DNA Repair: How Ku Makes Ends Meet Aidan J

Total Page:16

File Type:pdf, Size:1020Kb

DNA Repair: How Ku Makes Ends Meet Aidan J View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector R920 Dispatch DNA repair: How Ku makes ends meet Aidan J. Doherty* and Stephen P. Jackson† The recently determined crystal structure of the Ku of NHEJ, structural and functional homologues of Ku70, heterodimer, in both DNA-bound and unbound forms, Ku80, ligase IV and XRCC4 exist in lower eukaryotes, has shed new light on the mechanism by which this including yeast. DNA-PKcs, however, seems to be restricted protein fulfills its key role in the repair of DNA to vertebrates. double-strand breaks. Biochemical studies have yielded some major insights into Address: *Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Hills Road, the mechanisms of NHEJ. Most notably perhaps, the Cambridge CB2 2XY, UK. †Wellcome Trust and Cancer Research observation that Ku binds tightly and specifically to a Campaign Institute of Cancer and Developmental Biology and variety of DNA end-structures, including blunt ends, 5′ or Department of Zoology, University of Cambridge, Tennis Court Road, 3′ overhangs and DNA hairpins, suggests that it acts as the Cambridge CB2 1QR, UK. primary sensor of broken chromosomal DNA [3,5]. Once E-mail: *[email protected]; †[email protected] bound to a DNA double-strand break, Ku presumably Current Biology 2001, 11:R920–R924 then recruits DNA-PKcs, whose protein kinase function — which in vitro preferentially targets proteins bound in 0960-9822/01/$ – see front matter © 2001 Elsevier Science Ltd. All rights reserved. cis on the same DNA molecule — could trigger changes in chromatin structure at the site of the DNA double-strand DNA double-strand breaks are generated by ionising breaks and/or regulate the activities of other repair factors radiation and radio-mimetic chemicals. They also occur (Figure 1). during V(D)J recombination, which occurs in developing mammalian lymphocytes to help generate the antigen- In addition, the Ku–DNA-PKcs complex might physically binding diversity of immunoglobulin and T-cell receptor recruit other repair factors. In line with this idea, Ku proteins. It is of crucial importance that cells recognise interacts biochemically with the ligase IV–XRCC4 double-strand breaks and effect their efficient repair, complex [6] and is required for the analogous complex in because a single unrepaired cellular double-strand break the budding yeast Saccharomyces cerevisiae to localise to can be sufficient to induce cell death, and defective DNA double-strand breaks in vivo [7]. Other potential double-strand break repair can lead to mutations or the NHEJ functions for Ku include protecting DNA ends loss of large tracts of chromosomal material. In eukaryotic from excessive nucleolytic attack, helping to align two cells, double-strand breaks are generally repaired either broken DNA termini, and targeting DNA double-strand by a homologous recombination pathway involving the breaks to appropriate sites of repair within the nucleus. In Rad51 and Rad52 proteins, or via DNA non-homologous addition to its roles in DNA repair, Ku also functions in end joining (NHEJ) [1]. Both pathways are present in the maintenance of telomeres — the protective caps at the all eukaryotes studied but their relative use differs ends of linear chromosomes. Indeed, loss of Ku leads to between species. telomeric shortening and to enhanced rates of chromo- some end-fusions (see for example [8]). The NHEJ pathway in mammals requires the DNA- dependent protein kinase (DNA-PK) — a multi-subunit A significant landmark in our understanding of the NHEJ serine/threonine kinase consisting of an approximately apparatus has now been reported by Goldberg and col- 470 kDa catalytic subunit, DNA-PKcs, and a DNA end- leagues [9], who have elucidated the crystal structure of binding component called Ku [2,3]. Ku is itself a het- the Ku heterodimer, both alone and bound to a cleverly erodimer of two proteins termed Ku70 (69 kDa) and Ku80 designed DNA substrate with a single accessible end (83 kDa). Cells or animals deficient in these proteins are (Figure 2). Consistent with the previously reported defective in double-strand break rejoining