Catalogue Iii Katalog
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
STUDIEN ZUR IKONOGRAPHIE DES KUNSTBETRACHTERS Im 17., 18
STUDIEN ZUR IKONOGRAPHIE DES KUNSTBETRACHTERS im 17., 18. und 19. Jahrhundert Von der Philosophischen Fakultät der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Philosophie genehmigte Dissertation vorgelegt von Heinrich Silvester Johannes Becker aus Ulm/Donau Berichter: Universitätsprofessor Dr. phil. Andreas Beyer Universitätsprofessor Dr. phil. Theo Buck Professurvertreter Dr. phil. Alexander Markschies Tag der mündlichen Prüfung: 21. 01. 2005 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar Rachel und meinen Eltern Wem ich danken möchte: - Prof. Dr. Adreas Beyer, der sich ohne Umschweife dazu bereit erklärte, die Betreuung dieser Arbeit von seinem Vorgänger zu übernehmen - Prof. Dr. Hans Holländer, dem besagten Vorgänger, von dem der entscheidende Anstoß zur Themen- findung kam - Prof. Dr. Walter Grasskamp für sein Interesse und seine Hinweise - Prof. Dr. Theo Buck für ein offenes Ohr und die umgehende Bereitschaft als Berichter zu fungieren - Professurvertreter Dr. Alexander Marschies für die freundliche und unkomplizierte Art, mit der er die Aufgabe des Gutachters übernahm - meiner Tochter Rachel und ihrer Mutter Viola Kramer für die vielen Entbehrungen, die sie im Lauf der Jahre - wenn auch nicht immer ganz freiwillig - auf sich genommen haben, und für ihr oft mühevol- les Streben, mich im ‘richtigen’ Leben zu halten - meinen Eltern für ihre bereitwillige Unterstützung in jeder Hinsicht - Gabriela Ruhmann, ohne die und deren Verständnis, -
Seasonal Flooding Affects Habitat and Landscape Dynamics of a Gravel
Seasonal flooding affects habitat and landscape dynamics of a gravel-bed river floodplain Katelyn P. Driscoll1,2,5 and F. Richard Hauer1,3,4,6 1Systems Ecology Graduate Program, University of Montana, Missoula, Montana 59812 USA 2Rocky Mountain Research Station, Albuquerque, New Mexico 87102 USA 3Flathead Lake Biological Station, University of Montana, Polson, Montana 59806 USA 4Montana Institute on Ecosystems, University of Montana, Missoula, Montana 59812 USA Abstract: Floodplains are comprised of aquatic and terrestrial habitats that are reshaped frequently by hydrologic processes that operate at multiple spatial and temporal scales. It is well established that hydrologic and geomorphic dynamics are the primary drivers of habitat change in river floodplains over extended time periods. However, the effect of fluctuating discharge on floodplain habitat structure during seasonal flooding is less well understood. We collected ultra-high resolution digital multispectral imagery of a gravel-bed river floodplain in western Montana on 6 dates during a typical seasonal flood pulse and used it to quantify changes in habitat abundance and diversity as- sociated with annual flooding. We observed significant changes in areal abundance of many habitat types, such as riffles, runs, shallow shorelines, and overbank flow. However, the relative abundance of some habitats, such as back- waters, springbrooks, pools, and ponds, changed very little. We also examined habitat transition patterns through- out the flood pulse. Few habitat transitions occurred in the main channel, which was dominated by riffle and run habitat. In contrast, in the near-channel, scoured habitats of the floodplain were dominated by cobble bars at low flows but transitioned to isolated flood channels at moderate discharge. -
Natural Character, Riverscape & Visual Amenity Assessments
Natural Character, Riverscape & Visual Amenity Assessments Clutha/Mata-Au Water Quantity Plan Change – Stage 1 Prepared for Otago Regional Council 15 October 2018 Document Quality Assurance Bibliographic reference for citation: Boffa Miskell Limited 2018. Natural Character, Riverscape & Visual Amenity Assessments: Clutha/Mata-Au Water Quantity Plan Change- Stage 1. Report prepared by Boffa Miskell Limited for Otago Regional Council. Prepared by: Bron Faulkner Senior Principal/ Landscape Architect Boffa Miskell Limited Sue McManaway Landscape Architect Landwriters Reviewed by: Yvonne Pfluger Senior Principal / Landscape Planner Boffa Miskell Limited Status: Final Revision / version: B Issue date: 15 October 2018 Use and Reliance This report has been prepared by Boffa Miskell Limited on the specific instructions of our Client. It