Characterization of a Novel Monogenic Form of Liver Failure

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of a Novel Monogenic Form of Liver Failure FAKULTÄT FÜR MEDIZIN INSTITUT FÜR HUMANGENETIK Lehrstuhl: Prof. Dr. Thomas Meitinger Characterization of a Novel Monogenic Form of Liver Failure Marlies Gwendolyn Köpke Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Medizin (Dr. med.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Ernst J. Rummeny Prüfer der DissertAtion: 1. Prof. Dr. Thomas Meitinger 2. Prof. Dr. Percy A. Knolle Die Dissertation wurde am 07.08.2017 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 04.07.2018 angenommen. Marlies G. Köpke ChArActerizAtion of A Novel Monogenic Form of Liver Failure Table of Contents Table of contents List of abbreviations ................................................................................................. V List of prefixes ........................................................................................................ VIII Introduction ............................................................................................................... 1 Acute liver failure in children ............................................................................................ 1 Definition .......................................................................................................................... 1 Epidemiology ................................................................................................................... 2 Pathophysiology ............................................................................................................... 2 Aetiology .......................................................................................................................... 3 ClinicAl phenotype ............................................................................................................ 8 DiAgnostics ...................................................................................................................... 8 TherApy ............................................................................................................................ 9 Prognosis ....................................................................................................................... 12 Chronic liver failure in children ...................................................................................... 14 Definition ........................................................................................................................ 14 Epidemiology ................................................................................................................. 14 Aetiology ........................................................................................................................ 14 ClinicAl presentAtion ....................................................................................................... 14 TherApy .......................................................................................................................... 15 Fever and its association with liver disease ................................................................. 16 Definition ........................................................................................................................ 16 Physiologic And pAthophysiologic effects ...................................................................... 16 TherApy .......................................................................................................................... 16 AssociAtion with liver diseAse ........................................................................................ 17 Recurrent acute liver failure syndrome ......................................................................... 18 NBAS ................................................................................................................................. 20 Discovery ....................................................................................................................... 20 Gene locAtion, gene structure And protein structure ...................................................... 20 Expression in different tissues ....................................................................................... 21 Physiologic function of NBAS ........................................................................................ 22 AssociAted diseAses ...................................................................................................... 22 Purpose of this work ............................................................................................... 24 I Marlies G. Köpke ChArActerizAtion of A Novel Monogenic Form of Liver Failure Table of Contents Materials and methods ........................................................................................... 25 Preamble ........................................................................................................................... 25 Reagents and media ........................................................................................................ 25 Buffers and solutions ...................................................................................................... 27 Antibodies, ladders and enzymes .................................................................................. 29 Kits .................................................................................................................................... 29 Equipment and software ................................................................................................. 30 Materials ........................................................................................................................... 31 Cell lines ........................................................................................................................... 31 Molecular biology methods ............................................................................................ 32 PlAsmid extrAction from bActeriA (Miniprep/Midiprep) .................................................... 32 DNA extrAction from humAn cells (AllPrep) ................................................................... 32 DeterminAtion of concentrAtion of DNA ......................................................................... 32 PolymerAse chAin reAction (PCR) .................................................................................. 32 Microbiological methods ................................................................................................. 37 CultivAtion of bActeriA .................................................................................................... 37 Cell biology methods ....................................................................................................... 38 CultivAtion of humAn cells .............................................................................................. 38 Collection of cells ........................................................................................................... 38 Splitting of cells .............................................................................................................. 38 GenerAtion of stocks ...................................................................................................... 38 GenerAtion of pellets for further AnAlysis ....................................................................... 38 ContAminAtion test for mycoplAsmA ............................................................................... 39 BlAsticidin killing curve ................................................................................................... 39 DeterminAtion of cell count using the Scepter™ Handheld Cell Counter ...................... 39 DeterminAtion of cell count using the CyQUANT® Cell ProliferAtion AssAy Kit ............. 39 Growth curve .................................................................................................................. 41 Knockdown of a gene in cell culture .............................................................................. 42 PreAmble ........................................................................................................................ 42 Design And hAndling of oligonucleotides for shRNA ...................................................... 42 TrAnsformAtion of chemicAlly competent E. coli ............................................................ 43 Cloning of entry construct .............................................................................................. 43 Cloning of expression construct ..................................................................................... 44 PrepArAtion of mediA for the lentivirAl trAnsduction ........................................................ 44 Production of lentivirus ................................................................................................... 44 II Marlies G. Köpke ChArActerizAtion of A Novel Monogenic Form of Liver Failure Table of Contents Lentiviral transduction .................................................................................................... 45 MaintenAnce of trAnsduced cells ................................................................................... 46 Proteomic analysis .......................................................................................................... 47 PreAmble .......................................................................................................................