and are hyper- sequence homologies between Ku70 and Ku80, which sensitive to ionising radiation and various radio-mimetic indicated that Ku70 and Ku80 are derived from a common agents [1–3]. Furthermore, because of their inability to cor- ancestor [5,10], the overall folds of the Ku70 and Ku80 rectly rejoin V(D)J recombination intermediates, animals subunits are remarkably similar and the two proteins form lacking Ku or DNA-PKcs display severe-combined a quasi-symmetrical structure. Overall, Ku70 and Ku80 immunodeficiency. Other NHEJ components in mammals have a common three-domain architecture composed of an are the DNA ligase IV–XRCC4 complex [1–3] and the amino-terminal α/β domain, an unusual β-barrel domain recently described Artemis protein, a deficit in which leads and a helical carboxy-terminal arm structure (Figure 2). to radiosensitivity and severe-combined immunodeficiency The arrangement of the proteins is such that the complex in humans [4]. In line with the evolutionary conservation has an open ring-like shape with the DNA threaded Dispatch R921 through the aperture. This immediately explains why Ku Figure 1 binds to DNA ends rather than closed circular DNA, and provides clues to how it operates in NHEJ. Rad50 Mre11 The amino-terminal region of each Ku subunit, located on NBS1 LigaseLigase IV IV BRCTBRCT XRCC4 the exterior of the complex, comprises a compact α/β XRCC4 domain with a six-stranded β-sheet of the Rossman fold type (Figure 2). This domain is a divergent member of the Ku80 von Willebrand factor A (VWA) family of domains [11]. Ku70 Although these were first identified in extracellular DNA-PKcs eukaryotic proteins that mediate cell adhesion, they have been subsequently identified on intracellular proteins and in prokaryotes [11]. As now explained by the Ku crystal Recruitment/regulation of Additional roles: protecting DNA structure [9], a number of groups have found previously DNA repair factors. from nucleases; aligning DNA that deletion of the amino-terminal regions of Ku70 or Effects on replication, ends; targeting DSBs to repair Ku80 does not affect heterodimerisation or DNA end transcription and chromatin? sites; telomere maintenance binding (see for example [12–14]). Current Biology Instead, and consistent with the functions of other The involvement of Ku in NHEJ. After binding to a DNA double-strand characterised VWA domains, the available data suggest a break within the cell, Ku is thought to recruit DNA-PKcs. This protein role for these domains of Ku in mediating its contacts with kinase then recruits and regulates a number of other factors involved in other proteins. For example, the Werner’s syndrome double-strand break repair. In addition, Ku itself recruits two complexes protein, WRN, which has been linked to DNA-repair involved in DNA damage signalling and repair: the Mre11–Rad50–NBS1 and ligase IV–XRCC4 complexes. Other roles events, has been shown to bind to the amino-terminal for Ku in double-strand break (DSB) repair and general maintenance of region of Ku80 that contains the VWA domain [15]. It is genome integrity are less well-defined. tempting to speculate that the VWA domains of Ku sequester WRN and other proteins at sites of DNA damage, forming larger protein complexes that are required for con- made here or elsewhere in the complex, providing an certed DNA repair. Another attractive possibility is that explanation for why Ku lacks significant sequence prefer- associations in trans between the VWA domains of two ence for DNA. The combination of the extended β-barrel DNA-bound Ku heterodimers provide a mechanism to cradle and a narrow β-bridge allows Ku to interact with two bring together and structurally align two broken DNA turns of the DNA double helix while still exposing much ends, ready for their religation. of the DNA to the solvent (Figure 2b). The central seven-stranded anti-parallel β-barrel domains This unusual mode of DNA binding by Ku explains of Ku70 and Ku80 form the cradle of the DNA-binding previous biochemical studies revealing that, once bound to toroid (Figure 2). A large insertion in the centre of the a DNA end, Ku can translocate internally along the DNA β-barrel, between strands βG and βN, forms an unusual fragment and can be