Mapping of Lava Flows Through SPOT Images : an Example

Total Page:16

File Type:pdf, Size:1020Kb

Mapping of Lava Flows Through SPOT Images : an Example INT. J. REMOTE SENSING, 1997, VOL. 18, NO. 15, 3111-3133 Mapping of lava flows through SPOT images-an example of the Sabancaya volcano (Peru) A. LEGELEY-PADOVANI?, C. MERING$,$§, R. GUILLANDET and D. HUAMANS 01 ?Office de la Recherche Scientifique et Technique Outre-Mer, laboratoire de Géophysique, 70, route d‘Aulnay, 93170 Bondy France . e $Office de la Recherche Scientifique et Technique Outre-Mer, 213, rue La Fayette, 75010 France §Département de Géotectonique, Université de Pierre et Marie Curie, BP 129, I 75252 Paris Cedex 05, France YGéosciences Consultants, 189, Bd Brune, 75014 Paris, France (Received Il October 1994; in final fornt 22 May 1997) Abstract. SPOT XS and Panchromatic images are used jointly in order to map the lava flows of the Nevado Sabancaya volcano (southern Peru). This mapping is achieved through two types of processing: the unsupervised multispectral clus- tering applied to the XS image, and some specific methods of image analysis (mathematical morphology, convolution filtering) applied to the Panchromatic image. The resulting images allowed us to identify flows and the two main morpholo- gical features of the flow areas: lava reliefs and flow lines. Therefore, our experience shows that image analysis can be a tool for thematic mapping which displays more capabilities than photointerpretation. 1. Introduction The mapping of potentially active volcanoes’remainsa basic datum for numerous unstudied volcanic edifices (Bbnneville 1992). Although volcanoes have been mon- itored through remote sensing for a long time, satellite images are used in mapping *I by geologists and volcanologists mainly through photointerpretation, like the analysis of aerial photographs (Rothery and Francis 1987, Gastellu et al. 1990). The monitoring of volcanoes in eruption is still not widespread. A few publications report the use of thermal infrared sensors to measure temperatures on active volca- al. noes such as Etna (Bonneville and Kerr 1985), Erta Alé, Erebus (Rothery et 1988 a, 1988 b), Lascar (Glaze et al. 1989) and Mount Reboubt (Casadevall 1991). Most of these works are based on the data obtained from the infrared channels of the Landsat Thematic Mapper. At a regional scale, Francis and de Silva (1989) utilized the infrared scenes to identify the potentially active volcanoes in the Central Andes. Few studies have been conducted about mapping. The mapping of the Piton de la Fournaise at La Réunion al. made by Bonneville et (1989) and the works carried out on Etna by Vandemeulebrouck and Parscau (1989) utilized SPOT images for the geological r_ -_ - .__ ! mapping of GTcanoes. it In previous works the-1 Sabancaya volcano has been studied with SPOT imagery r al. P al. i‘ (Chorowicz-%;;-TL et 1992, uaman-Rodrigo et 1993). In particular, the authors 0143-1161/97 $12.00 O 1997 Taylor & Francis Ltd Fbnds Documentaire ORSTQMI 11111 11111 11111 1111 1111 I B Ex: I486 I:. I Cote : *44 4_86 4 31 12 A. Lepeley-Padommi et al. identified the different lava flows on the volcano and their texture by photointerpre- tation from Panchromatic scenes. These textures produced by the lava reliefs and the flow lines whose orientation is roughly perpendicular to the flow are charac- teristic mainly of Andesitic lavas. The morphological diagram derived from the photointerpretation of SPOT images is given in figure 1. In this paper, we try to demonstrate how image analysis can be helpful for this kind of mapping, and be a complement to photointerpretation and manual drawing. It has been said about mapping of Eolian forms. such as sand dunes, that image al. analysis can be used as a ‘computer-aided photointerpretation’ (Callot et 1994). As a matter of fact, the structuring activity achieved visually by the photointerpreter is replaced to a certain extent by sequences of image transformations. The advantage of image analysis is that the results are reproducible, contrary to those obtained by visual interpretation. Moreover, the results obtained by both methods may be compared systematically from test areas. We suggest that the mapping of the lava flow can be achieved from radiometric and textural information by processing the raw data (XS and panchromatic SPOT scenes) with numerical methods. The resulting map is then compared to the one obtained by photointerpretation. 1991). Figure 1. Morphological diagram of the Nevado Sabancaya (Chorowicz er 01. 