Recommended publications
  • Identification of Differentially Expressed Genes in Human Bladder Cancer Through Genome-Wide Gene Expression Profiling
    521-531 24/7/06 18:28 Page 521 ONCOLOGY REPORTS 16: 521-531, 2006 521 Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling KAZUMORI KAWAKAMI1,3, HIDEKI ENOKIDA1, TOKUSHI TACHIWADA1, TAKENARI GOTANDA1, KENGO TSUNEYOSHI1, HIROYUKI KUBO1, KENRYU NISHIYAMA1, MASAKI TAKIGUCHI2, MASAYUKI NAKAGAWA1 and NAOHIKO SEKI3 1Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Departments of 2Biochemistry and Genetics, and 3Functional Genomics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received February 15, 2006; Accepted April 27, 2006 Abstract. Large-scale gene expression profiling is an effective CKS2 gene not only as a potential biomarker for diagnosing, strategy for understanding the progression of bladder cancer but also for staging human BC. This is the first report (BC). The aim of this study was to identify genes that are demonstrating that CKS2 expression is strongly correlated expressed differently in the course of BC progression and to with the progression of human BC. establish new biomarkers for BC. Specimens from 21 patients with pathologically confirmed superficial (n=10) or Introduction invasive (n=11) BC and 4 normal bladder samples were studied; samples from 14 of the 21 BC samples were subjected Bladder cancer (BC) is among the 5 most common to microarray analysis. The validity of the microarray results malignancies worldwide, and the 2nd most common tumor of was verified by real-time RT-PCR. Of the 136 up-regulated the genitourinary tract and the 2nd most common cause of genes we detected, 21 were present in all 14 BCs examined death in patients with cancer of the urinary tract (1-7).
    [Show full text]
  • Mouse Scfd1 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Scfd1 Knockout Project (CRISPR/Cas9) Objective: To create a Scfd1 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Scfd1 gene (NCBI Reference Sequence: NM_029825 ; Ensembl: ENSMUSG00000020952 ) is located on Mouse chromosome 12. 25 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 25 (Transcript: ENSMUST00000021335). Exon 2~5 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 2.76% of the coding region. Exon 2~5 covers 19.51% of the coding region. The size of effective KO region: ~6324 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 25 Legends Exon of mouse Scfd1 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1754 bp section downstream of Exon 5 is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Developing Specific Molecular Biomarkers for Thermal Stress In
    Akbarzadeh et al. BMC Genomics (2018) 19:749 https://doi.org/10.1186/s12864-018-5108-9 RESEARCHARTICLE Open Access Developing specific molecular biomarkers for thermal stress in salmonids Arash Akbarzadeh1,2* , Oliver P Günther3, Aimee Lee Houde1, Shaorong Li1, Tobi J Ming1, Kenneth M Jeffries4, Scott G Hinch5 and Kristina M Miller1 Abstract Background: Pacific salmon (Oncorhynchus spp.) serve as good biological indicators of the breadth of climate warming effects on fish because their anadromous life cycle exposes them to environmental challenges in both marine and freshwater environments. Our study sought to mine the extensive functional genomic studies in fishes to identify robust thermally-responsive biomarkers that could monitor molecular physiological signatures of chronic thermal stress in fish using non-lethal sampling of gill tissue. Results: Candidate thermal stress biomarkers for gill tissue were identified using comparisons among microarray datasets produced in the Molecular Genetics Laboratory, Pacific Biological Station, Nanaimo, BC, six external, published microarray studies on chronic and acute temperature stress in salmon, and a comparison of significant genes across published studies in multiple fishes using deep literature mining. Eighty-two microarray features related to 39 unique gene IDs were selected as candidate chronic thermal stress biomarkers. Most of these genes were identified both in the meta-analysis of salmon microarray data and in the literature mining for thermal stress markers in salmonids and other fishes. Quantitative reverse transcription PCR (qRT-PCR) assays for 32 unique genes with good efficiencies across salmon species were developed, and their activity in response to thermally challenged sockeye salmon (O. nerka)and Chinook salmon (O.