transferred from one linear DNA bridge-like structure, the β-bridge, through which the DNA molecule to another if the ends of the two DNA molecules is threaded. The preformed channel fits exquisitely around can base-pair with one another [17]. But a major question DNA in a preferred asymmetric orientation, similar to raised by the structure is that of how the threaded Ku threading a nut onto a bolt. This allows Ku to move complex becomes dissociated from the DNA once the inwards away from the DNA end with Ku70 located proxi- DNA has religated? In solution, the Ku heterodimer is mal and Ku80 distal to the end, as shown previously by very stable, and the crystal structures of Ku in its DNA- biochemical analyses [16]. The inner surface of the ring bound and DNA-free forms are remarkably similar. One and the β-barrel cradle are lined with positively charged possibility, therefore, is that the heterodimer dissociates residues, complementing the negative charge of the DNA from the DNA before or concomitant with the DNA liga- and stabilising DNA end binding. tion process. Alternatively, Ku’s removal from the DNA might require either a major structural rearrangement of As shown in Figure 2a, the Ku complex effectively wraps the protein or its proteolytic cleavage.
Recommended publications
  • Structure and Function of the Human Recq DNA Helicases
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability.
    [Show full text]
  • Plugged Into the Ku-DNA Hub: the NHEJ Network Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou
    Plugged into the Ku-DNA hub: The NHEJ network Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou To cite this version: Philippe Frit, Virginie Ropars, Mauro Modesti, Jean-Baptiste Charbonnier, Patrick Calsou. Plugged into the Ku-DNA hub: The NHEJ network. Progress in Biophysics and Molecular Biology, Elsevier, 2019, 147, pp.62-76. 10.1016/j.pbiomolbio.2019.03.001. hal-02144114 HAL Id: hal-02144114 https://hal.archives-ouvertes.fr/hal-02144114 Submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Progress in Biophysics and Molecular Biology xxx (xxxx) xxx Contents lists available at ScienceDirect Progress in Biophysics and Molecular Biology journal homepage: www.elsevier.com/locate/pbiomolbio Plugged into the Ku-DNA hub: The NHEJ network * Philippe Frit a, b, Virginie Ropars c, Mauro Modesti d, e, Jean Baptiste Charbonnier c, , ** Patrick Calsou a, b, a Institut de Pharmacologie et Biologie Structurale, IPBS, Universite de Toulouse, CNRS, UPS, Toulouse, France b Equipe Labellisee Ligue Contre
    [Show full text]
  • Evolutionary History of Ku Proteins: Evidence of Horizontal Gene Transfer from Archaea to Eukarya
    Evolutionary history of Ku proteins: evidence of horizontal gene transfer from archaea to eukarya Ashmita Mainali Kathmandu University Sadikshya Rijal Kathmandu University Hitesh Kumar Bhattarai ( [email protected] ) Kathmandu University https://orcid.org/0000-0002-7147-1411 Research article Keywords: Double Stranded Breaks, Non-homologous End Joining, Maximum Likelihood Phylogenetic tree, domains, Ku protein, origin, evolution Posted Date: October 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-58075/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background The DNA end joining protein, Ku, is essential in Non-Homologous End Joining in prokaryotes and eukaryotes. It was rst discovered in eukaryotes and later by PSI blast, was discovered in prokaryotes. While Ku in eukaryotes is often a multi domain protein functioning in DNA repair of physiological and pathological DNA double stranded breaks, Ku in prokaryotes is a single domain protein functioning in pathological DNA repair in spores or late stationary phase. In this paper we have attempted to systematically search for Ku protein in different phyla of bacteria and archaea as well as in different kingdoms of eukarya. Result From our search of 116 sequenced bacterial genomes, only 25 genomes yielded at least one Ku sequence. From a comprehensive search of all NCBI archaeal genomes, we received a positive hit in 7 specic archaea that possessed Ku. In eukarya, we found Ku protein in 27 out of 59 species. Since the entire genome of all eukaryotic species is not fully sequenced this number could go up.