1 =lava flow: :=icecap: 3=volcanic dome: -I=crater: 5=rock slope on the Ampato: 6 =scarp: 7 =crest; S =solifluction slope; 9 =drainage network. Mapping lava floivs 3113 2. Study area and satellite data The volcanic structure of southern Peru is aligned NW-SE. Among the numerous quaternary centres of this structure, the historically active volcanoes are: The Huyana Putine whose Plinian eruption on 19 February 1600 spread out over an area of 150km by 60km a volume of tephra reaching 10km3 (Gonzalez-Ferran 1900). The still fumarolic Ubinas entered a very active stage some Uteen times between 1550 and 1969. The fumarolic Misti suffered several eruptions between 1430 and 1878, its fumarolic activities were intense in 1826, 1940 and 1985. The Sabancaya was thought to have suffered an eruption in the seventeenth century and fumarolic activity has been observed since 1986 (Simkin et al. 1981, CERESIS 1989, de Silva and Francis 1990), the last eruption occurred in 1990, from 28 May to 5 June SEAN 1990). The Nevado Sabancaya volcano is situated in Peru (15’47’s and 71’51’W) (figure 2). It is practically coupled with the Ampato (figure 3). It is composed of two juxtaposed domes (Sabancaya I South and Sabancaya II North). The recent morpho- logy of domes, lava domes, blocks of lava flows and crater characterizes it as a young volcano. It covers an area of about 65 to 70km2, the summit represents a volume of 20 to 25 km3 whose lava seems to be essentially basic. The Ampato and . the Sabancaya are covered with icecaps whose areas amount respectively to 8 km2 and 3.4km2. The images and aerial photographs acquired in 1986 and 1989 show that they are completely white. With regard to mapping, our example is representative of young active volcanoes rising to 6000m. The results shown correspond to the analysis of two images. The features of the scenes are as follows: 75s 73g C 719 I - igh I M‘I COROPUNA A Figure 2. Location of the study area, 1=lake and ocean; 2 =main towns; 3 =main volcanoes. 3114 A. Legeley-Padot~aniet al. 1§"§0 71'90 Figure 3. Localization of Ampato and Nevada Sabancaya volcanoes (extract of topographic map at 1 : lOOOOO of Peru. sheet of Chivay). (0) We selected a pre-eruption SPOT 1, XS mode scene (path/row: 660/381) of 1 July, with oblique shooting (incidence 35' left), (h) Unfortunately, we did not get any Panchromatic SPOT scene on the pre- eruptive period among the available scenes, we selected the Panchromatic scene (path/row: 661/381) of 8 July 1990, where the angle of incidence was the most similar to the XS scene formerly described (incidence 19" left). The XS scene reveals limits of different lava flows by multispectral analysis while the Panchromatic one was used to analyse the flow texture. 3. Basic traitement for image processing In order to process the images. we used various types of numerical methods, such as unsupervised multispectral classification. automatic labelling. gradient fil- tering and mat hematical morphology: the main outlines of these methods are briefly presented in the following. 3.1. Unsirpewisetl mirltisprctrd annlysis Unsupervised multidimensional clustering is used classically for the segmentation of SPOT XS scenes into homogeneous regions. As already known, this type of clustering on multi-spectral data enables the differentiation of the lava flows from the other geological units (Bonneville et (11. 1989). Mapping lava flows 3115 We made use of the K-Means method with moviiig centres (Diday, 1971) whose single parameter to be determined is the number of classes to discriminate. This number depends on the definition likely to be given to mapping. This method is used here for the automatic mapping of only a limited number of classes, as it is more robust when the number of classes are limited. 3.2. Labelling of coitnected components On a binary image, that may be obtained by a multispectral clustering, the 9 connected components are identified through the automatic labelling of a binary image which allows us to code each connected component differently. This technique allows us to select components by labels resulting from automatic w labelling. In the digital image analysis, on a square lattice, there are two primary definitions of connectivity, the 4-connectivity and the 8-connectivity (figure 4). 3.3. Gradient filtering Directional filters of gradient type were used in order to enhance local contrasts on a grey-tone image. In fact, one method used for describing anisotropic textures is to calculate a gradient image with specific filters, such as for example, the Robinson filter (Robinson 1977). The grey level of the resulting filtered image is equal to the grey level of the maximum gradient in eight directions of the lattice. This filter produces another image that we call the direction image, that is, the image where pixels are coded from O to 7 as related to the direction of the optimum gradient. 3.4. Morphological analysis Morphological transformations defined by mathematical morphology (Serra 1988) enable the filtering of noisy binary or grey-tone images. In order to define smooth-outlined patterns like those that can be obtained in mapping through photo- interpretation, we made use of this kind of transformations applied on binary images such as the ones generated by clustering, namely, dilation and erosion, and opening and closing. The opening was particularly useful to disconnect the components weakly con- nected on the classified image.