    [Show full text]
  • 27Th Trna Conference-Abstractsbook-3
    P1.1 The protein-only RNase P PRORP1 interacts with the nuclease MNU2 in Arabidopsis mitochondria G. Bonnard, M. Arrivé, A. Bouchoucha, A. Gobert, C. Schelcher, F. Waltz, P. Giegé Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France The essential endonuclease activity that removes 5’ leader sequences from transfer RNA precursors is called RNase P. While ribonucleoprotein RNase P enzymes containing a ribozyme are found in all domains of life, another type of RNase P called “PRORP”, for “PROtein-only RNase P”, only composed of protein occurs in a wide variety of eukaryotes, in organelles and the nucleus. Although PRORP proteins function as single subunit enzymes in vitro, we find that PRORP1 occurs in protein complexes and is present in polysome fractions in Arabidopsis mitochondria. The analysis of immuno- precipitated protein complexes identifies proteins involved in mitochondrial gene expression processes. In particular, direct interaction is established between PRORP1 and MNU2 another mitochondrial nuclease involved in RNA 5’ processing. A specific domain of MNU2 and a conserved signature of PRORP1 are found to be directly accountable for this protein interaction. Altogether, results reveal the existence of an RNA 5’ maturation complex in Arabidopsis mitochondria and suggest that PRORP proteins might cooperate with other gene expression regulators for RNA maturation in vivo. 111 P1.2 CytoRP, a cytosolic RNase P to target TLS-RNA phytoviruses 1 1 2 1 A. Gobert , Y. Quan , I. Jupin , P. Giegé 1Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France 1Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France In plants, PRORP enzymes are responsible for RNase P activity that involves the removal of the 5’ extremity of tRNA precursors.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Genetic Analysis of Amyotrophic Lateral Sclerosis Identifies Contributing Pathways and Cell Types
    University of Massachusetts Medical School eScholarship@UMMS Open Access Publications by UMMS Authors 2021-01-15 Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types Sara Saez-Atienzar National Institutes of Health Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Genetics and Genomics Commons, Molecular and Cellular Neuroscience Commons, Nervous System Diseases Commons, and the Neurology Commons Repository Citation Saez-Atienzar S, Landers JE. (2021). Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Open Access Publications by UMMS Authors. https://doi.org/ 10.1126/sciadv.abd9036. Retrieved from https://escholarship.umassmed.edu/oapubs/4570 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Publications by UMMS Authors by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. SCIENCE ADVANCES | RESEARCH ARTICLE GENETICS Copyright © 2021 The Authors, some rights reserved; Genetic analysis of amyotrophic lateral sclerosis exclusive licensee American Association identifies contributing pathways and cell types for the Advancement Sara Saez-Atienzar1*†, Sara Bandres-Ciga2,3†, Rebekah G. Langston4, Jonggeol J. Kim2, of Science. No claim to 5 6,7,8 original U.S. Government Shing Wan Choi , Regina H. Reynolds , the International ALS Genomics Consortium, Works. Distributed 1,9 1 10 ITALSGEN, Yevgeniya Abramzon , Ramita Dewan , Sarah Ahmed , under a Creative 11 1 7,8 4 2,12 John E.
    [Show full text]
  • Tepzz 8Z6z54a T
    (19) TZZ ZZ_T (11) EP 2 806 054 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.11.2014 Bulletin 2014/48 C40B 40/06 (2006.01) C12Q 1/68 (2006.01) C40B 30/04 (2006.01) C07H 21/00 (2006.01) (21) Application number: 14175049.7 (22) Date of filing: 28.05.2009 (84) Designated Contracting States: (74) Representative: Irvine, Jonquil Claire AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HGF Limited HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL 140 London Wall PT RO SE SI SK TR London EC2Y 5DN (GB) (30) Priority: 28.05.2008 US 56827 P Remarks: •Thecomplete document including Reference Tables (62) Document number(s) of the earlier application(s) in and the Sequence Listing can be downloaded from accordance with Art. 76 EPC: the EPO website 09753364.0 / 2 291 553 •This application was filed on 30-06-2014 as a divisional application to the application mentioned (71) Applicant: Genomedx Biosciences Inc. under INID code 62. Vancouver, British Columbia V6J 1J8 (CA) •Claims filed after the date of filing of the application/ after the date of receipt of the divisional application (72) Inventor: Davicioni, Elai R.68(4) EPC). Vancouver British Columbia V6J 1J8 (CA) (54) Systems and methods for expression- based discrimination of distinct clinical disease states in prostate cancer (57) A system for expression-based discrimination of distinct clinical disease states in prostate cancer is provided that is based on the identification of sets of gene transcripts, which are characterized in that changes in expression of each gene transcript within a set of gene transcripts can be correlated with recurrent or non- recur- rent prostate cancer.