    [Show full text]
  • Ku80 Antibody A
    Revision 1 C 0 2 - t Ku80 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 3 5 Web: [email protected] 7 www.cellsignal.com 2 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB, IP, IHC-P, IF-IC, F H Mk Endogenous 86 Rabbit P13010 7520 Product Usage Information cell cycle regulation, DNA replication and repair, telomere maintenance, recombination, and transcriptional activation. Application Dilution 1. Tuteja, R. and Tuteja, N. (2000) Crit. Rev. Biochem. Mol. Biol. 35, 1-33. 2. Blier, P.R. et al. (1993) J. Biol. Chem. 268, 7594-7601. Western Blotting 1:1000 3. Jin, S. and Weaver, D.T. (1997) EMBO J. 16, 6874-6885. Immunoprecipitation 1:25 4. Boulton, S.J. and Jackson, S.P. (1998) EMBO J. 17, 1819-1828. 5. Gravel, S. et al. (1998) Science 280, 741-744. Immunohistochemistry (Paraffin) 1:150 - 1:600 6. Cao, Q.P. et al. (1994) Biochemistry 33, 8548-8557. Immunofluorescence (Immunocytochemistry) 1:100 - 1:400 7. Lees-Miller, S.P. et al. (1990) Mol. Cell Biol. 10, 6472-6481. Flow Cytometry 1:50 - 1:100 8. Collis, S.J. et al. (2005) Oncogene 24, 949-961. Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity Ku80 antibody detects endogenous levels of total Ku80 protein.
    [Show full text]
  • A Werner Syndrome Protein Homolog Affects C. Elegans Development
    Research article 2565 A Werner syndrome protein homolog affects C. elegans development, growth rate, life span and sensitivity to DNA damage by acting at a DNA damage checkpoint Se-Jin Lee, Jong-Sung Yook, Sung Min Han and Hyeon-Sook Koo* Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, Korea *Author for correspondence (e-mail: [email protected]) Accepted 18 February 2004 Development 131, 2565-2575 Published by The Company of Biologists 2004 doi:10.1242/dev.01136 Summary A Werner syndrome protein homolog in C. elegans (WRN- irrespective of γ-irradiation, and pre-meiotic germ cells had 1) was immunolocalized to the nuclei of germ cells, an abnormal checkpoint response to DNA replication embryonic cells, and many other cells of larval and adult blockage. These observations suggest that WRN-1 acts as worms. When wrn-1 expression was inhibited by RNA a checkpoint protein for DNA damage and replication interference (RNAi), a slight reduction in C. elegans life blockage. This idea is also supported by an accelerated S span was observed, with accompanying signs of premature phase in wrn-1(RNAi) embryonic cells. wrn-1(RNAi) aging, such as earlier accumulation of lipofuscin and phenotypes similar to those of Werner syndrome, such as tissue deterioration in the head. In addition, various premature aging and short stature, suggest wrn-1-deficient developmental defects, including small, dumpy, ruptured, C. elegans as a useful model organism for Werner transparent body, growth arrest and bag of worms, were syndrome. induced by RNAi. The frequency of these defects was accentuated by γ-irradiation, implying that they were derived from spontaneous or induced DNA damage.