Recommended publications
  • Freshwater Diatoms in the Sajama, Quelccaya, and Coropuna Glaciers of the South American Andes
    Diatom Research ISSN: 0269-249X (Print) 2159-8347 (Online) Journal homepage: http://www.tandfonline.com/loi/tdia20 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups To cite this article: D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups (2017): Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes, Diatom Research, DOI: 10.1080/0269249X.2017.1335240 To link to this article: http://dx.doi.org/10.1080/0269249X.2017.1335240 Published online: 17 Jul 2017. Submit your article to this journal Article views: 6 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdia20 Download by: [Lund University Libraries] Date: 19 July 2017, At: 08:18 Diatom Research,2017 https://doi.org/10.1080/0269249X.2017.1335240 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes 1 1 2 3 D. MARIE WEIDE ∗,SHERILYNC.FRITZ,BRUCEE.BRINSON, LONNIE G. THOMPSON & W. EDWARD BILLUPS2 1Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 2Department of Chemistry, Rice University, Houston, TX, USA 3School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA Diatoms in ice cores have been used to infer regional and global climatic events. These archives offer high-resolution records of past climate events, often providing annual resolution of environmental variability during the Late Holocene.
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Universidad Nacional De San Agustín Facultad De Ingeniería Geológica Geofísica Y Minas Escuela Profesional De Ingeniería Geológica
    UNIVERSIDAD NACIONAL DE SAN AGUSTÍN FACULTAD DE INGENIERÍA GEOLÓGICA GEOFÍSICA Y MINAS ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA “ESTUDIO GEOLÓGICO, PETROGRÁFICO Y GEOQUÍMICO DEL COMPLEJO VOLCÁNICO AMPATO - SABANCAYA (Provincia Caylloma, Dpto. Arequipa)” Tesis presentada por: Bach. Rosmery Delgado Ramos Para Optar el Grado Académico de Ingeniero Geólogo AREQUIPA – PERÚ 2012 AGRADECIMIENTOS Quiero manifestar mis más sinceros agradecimientos a todas las personas que fueron parte esencial en mi formación profesional, personal y toda mi vida. Agradezco a mis padres, Victor R. Delgado Delgado y Rosa Luz Ramos Vega, por su constante apoyo y que a pesar de las dificultades y caídas siempre estaban conmigo para cuidarme, ayudarme y sobre todo amarme. A mis hermanos Renzo R. y Angela V. Delgado Ramos que con su optimismo y perseverancia me ayudaron a enfrentar los caminos difíciles de la vida y seguir con mis ideales. Agradezco también a mis asesores al Dr. Marco Rivera y Dr. Pablo Samaniego, que con su paciencia, consejos, regaños, apoyo incondicional y sus grandes enseñanzas, cultivaron en mí la pasión por la investigación y las ganas de alcanzar mis objetivos. Agradezco al Instituto Geológico Minero y Metalúrgico y al convenio de colaboración con el IRD a cargo del Dr. Pablo Samaniego, por la beca que me otorgó durante el período en el cual realice mi tesis. Gracias a mi asesor de tesis el Dr. Fredy García de la Universidad Nacional de San Agustín que por su revisión detallada y gran apoyo benefició en este trabajo. Agradezco al SENAMHI por proporcionarme los datos de clima, fundamentales para el desarrollo de esta tesis.
