominent functions in endocyto- sin, Myo1E (formerly referred to as Myo1C under the old myo- sis, synaptojanin-1 and dynamin, bind to the SH3 domain of sin nomenclature [12]), has been previously localized to human Myo1E. Myosin 1E co-localizes with clathrin- and dyn- phagocytic structures [13]. In this study, we report that Myo1E amin-containing puncta at the plasma membrane and this co- binds to two proline-rich proteins, synaptojanin-1 and dyn- localization requires an intact SH3 domain.
    [Show full text]
  • Gene Therapy Rescues Cardiac Dysfunction in Duchenne Muscular
    JACC: BASIC TO TRANSLATIONAL SCIENCE VOL.4,NO.7,2019 ª 2019 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). PRECLINICAL RESEARCH Gene Therapy Rescues Cardiac DysfunctioninDuchenneMuscular Dystrophy Mice by Elevating Cardiomyocyte Deoxy-Adenosine Triphosphate a b c d,e Stephen C. Kolwicz, JR,PHD, John K. Hall, PHD, Farid Moussavi-Harami, MD, Xiolan Chen, PHD, d,e b,d,e e,f,g, b,e,g, Stephen D. Hauschka, PHD, Jeffrey S. Chamberlain, PHD, Michael Regnier, PHD, * Guy L. Odom, PHD * VISUAL ABSTRACT Kolwicz, S.C. Jr. et al. J Am Coll Cardiol Basic Trans Science. 2019;4(7):778–91. HIGHLIGHTS rAAV vectors increase cardiac-specific expression of RNR and elevate cardiomyocyte 2-dATP levels. Elevated myocardial RNR and subsequent increase in 2-dATP rescues the performance of failing myocardium, an effect that persists long term. ISSN 2452-302X https://doi.org/10.1016/j.jacbts.2019.06.006 JACC: BASIC TO TRANSLATIONAL SCIENCE VOL. 4, NO. 7, 2019 Kolwicz, Jr., et al. 779 NOVEMBER 2019:778– 91 Nucleotide-Based Cardiac Gene Therapy Restores Function in dmd Mice We show the ability to increase both cardiac baseline function and high workload contractile performance in ABBREVIATIONS aged (22- to 24-month old) mdx4cv mice, by high-level muscle-specific expression of either microdystrophin AND ACRONYMS or RNR. mDys = microdystrophin Five months post-treatment, mice systemically injected with rAAV6 vector carrying a striated muscle-specific CK8 regulatory cassette driving expression of microdystrophin in both skeletal and cardiac muscle, exhibited the = miniaturized murine creatine kinase regulatory greatest effect on systolic function.
    [Show full text]
  • Hypertrophic Cardiomyopathy- Associated Mutations in Genes That Encode Calcium-Handling Proteins
    Current Molecular Medicine 2012, 12, 507-518 507 Beyond the Cardiac Myofilament: Hypertrophic Cardiomyopathy- Associated Mutations in Genes that Encode Calcium-Handling Proteins A.P. Landstrom and M.J. Ackerman* Departments of Medicine, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Divisions of Cardiovascular Diseases and Pediatric Cardiology, and the Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota, USA Abstract: Traditionally regarded as a genetic disease of the cardiac sarcomere, hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease and a significant cause of sudden cardiac death. While the most common etiologies of this phenotypically diverse disease lie in a handful of genes encoding critical contractile myofilament proteins, approximately 50% of patients diagnosed with HCM worldwide do not host sarcomeric gene mutations. Recently, mutations in genes encoding calcium-sensitive and calcium- handling proteins have been implicated in the pathogenesis of HCM. Among these are mutations in TNNC1- encoded cardiac troponin C, PLN-encoded phospholamban, and JPH2-encoded junctophilin 2 which have each been associated with HCM in multiple studies. In addition, mutations in RYR2-encoded ryanodine receptor 2, CASQ2-encoded calsequestrin 2, CALR3-encoded calreticulin 3, and SRI-encoded sorcin have been associated with HCM, although more studies are required to validate initial findings. While a relatively uncommon cause of HCM, mutations in genes that encode calcium-handling proteins represent an emerging genetic subset of HCM. Furthermore, these naturally occurring disease-associated mutations have provided useful molecular tools for uncovering novel mechanisms of disease pathogenesis, increasing our understanding of basic cardiac physiology, and dissecting important structure-function relationships within these proteins.
    [Show full text]
  • Human Platelet Myosin Light Chain Kinase Requires the Calcium
    Proc. Nati. Acad. Sci. USA Vol. 76, No. 4, pp. 1653-1657, April 1979 Biochemistry Human platelet myosin light chain kinase requires the calcium- binding protein calmodulin for activity (calcium-dependent regulator/phosphorylation of nonmuscle contractile protein/affinity chromatography) DAVID R. HATHAWAY AND ROBERT S. ADELSTEIN Section on Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20014 Communicated by DeWitt Stetten, Jr., January 17, 1979 ABSTRACT In an actomyosin fraction isolated from human Furthermore, this calcium-binding protein has been shown to platelets, phosphorylation of the 20,000-dalton light chain of be identical to the calcium-dependent regulator* of cyclic AMP myosin is stimulated by calcium and the calcium-binding pro- phosphodiesterase (11). tein calmodulin. The enzyme catalyzing this phosphorylation has been isolated by using calmodulin-affinity chromatography. Although a growing body of evidence suggests that non- Platelet myosin light chain kinase activity was monitored muscle myosin, such as that isolated from platelets, is regulated throughout the isolation procedures by using the 20,000-dalton by light chain phosphorylation, the nature or existence of cal- smooth muscle myosin light chain purified from turkey gizzards cium control mechanisms has not been clarified. In an earlier as substrate. The partially purified myosin kinase requires both study, platelet myosin kinase was found to be active in the ab- calcium and calmodulin for activity and has a specific activity sence of calcium (12). Recently, we isolated, from human of 3.1 ,gmol of phosphate transferred to the 20,000-dalton light platelets, an actomyosin in which chain per mg of kinase per min under optimal assay conditions.