    [Show full text]
  • DNA Repair with Its Consequences (E.G
    Cell Science at a Glance 515 DNA repair with its consequences (e.g. tolerance and pathways each require a number of apoptosis) as well as direct correction of proteins. By contrast, O-alkylated bases, Oliver Fleck* and Olaf Nielsen* the damage by DNA repair mechanisms, such as O6-methylguanine can be Department of Genetics, Institute of Molecular which may require activation of repaired by the action of a single protein, Biology, University of Copenhagen, Øster checkpoint pathways. There are various O6-methylguanine-DNA Farimagsgade 2A, DK-1353 Copenhagen K, Denmark forms of DNA damage, such as base methyltransferase (MGMT). MGMT *Authors for correspondence (e-mail: modifications, strand breaks, crosslinks removes the alkyl group in a suicide fl[email protected]; [email protected]) and mismatches. There are also reaction by transfer to one of its cysteine numerous DNA repair pathways. Each residues. Photolyases are able to split Journal of Cell Science 117, 515-517 repair pathway is directed to specific Published by The Company of Biologists 2004 covalent bonds of pyrimidine dimers doi:10.1242/jcs.00952 types of damage, and a given type of produced by UV radiation. They bind to damage can be targeted by several a UV lesion in a light-independent Organisms are permanently exposed to pathways. Major DNA repair pathways process, but require light (350-450 nm) endogenous and exogenous agents that are mismatch repair (MMR), nucleotide as an energy source for repair. Another damage DNA. If not repaired, such excision repair (NER), base excision NER-independent pathway that can damage can result in mutations, diseases repair (BER), homologous recombi- remove UV-induced damage, UVER, is and cell death.
    [Show full text]
  • Biochemical Characterization of the Werner – Like Exonuclease From
    Biochemical characterization of the Werner – like exonuclease from Arabidopsis thaliana Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften an der Fakultät für Chemie und Biowissenschaften der Universität Karlsruhe (TH) genehmigte DISSERTATION von Diplom-Biochemikerin Helena Plchova aus Prag, Tschechische Republik Dekan: Prof. Dr. Manfred Metzler 1. Gutachter: Prof. Dr. Holger Puchta 2. Gutachter: Prof. Dr. Andrea Hartwig Tag der mündlichen Prüfung: 04.12.03 Acknowledgements This work was carried out during the period from September 1999 to June 2003 at the Institut for Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany. I would like to express my sincere gratitude to my supervisor, Prof. Dr. H. Puchta, for giving me the opportunity to work in his research group “DNA-Recombination”, for his expertise, understanding, stimulating discussions and valuable suggestions during the practical work and writing of the manuscript. I appreciate his vast knowledge and skill in many areas and his assistance during the course of the work. I would like to thank also Dr. Manfred Focke for reading the manuscript and helpful discussions. My sincere gratitude is to all the collaborators of the Institute for Plant Genetics and Crop Plant Research (IPK) in Gatersleben, especially from the “DNA-Recombination” group for the stimulating environment and very friendly atmosphere during this work. Finally, I also thank all my friends that supported me in my Ph.D. study and were always around at any time. Table of contents Page 1. Introduction 1 1.1. Werner syndrome (WS) 1 1.2. Product of Werner syndrome gene 2 1.2.1. RecQ DNA helicases 3 1.2.2 Mutations in Werner syndrome gene 6 1.3.
    [Show full text]
  • Epigenetic Regulation of DNA Repair Genes and Implications for Tumor Therapy ⁎ ⁎ Markus Christmann , Bernd Kaina
    Mutation Research-Reviews in Mutation Research xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Mutation Research-Reviews in Mutation Research journal homepage: www.elsevier.com/locate/mutrev Review Epigenetic regulation of DNA repair genes and implications for tumor therapy ⁎ ⁎ Markus Christmann , Bernd Kaina Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany ARTICLE INFO ABSTRACT Keywords: DNA repair represents the first barrier against genotoxic stress causing metabolic changes, inflammation and DNA repair cancer. Besides its role in preventing cancer, DNA repair needs also to be considered during cancer treatment Genotoxic stress with radiation and DNA damaging drugs as it impacts therapy outcome. The DNA repair capacity is mainly Epigenetic silencing governed by the expression level of repair genes. Alterations in the expression of repair genes can occur due to tumor formation mutations in their coding or promoter region, changes in the expression of transcription factors activating or Cancer therapy repressing these genes, and/or epigenetic factors changing histone modifications and CpG promoter methylation MGMT Promoter methylation or demethylation levels. In this review we provide an overview on the epigenetic regulation of DNA repair genes. GADD45 We summarize the mechanisms underlying CpG methylation and demethylation, with de novo methyl- TET transferases and DNA repair involved in gain and loss of CpG methylation, respectively. We discuss the role of p53 components of the DNA damage response, p53, PARP-1 and GADD45a on the regulation of the DNA (cytosine-5)- methyltransferase DNMT1, the key enzyme responsible for gene silencing. We stress the relevance of epigenetic silencing of DNA repair genes for tumor formation and tumor therapy.