    [Show full text]
  • Seasonal Patterns of Atmospheric Mercury in Tropical South America As Inferred by a Continuous Total Gaseous Mercury Record at Chacaltaya Station (5240 M) in Bolivia
    Atmos. Chem. Phys., 21, 3447–3472, 2021 https://doi.org/10.5194/acp-21-3447-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia Alkuin Maximilian Koenig1, Olivier Magand1, Paolo Laj1, Marcos Andrade2,7, Isabel Moreno2, Fernando Velarde2, Grover Salvatierra2, René Gutierrez2, Luis Blacutt2, Diego Aliaga3, Thomas Reichler4, Karine Sellegri5, Olivier Laurent6, Michel Ramonet6, and Aurélien Dommergue1 1Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France 2Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia 3Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland 4Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA 5Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, Clermont-Ferrand, France 6Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France 7Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD 20742, USA Correspondence: Alkuin Maximilian Koenig ([email protected]) Received: 22 September 2020 – Discussion started: 28 October 2020 Revised: 20 January 2021 – Accepted: 21 January 2021 – Published: 5 March 2021 Abstract. High-quality atmospheric mercury (Hg) data are concentrations were linked to either westerly Altiplanic air rare for South America, especially for its tropical region. As a masses or those originating from the lowlands to the south- consequence, mercury dynamics are still highly uncertain in east of CHC.
    [Show full text]
  • Petrologia De Las Erupciones Del 2006 Del Volcan T
    DELIMITACIÓN DE LAS ZONAS DE INUNDACIÓN POR LAHARES EN EL ÁREA DEL COMPLEJO VOLCÁNICO AMPATO-SABANCAYA (AREQUIPA) Nina BELLOT1,2,3, Pablo SAMANIEGO1,2,3, Jersy MARIÑO3, Marco RIVERA3, Willy URBINA3 1 Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS, IRD, 5, rue Kessler, F-63038 Clermont-Ferrand, Francia 2 IRD, Teruel 357, Miraflores, Lima 18, Perú ([email protected]) 3 INGEMMET, Dirección de Geología Ambiental y Riesgo Geológico. Av. Dolores (Urb. Las Begonias B-3), J.L. Bustamante y Rivero, Arequipa, Perú INTRODUCCIÓN El Complejo Volcánico Ampato-Sabancaya (CVAS) está localizado a 60 km al NO de la ciudad de Arequipa (Fig. 1), fue construido durante el Pleistoceno sobre los remanentes de un complejo volcánico más antiguo, el Hualca Hualca (6025 msnm) ubicado al norte, entre el CVAS y valle del río Colca. Este grupo volcánico está cubierto por un importante casquete glaciar, que según Alcalá (2007) cubriría una superficie total (para los tres edificios volcánicos, Sabancaya, Ampato y Hualca Hualca) de 13.7 km2 y tendría un volumen de 1.7 m3 (Fig. 2). El Sabancaya (5980 msnm) constituye la parte joven y activa del complejo volcánico, mientras que el Ampato (6280 msnm) es un estratovolcán compuesto que constituye la parte más antigua del complejo, construida durante el Pleistoceno superior. El Sabancaya es uno de los 7 volcanes activos del arco peruano (Siebert et al., 2010), cuyo último episodio eruptivo ocurrió entre 1988 y 1997 (Gerbe y Thouret, 2004). Dentro del marco del convenio de cooperación existente entre el INGEMMET y el Instituto Francés de Investigación para el Desarrollo (IRD), se está realizando un estudio integral de este complejo volcánico que incluye la evolución geológica y petrológica del complejo (Rivera et al., 2012), así como la evaluación de los peligros volcánicos (Mariño et al., 2012).