    [Show full text]
  • Genetic Modifiers and Rare Mendelian Disease
    G C A T T A C G G C A T genes Review Genetic Modifiers and Rare Mendelian Disease K. M. Tahsin Hassan Rahit 1,2 and Maja Tarailo-Graovac 1,2,* 1 Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; [email protected] 2 Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada * Correspondence: [email protected] Received: 24 January 2020; Accepted: 21 February 2020; Published: 25 February 2020 Abstract: Despite advances in high-throughput sequencing that have revolutionized the discovery of gene defects in rare Mendelian diseases, there are still gaps in translating individual genome variation to observed phenotypic outcomes. While we continue to improve genomics approaches to identify primary disease-causing variants, it is evident that no genetic variant acts alone. In other words, some other variants in the genome (genetic modifiers) may alleviate (suppress) or exacerbate (enhance) the severity of the disease, resulting in the variability of phenotypic outcomes. Thus, to truly understand the disease, we need to consider how the disease-causing variants interact with the rest of the genome in an individual. Here, we review the current state-of-the-field in the identification of genetic modifiers in rare Mendelian diseases and discuss the potential for future approaches that could bridge the existing gap. Keywords: genetic modifier; mendelian disease; rare disease; GWAS; genome sequencing; genetic interaction; penetrance; expressivity; phenotypic variability; bioinformatics 1. Introduction Diseases that follow Mendelian patterns of inheritance are known as Mendelian disorders.
    [Show full text]
  • A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using
    bioRxiv preprint doi: https://doi.org/10.1101/542084; this version posted February 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A primer genetic toolkit for exploring mitochondrial biology and disease using 2 zebrafish 3 Ankit Sabharwal1, Jarryd M. Campbell1,2, Zachary WareJoncas1, Mark Wishman1, Hirotaka 4 Ata1,2, Wiebin Liu1.3, Noriko Ichino1, Jake D. Bergren1, Mark D. Urban1, Rhianna Urban1, Tanya 5 L. Poshusta1, Yonghe Ding1,3, Xiaolei Xu1,3, Karl J. Clark1,2, Stephen C. Ekker1,2* 6 1. Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, 7 USA 8 2. Center for Clinical and Translational Sciences, Mayo Clinic, Rochester, MN 55905, USA 9 3. Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA 10 *Corresponding author: [email protected] 11 Keywords: 12 Mitochondria, Mitochondrial disorders, Zebrafish, gene editing, 13 TALEN, Gene Breaking Transposon 1 bioRxiv preprint doi: https://doi.org/10.1101/542084; this version posted February 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 14 Abstract 15 Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. 16 The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37 17 gene set and overall genomic structure ranging from 16,596 base pairs (bp) in the teleost 18 zebrafish (Danio rerio) to 16,569 bp in humans.