    [Show full text]
  • Suppression of Ku80 Correlates with Radiosensitivity and Telomere Shortening in the U2OS Telomerase-Negative Osteosarcoma Cell Line
    DOI:http://dx.doi.org/10.7314/APJCP.2013.14.2.795 Suppression of Ku80 Correlates with Radiosensitivity and Telomere Shortening in U2OS Osteosarcoma Cells RESEARCH ARTICLE Suppression of Ku80 Correlates with Radiosensitivity and Telomere Shortening in the U2OS Telomerase-negative Osteosarcoma Cell Line Liu Hu1&, Qin-Qin Wu1&, Wen-Bo Wang1, Huan-Gang Jiang1, Lei Yang1, Yu Liu1, Hai-Jun Yu1, Cong-Hua Xie1,2, Yun-Feng Zhou1,2, Fu-Xiang Zhou1,2* Abstract Ku70/80 heterodimer is a central element in the nonhomologous end joining (NHEJ) DNA repair pathway, Ku80 playing a key role in regulating the multiple functions of Ku proteins. It has been found that the Ku80 protein located at telomeres is a major contributor to radiosensitivity in some telomerase positive human cancer cells. However, in ALT human osteosarcoma cells, the precise function in radiosensitivity and telomere maintenance is still unknown. The aim of this study was to investigate the effects of Ku80 depletion in the U2OS ALT cell line cell line. Suppression of Ku80 expression was performed using a vector-based shRNA and stable Ku80 knockdown in cells was verified by Western blotting. U2OS cells treated with shRNA-Ku80 showed lower radiobiological parameters (D0, Dq and SF2) in clonogenic assays. Furthermore, shRNA-Ku80 vector transfected cells displayed shortening of the telomere length and showed less expression of TRF2 protein. These results demonstrated that down-regulation of Ku80 can sensitize ALT cells U2OS to radiation, and this radiosensitization is related to telomere length shortening. Keywords: Ku80 - telomerase negative osteosarcoma - U2OS cells - radiosensitivity - telomere length - TRF2 Asian Pacific J Cancer Prev, 14 (2), 795-799 Introduction enhanced the radiosensitivity in many cell lines (Yang et al., 2008).
    [Show full text]
  • An Overview of DNA Repair Mechanisms in Plants Compared to Mammals
    Cell. Mol. Life Sci. (2017) 74:1693–1709 DOI 10.1007/s00018-016-2436-2 Cellular and Molecular Life Sciences REVIEW Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals Claudia P. Spampinato1 Received: 8 August 2016 / Revised: 1 December 2016 / Accepted: 5 December 2016 / Published online: 20 December 2016 Ó Springer International Publishing 2016 Abstract The genome integrity of all organisms is con- methods and reporter systems for gene expression and stantly threatened by replication errors and DNA damage function studies. Here, I provide a current understanding of arising from endogenous and exogenous sources. Such base DNA repair genes in plants, with a special focus on A. pair anomalies must be accurately repaired to prevent thaliana. It is expected that this review will be a valuable mutagenesis and/or lethality. Thus, it is not surprising that resource for future functional studies in the DNA repair cells have evolved multiple and partially overlapping DNA field, both in plants and animals. repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mecha- Keywords DNA repair Á Photolyases Á BER Á NER Á nisms at the molecular level has been made by several MMR Á HR Á NHEJ talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from Introduction studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features All organisms are constantly exposed to environmental should be mentioned.