    [Show full text]
  • Scale Deformation of Volcanic Centres in the Central Andes
    letters to nature 14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides of 1–1.5 cm yr21 (Fig. 2). An area in southern Peru about 2.5 km and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). east of the volcano Hualca Hualca and 7 km north of the active 15. Hansen, M. (ed.) Constitution of Binary Alloys (McGraw-Hill, New York, 1958). 21 16. Emsley, J. (ed.) The Elements (Clarendon, Oxford, 1994). volcano Sabancaya is inflating with U LOS of about 2 cm yr . A third 21 17. Tanaka, H., Takahashi, I., Kimura, M. & Sobukawa, H. in Science and Technology in Catalysts 1994 (eds inflationary source (with ULOS ¼ 1cmyr ) is not associated with Izumi, Y., Arai, H. & Iwamoto, M.) 457–460 (Kodansya-Elsevier, Tokyo, 1994). a volcanic edifice. This third source is located 11.5 km south of 18. Tanaka, H., Tan, I., Uenishi, M., Kimura, M. & Dohmae, K. in Topics in Catalysts (eds Kruse, N., Frennet, A. & Bastin, J.-M.) Vols 16/17, 63–70 (Kluwer Academic, New York, 2001). Lastarria and 6.8 km north of Cordon del Azufre on the border between Chile and Argentina, and is hereafter called ‘Lazufre’. Supplementary Information accompanies the paper on Nature’s website Robledo caldera, in northwest Argentina, is subsiding with U (http://www.nature.com/nature). LOS of 2–2.5 cm yr21. Because the inferred sources are more than a few kilometres deep, any complexities in the source region are damped Acknowledgements such that the observed surface deformation pattern is smooth.
    [Show full text]
  • Area Changes of Glaciers on Active Volcanoes in Latin America Between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery
    Journal of Glaciology (2019), 65(252) 542–556 doi: 10.1017/jog.2019.30 © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery JOHANNES REINTHALER,1,2 FRANK PAUL,1 HUGO DELGADO GRANADOS,3 ANDRÉS RIVERA,2,4 CHRISTIAN HUGGEL1 1Department of Geography, University of Zurich, Zurich, Switzerland 2Centro de Estudios Científicos, Valdivia, Chile 3Instituto de Geofisica, Universidad Nacional Autónoma de México, Mexico City, Mexico 4Departamento de Geografía, Universidad de Chile, Chile Correspondence: Johannes Reinthaler <[email protected]> ABSTRACT. Glaciers on active volcanoes are subject to changes in both climate fluctuations and vol- canic activity. Whereas many studies analysed changes on individual volcanoes, this study presents for the first time a comparison of glacier changes on active volcanoes on a continental scale. Glacier areas were mapped for 59 volcanoes across Latin America around 1986, 1999 and 2015 using a semi- automated band ratio method combined with manual editing using satellite images from Landsat 4/5/ 7/8 and Sentinel-2. Area changes were compared with the Smithsonian volcano database to analyse pos- sible glacier–volcano interactions. Over the full period, the mapped area changed from 1399.3 ± 80 km2 − to 1016.1 ± 34 km2 (−383.2 km2)or−27.4% (−0.92% a 1) in relative terms.