    [Show full text]
  • Regulation of Titin-Based Cardiac Stiffness by Unfolded Domain Oxidation (Undox)
    Regulation of titin-based cardiac stiffness by unfolded domain oxidation (UnDOx) Christine M. Loeschera,1, Martin Breitkreuzb,1, Yong Lia, Alexander Nickelc, Andreas Ungera, Alexander Dietld, Andreas Schmidte, Belal A. Mohamedf, Sebastian Kötterg, Joachim P. Schmitth, Marcus Krügere,i, Martina Krügerg, Karl Toischerf, Christoph Maackc, Lars I. Leichertj, Nazha Hamdanib, and Wolfgang A. Linkea,2 aInstitute of Physiology II, University of Munster, 48149 Munster, Germany; bInstitute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany; cComprehensive Heart Failure Center Wuerzburg, University Clinic Wuerzburg, 97078 Wuerzburg, Germany; dDepartment of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany; eInstitute for Genetics, University of Cologne, 50931 Cologne, Germany; fDepartment of Cardiology and Pneumology, University Medicine Goettingen, 37075 Goettingen, Germany; gDepartment of Cardiovascular Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; hDepartment of Pharmacology and Clinical Pharmacology, Heinrich Heine University, 40225 Düsseldorf, Germany; iCenter for Molecular Medicine and Excellence Cluster "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, 50931 Cologne, Germany; and jInstitute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany Edited by Jonathan Seidman, Harvard University, Boston, MA, and approved August 12, 2020 (received for review March 14, 2020) The relationship between oxidative stress and
    [Show full text]
  • Typology and Profile of Spine Muscles. Structure of Myofibrils and Role of Protein Components – Review of Current Literature
    Ovidius University Annals, Series Physical Education and Sport / SCIENCE, MOVEMENT AND HEALTH Vol. XI, ISSUE 2 Supplement, 2011, Romania The JOURNAL is nationally acknowledged by C.N.C.S.I.S., being included in the B+ category publications, 2008-2011. The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengace Learning TYPOLOGY AND PROFILE OF SPINE MUSCLES. STRUCTURE OF MYOFIBRILS AND ROLE OF PROTEIN COMPONENTS – REVIEW OF CURRENT LITERATURE STRATON ALEXANDRU1, ENE-VOICULESCU CARMEN1, GIDU DIANA1, PETRESCU ANDREI1 Abstract. Muscular profile of spine muscles has a great importance in trunk stability. It seems that muscles which support the spine show a high content of red muscle fiber with a cross section area equal or higher than white muscle fibers. It is possible that lumbar extensor muscles to have different functional capacity between sexes. Most of the myofibril structural proteins except protein actin and protein myosin have a role in maintaining the structural integrity of muscle cell. Key words: muscle, fibres, myofibrils, proteins, spine. thoracic muscle structure lying superficial and deep is Introduction composed of 74% type I fibers, lumbar muscle Proper understanding of muscle fibers profile of structure located superficially is composed of 57% muscles supporting the spine and the role of muscle type I fibers and lumbar muscle structure located deep cell structural proteins leads to better achievements in is composed of 63% type I fibers. Type I muscle fiber performance training and rehabilitation. diameter is significantly larger than that of type II fibers. Another study, conducted on 42 patients Muscle fibers typology divided into two groups - 21 patients with lumbar Skeletal muscle contains two major types of back pain and 21 patients without lumbar back pain muscle fibers: slow twitch red or type I fibers) and almost identical groups as gender, age and body mass fast twitch white or type II fibers).
    [Show full text]
  • Of Epigenetic Modulation by Valproic Acid in Traumatic Brain Injury – What We
    TITLE PAGE Title: The ‘Omics’ of Epigenetic Modulation by Valproic Acid in Traumatic Brain Injury – What We Know and What the Future Holds Short title: The ‘Omics’ of Valproic Acid treatment for TBI Authors: Umar F. Bhatti, MD; Aaron M. Williams, MD; Patrick E. Georgoff, MD; Hasan B. Alam, MD Affiliations: Department of Surgery, University of Michigan, Ann Arbor, MI, USA. Address for correspondence: Hasan B. Alam, MD Norman Thompson Professor of Surgery, and Head of General Surgery University of Michigan Hospital 2920 Taubman Center/5331 University of Michigan Hospital 1500 E. Medical Center Drive This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/prca.201900068. This article is protected by copyright. All rights reserved. Ann Arbor, MI 48109-5331 [email protected] Abbreviations: VPA = Valproic acid HAT = Histone Acetylase HDAC = Histone Deacetylase TBI = Traumatic Brain Injury HS = Hemorrhagic Shock PBMC = Peripheral Blood Mononuclear Cells NEFL = Neurofilament Light ELISA = Enzyme-linked Immunosorbent Assay PCR = Polymerase Chain Reaction LINCS = Library of Integrated Network-based Cellular Signatures Keywords: epigenetic modulation, valproic acid, omics, traumatic brain injury, clinical trial No. of words: 2485 words This article is protected by copyright. All rights reserved. ABSTRACT Traumatic brain injury is a heterogeneous injury that is a major cause of morbidity and mortality worldwide. Epigenetic modulation via acetylation by valproic acid has shown promise as an effective pharmacological treatment for TBI; however, the mechanisms by which it improves clinical outcomes are not well-described.
    [Show full text]