    [Show full text]
  • DNA Mismatch Repair Proteins MLH1 and PMS2 Can Be Imported to the Nucleus by a Classical Nuclear Import Pathway
    Accepted Manuscript DNA mismatch repair proteins MLH1 and PMS2 can be imported to the nucleus by a classical nuclear import pathway Andrea C. de Barros, Agnes A.S. Takeda, Thiago R. Dreyer, Adrian Velazquez- Campoy, Boštjan Kobe, Marcos R.M. Fontes PII: S0300-9084(17)30308-5 DOI: 10.1016/j.biochi.2017.11.013 Reference: BIOCHI 5321 To appear in: Biochimie Received Date: 25 May 2017 Accepted Date: 22 November 2017 Please cite this article as: Keplinger M, Marhofer P, Moriggl B, Zeitlinger M, Muehleder-Matterey S, Marhofer D, Cutaneous innervation of the hand: clinical testing in volunteers shows that variability is far greater than claimed in textbooks, British Journal of Anaesthesia (2017), doi: 10.1016/j.bja.2017.09.008. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT ABSTRACT MLH1 and PMS2 proteins form the MutL α heterodimer, which plays a major role in DNA mismatch repair (MMR) in humans. Mutations in MMR-related proteins are associated with cancer, especially with colon cancer. The N-terminal region of MutL α comprises the N-termini of PMS2 and MLH1 and, similarly, the C-terminal region of MutL α is composed by the C-termini of PMS2 and MLH1, and the two are connected by linker region.
    [Show full text]
  • Rad18 and Rnf8 Facilitate Homologous Recombination by Two Distinct Mechanisms, Promoting Rad51 Focus Formation and Suppressing T
    Oncogene (2015) 34, 4403–4411 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc ORIGINAL ARTICLE Rad18 and Rnf8 facilitate homologous recombination by two distinct mechanisms, promoting Rad51 focus formation and suppressing the toxic effect of nonhomologous end joining S Kobayashi1, Y Kasaishi1, S Nakada2,5, T Takagi3, S Era1, A Motegi1, RK Chiu4, S Takeda1 and K Hirota1,3 The E2 ubiquitin conjugating enzyme Ubc13 and the E3 ubiquitin ligases Rad18 and Rnf8 promote homologous recombination (HR)-mediated double-strand break (DSB) repair by enhancing polymerization of the Rad51 recombinase at γ-ray-induced DSB sites. To analyze functional interactions between the three enzymes, we created RAD18−/−, RNF8−/−, RAD18−/−/RNF8−/− and UBC13−/− clones in chicken DT40 cells. To assess the capability of HR, we measured the cellular sensitivity to camptothecin (topoisomerase I poison) and olaparib (poly(ADP ribose)polymerase inhibitor) because these chemotherapeutic agents induce DSBs during DNA replication, which are repaired exclusively by HR. RAD18−/−, RNF8−/− and RAD18−/−/RNF8−/− clones showed very similar levels of hypersensitivity, indicating that Rad18 and Rnf8 operate in the same pathway in the promotion of HR. Although these three mutants show less prominent defects in the formation of Rad51 foci than UBC13−/−cells, they are more sensitive to camptothecin and olaparib than UBC13−/−cells. Thus, Rad18 and Rnf8 promote HR-dependent repair in a manner distinct from Ubc13. Remarkably, deletion of Ku70, a protein essential for nonhomologous end joining (NHEJ) significantly restored tolerance of RAD18−/− and RNF8−/− cells to camptothecin and olaparib without affecting Rad51 focus formation. Thus, in cellular tolerance to the chemotherapeutic agents, the two enzymes collaboratively promote DSB repair by HR by suppressing the toxic effect of NHEJ on HR rather than enhancing Rad51 focus formation.
    [Show full text]