    [Show full text]
  • Archaeological, Radiological, and Biological Evidence Offer Insight Into Inca Child Sacrifice
    Archaeological, radiological, and biological evidence offer insight into Inca child sacrifice Andrew S. Wilsona,1, Emma L. Browna, Chiara Villab, Niels Lynnerupb, Andrew Healeyc, Maria Constanza Cerutid, Johan Reinharde, Carlos H. Previglianod,2, Facundo Arias Araozd, Josefina Gonzalez Diezd, and Timothy Taylora,3 aDepartment of Archaeological Sciences, and cCentre for Chemical and Structural Analysis, University of Bradford, Bradford BD7 1DP, United Kingdom; bLaboratory of Biological Anthropology, Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; dInstitute of High Mountain Research, Catholic University of Salta, Salta A4400FYP, Argentina; and eNational Geographic Society, Washington, DC 20036 Edited by Charles Stanish, University of California, Los Angeles, CA, and approved June 18, 2013 (received for review March 21, 2013) Examination of three frozen bodies, a 13-y-old girl and a girl and defining, element of a capacocha ritual. We also recognize that boy aged 4 to 5 y, separately entombed near the Andean summit the capacocha rite analyzed here was embedded within a multi- of Volcán Llullaillaco, Argentina, sheds new light on human sac- dimensional imperial ideology. rifice as a central part of the Imperial Inca capacocha rite, de- The frozen remains of the ∼13-y-old “Llullaillaco Maiden,” the scribed by chroniclers writing after the Spanish conquest. The 4- to 5-y-old “Llullaillaco Boy,” and the 4- to 5-y-old “Lightning high-resolution diachronic data presented here, obtained directly Girl” provide unusual and valuable analytical opportunities. Their from scalp hair, implies escalating coca and alcohol ingestion in the posture and placement within the shrine, surrounded by elite lead-up to death.
    [Show full text]
  • Dirección De Preparación Cepig
    DIRECCIÓN DE PREPARACIÓN CEPIG INFORME DE POBLACIÓN EXPUESTA ANTE CAÍDA DE CENIZAS Y GASES, PRODUCTO DE LA ACTIVIDAD DEL VOLCÁN UBINAS PARA ADOPTAR MEDIDAS DE PREPARACIÓN Fuente: La República ABRIL, 2015 1 INSTITUTO NACIONAL DE DEFENSA CIVIL (INDECI) CEPIG Informe de población expuesta ante caída de cenizas y gases, producto de la actividad del volcán Ubinas para adoptar medidas de preparación. Instituto Nacional de Defensa Civil. Lima: INDECI. Dirección de Preparación, 2015. Calle Dr. Ricardo Angulo Ramírez Nº 694 Urb. Corpac, San Isidro Lima-Perú, San Isidro, Lima Perú. Teléfono: (511) 2243600 Sitio web: www.indeci.gob.pe Gral. E.P (r) Oscar Iparraguirre Basauri Director de Preparación del INDECI Ing. Juber Ruiz Pahuacho Coordinador del CEPIG - INDECI Equipo Técnico CEPIG: Lic. Silvia Passuni Pineda Lic. Beneff Zuñiga Cruz Colaboradores: Pierre Ancajima Estudiante de Ing. Geológica 2 I. JUSTIFICACIÓN En el territorio nacional existen alrededor de 400 volcanes, la mayoría de ellos no presentan actividad. Los volcanes activos se encuentran hacia el sur del país en las regiones de Arequipa, Moquegua y Tacna, en parte de la zona volcánica de los Andes (ZVA), estos son: Coropuna, Valle de Andagua, Hualca Hualca, Sabancaya, Ampato, Misti en la Región Arequipa; Ubinas, Ticsani y Huaynaputina en la región Moquegua, y el Yucamani y Casiri en la región Tacna. El Volcán Ubinas es considerado el volcán más activo que tiene el Perú. Desde el año 1550, se han registrado 24 erupciones aprox. (Rivera, 2010). Estos eventos se presentan como emisiones intensas de gases y ceniza precedidos, en algunas oportunidades, de fuertes explosiones. Los registros históricos señalan que el Volcán Ubinas ha presentado un Índice máximo de Explosividad Volcánica (IEV) (Newhall & Self, 1982) de 3, considerado como moderado a grande.