    [Show full text]
  • The SARS-Cov-2 RNA–Protein Interactome in Infected Human Cells
    The SARS-CoV-2 RNA–protein interactome in infected human cells The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Schmidt, Nora et al. "The SARS-CoV-2 RNA–protein interactome in infected human cells." Nature Microbiology (December 2020): doi.org/10.1038/s41564-020-00846-z. © 2020 The Author(s) As Published http://dx.doi.org/10.1038/s41564-020-00846-z Publisher Springer Science and Business Media LLC Version Final published version Citable link https://hdl.handle.net/1721.1/128950 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ ARTICLES https://doi.org/10.1038/s41564-020-00846-z The SARS-CoV-2 RNA–protein interactome in infected human cells Nora Schmidt 1,10, Caleb A. Lareau 2,10, Hasmik Keshishian3,10, Sabina Ganskih 1, Cornelius Schneider4,5, Thomas Hennig6, Randy Melanson3, Simone Werner1, Yuanjie Wei1, Matthias Zimmer1, Jens Ade 1, Luisa Kirschner6, Sebastian Zielinski 1, Lars Dölken1,6, Eric S. Lander3,7,8, Neva Caliskan1,9, Utz Fischer1,5, Jörg Vogel 1,4, Steven A. Carr3, Jochen Bodem 6 ✉ and Mathias Munschauer 1 ✉ Characterizing the interactions that SARS-CoV-2 viral RNAs make with host cell proteins during infection can improve our understanding of viral RNA functions and the host innate immune response. Using RNA antisense purification and mass spec- trometry, we identified up to 104 human proteins that directly and specifically bind to SARS-CoV-2 RNAs in infected human cells. We integrated the SARS-CoV-2 RNA interactome with changes in proteome abundance induced by viral infection and linked interactome proteins to cellular pathways relevant to SARS-CoV-2 infections.
    [Show full text]
  • An Integrative Transcriptome-Wide Analysis of Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic Markers and Drug Candidates
    International Journal of Molecular Sciences Article An Integrative Transcriptome-Wide Analysis of Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic Markers and Drug Candidates Sungmin Park 1 , Daeun Kim 2 , Jaeseung Song 2 and Jong Wha J. Joo 1,* 1 Department of Computer Engineering, Dongguk University, Seoul 04620, Korea; [email protected] 2 Department of Life Science, Dongguk University, Seoul 04620, Korea; [email protected] (D.K.); [email protected] (J.S.) * Correspondence: [email protected] Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative neuromuscular disease. Al- though genome-wide association studies (GWAS) have successfully identified many variants signifi- cantly associated with ALS, it is still difficult to characterize the underlying biological mechanisms inducing ALS. In this study, we performed a transcriptome-wide association study (TWAS) to iden- tify disease-specific genes in ALS. Using the largest ALS GWAS summary statistic (n = 80,610), we identified seven novel genes using 19 tissue reference panels. We conducted a conditional analysis to verify the genes’ independence and to confirm that they are driven by genetically regulated expres- sions. Furthermore, we performed a TWAS-based enrichment analysis to highlight the association of important biological pathways, one in each of the four tissue reference panels. Finally, utilizing a connectivity map, a database of human cell expression profiles cultured with bioactive small Citation: Park, S.; Kim, D.; Song, J.; molecules, we discovered functional associations between genes and drugs to identify 15 bioactive Joo, J.W.J. An Integrative small molecules as potential drug candidates for ALS. We believe that, by integrating the largest ALS Transcriptome-Wide Analysis of GWAS summary statistic with gene expression to identify new risk loci and causal genes, our study Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic provides strong candidates for molecular basis experiments in ALS.
    [Show full text]
  • Analysis of Genotype, Phenotype, and Age Progression in Phelan-Mcdermid Syndrome Sara Sarasua Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 12-2012 Analysis of Genotype, Phenotype, and Age Progression in Phelan-McDermid Syndrome Sara Sarasua Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Genetics and Genomics Commons Recommended Citation Sarasua, Sara, "Analysis of Genotype, Phenotype, and Age Progression in Phelan-McDermid Syndrome" (2012). All Dissertations. 1032. https://tigerprints.clemson.edu/all_dissertations/1032 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. ANALYSIS OF GENOTYPE, PHENOTYPE, AND AGE PROGRESSION OF PHELAN-MCDERMID SYNDROME A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Genetics by Sara Moir Sarasua December 2012 Accepted by: Dr. Amy Lawton-Rauh, Committee Chair Dr. Chin-Fu Chen Dr. Leigh Anne Clark Dr. Barbara R. DuPont Dr. Alex Feltus ABSTRACT Phelan-McDermid syndrome is a developmental disability syndrome associated with deletions of the terminal end of one copy of chromosome 22q13. The observed chromosomal aberrations include simple terminal deletions, interstitial deletions, deletions and duplications, and duplications without deletions. All patients have some degree of developmental disability and many also have hypotonia, autism, minor dysmorphic features, and seizures. I performed an epidemiological and cytogenetic investigation to better understand the etiology of Phelan- McDermid syndrome and to provide information to patients and their families, clinicians, and researchers investigating developmental disabilities.
    [Show full text]