    [Show full text]
  • Source Model for Sabancaya Volcano Constrained by Dinsar and GNSS Surface Deformation Observation
    remote sensing Article Source Model for Sabancaya Volcano Constrained by DInSAR and GNSS Surface Deformation Observation Gregorio Boixart 1, Luis F. Cruz 2,3 , Rafael Miranda Cruz 2, Pablo A. Euillades 4, Leonardo D. Euillades 4 and Maurizio Battaglia 5,6,* 1 Instituto de Estudios Andinos, Universidad de Buenos Aires-CONICET, Buenos Aires 1428, Argentina; [email protected] 2 Escuela Profesional de Ingeniería Geofísica, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru; [email protected] (L.F.C.); [email protected] (R.M.C.) 3 Observatorio Vulcanológico del INGEMMET, Instituto Geológico Minero y Metalúrgico, Arequipa 04001, Peru 4 Facultad de Ingeniería, Instituto CEDIAC & CONICET, Universidad Nacional de Cuyo, Mendoza M5502JMA, Argentina; [email protected] (P.A.E.); [email protected] (L.D.E.) 5 US Geological Survey, Volcano Disaster Assistance Program, NASA Ames Research Center, Moffett Field, CA 94035, USA 6 Department of Earth Sciences, Sapienza-University of Rome, 00185 Rome, Italy * Correspondence: [email protected] Received: 23 April 2020; Accepted: 3 June 2020; Published: 8 June 2020 Abstract: Sabancaya is the most active volcano of the Ampato-Sabancaya Volcanic Complex (ASVC) in southern Perú and has been erupting since 2016. The analysis of ascending and descending Sentinel-1 orbits (DInSAR) and Global Navigation Satellite System (GNSS) datasets from 2014 to 2019 imaged a radially symmetric inflating area, uplifting at a rate of 35 to 50 mm/yr and centered 5 km north of Sabancaya. The DInSAR and GNSS data were modeled independently. We inverted the DInSAR data to infer the location, depth, and volume change of the deformation source.
    [Show full text]
  • Glacier Evolution in the South West Slope of Nevado Coropuna
    Glacier evolution in the South West slope of Nevado Coropuna (Cordillera Ampato, Perú) Néstor Campos Oset Master Project Master en Tecnologías de la Información Geográfica (TIG) Universidad Complutense de Madrid Director: Prof. David Palacios (UCM) Departamento de Análisis Geográfico Regional y Geografía Física Grupo de Investigación en Geografía Física de Alta Montaña (GFAM) ACKNOWLEDGEMENTS I would like to gratefully and sincerely thank Dr. David Palacios for his help and guidance during the realization of this master thesis. I would also like to thank Dr. José Úbeda for his assistance and support. Thanks to GFAM-GEM for providing materials used for the analysis. And last but not least, a special thanks to my family, for their encouragement during this project and their unwavering support in all that I do. 2 TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 4 1.1 Geographic settings ................................................................................................ 4 1.2 Geologic settings .................................................................................................... 6 1.3 Climatic setting....................................................................................................... 8 1.4 Glacier hazards ..................................................................................................... 10 1.5 Glacier evolution .................................................................................................
    [Show full text]
  • GEOLOGY AS a WAY of TURISM PROMOTION.Pdf
    ENERGY AND MINES SECTOR TheSPECIAL of the Month GEOLOGICAL, MINING AND METALLURGICAL INSTITUTE Since 2006, the Geological, Mining and Metallurgical Institute - INGEMMET has the "Heritage and Geotourism" project. It promotes the conservation and enhancement of different areas across the country with a high geological value. 1 TOURIST ATTRACTIONS PROMOTED Paracas National Reserve BY INGEMMET It is located 250 kilometers south of Lima, Ica Marcahuasi Region. It is one of the few places where you can see remains of an ancient mountain It is a volcanic plateau located in the town of range with rocks over 400 million years old in eotourism makes reference to a type of G San Pedro de Casta, at 3 185 meters above strata and with plant remains, rocks with sustainable tourism. It aims to highlight the sea level on the left bank of the Santa Eulalia fossils from marine environments. There are geological diversity (geodiversity) and then river basin, and 80 kilometers east of Lima. 25 geosites inventoried by INGEMMET. the geological heritage (geoheritage) of a The geoforms of the Marcahuasi rock forest The geological information in the guide certain territory. Also, to promote the are the result of the effects of rain, snow, ice, elaborated by INGEMMET served as a script conservation of its resources heat and wind. They all molded diverse forms for the current Interpretation Center in the (geoconservation) and education in earth GEOLOGICAL in the volcanic deposits. In this way, it allows reserve, as well as for the signage of some sciences (geoeducation) which develops the visitor to imagine the strangest and most geosites such as La Catedral, Playa La Mina, awareness among the people.
    [Show full text]