is solely for our Client’s use for the purpose for which it is intended in accordance with the agreed scope of work. Boffa Miskell does not accept any liability or responsibility in relation to the use of this report contrary to the above, or to any person other than the Client. Any use or reliance by a third party is at that party's own risk. Where information has been supplied by the Client or obtained from other external sources, it has been assumed that it is accurate, without independent verification, unless otherwise indicated. No liability or responsibility is accepted by Boffa Miskell Limited for any errors or omissions to the extent that they arise from inaccurate information provided by the Client or -
On the Quantitative.Invent01·Y of the Riverscape' ,I
WATER RESOURCES RESEARCH AUGUST 1968 _ On the Quantitative .Invent01·y of the Riverscape' LPNA B. LEOPOLD AND MAURA O'BRIEN MARCHAND U. S. Geological Survey W""hinglon, D. C.IIO!!42 ,I Ab8tract. In the vicinity of Berkeley. California, 24 minor "alleys were described in terms of factors chosen to represent aspects of the river landscape. A total of 28 factors were evalu ated at eaeh site. Some were directly measurable. others were estimated, but each obsen'atioll was assigned to ODe of five categories for tha.t factor. Each factor for each site was then expressed as a uniqueness ratio, which depended on the number of sites being in Ute same category. The uniqueness ratio is believed to represent one way the scarcity of a given river &CRpe can be ranked quantitatively without bias based 011 notions of good or bad, and without assigning monetary value. GENERAL STATEMENT differently. depending upon individual back ground, interest, desires, and thus one's objec On property we grow pigs or peanulll. On tives. we grow suburbs or sunJlowers. On land The present paper presents a tcntntiye nod pe we grow feelings or frustrations. The modest attempt to record the presence or ab 'ty of a landscape may be an asset to sence of chosen factors that contribute to iety, or it may be a 'scarlet letter' that should aesthetic worth. Observations were made in a . d us of wbat we have thrown away. All restricted range of exnmples in one locality, empts to preserve the environment must ne- Alameda and Contra Costa count.ics near San ily rewesent a compromise between the Francisco Bay. -
Coastal Recovery Unit Implementation Plan for Bull Trout (Salvelinus Confluentus)
U.S. Fish & Wildlife Service Coastal Recovery Unit Implementation Plan for Bull Trout (Salvelinus confluentus) Top left: Clackamas bull trout reintroduction, Clackamas River, Oregon. David Herasimtschuk, Freshwaters Illustrated; Top, right: Glines Canyon Dam removal, Elwha River, Washington. John Gussman, Doubleclick Productions; Center: South Fork Skagit River and Skagit Bay, Washington. City of Seattle; Bottom: Riverscape surveys, East Fork Quinault River, Washington. National Park Service, Olympic National Park Coastal Recovery Unit Implementation Plan for Bull Trout (Salvelinus confluentus) September 2015 Prepared by U.S. Fish and Wildlife Service Washington Fish and Wildlife Office Lacey, Washington and Oregon Fish and Wildlife Office Portland, Oregon Table of Contents Introduction ................................................................................................................................. A-1 Current Status of Bull Trout in the Coastal Recovery Unit ........................................................ A-6 Factors Affecting Bull Trout in the Coastal Recovery Unit ....................................................... A-8 Ongoing Coastal Recovery Unit Conservation Measures (Summary) ..................................... A-33 Research, Monitoring, and Evaluation ..................................................................................... A-38 Recovery Measures Narrative ................................................................................................... A-39 Implementation Schedule for -
WATS 5150 – Fluvial Geomorphology WEEK 5: Habitat Suitability Models
Instream Geomorphic Units I. Intro → Geomorphic Units & Process-Form Associations II. Classification & Field Identification III. Your Book (River Styles) I. Sculpted, Erosional Bedrock & Boulder GUs II. Mid-Channel, Depositional GUs III. Bank-Attached, Depositional GUs IV. Sculpted, Erosional Fine-Grained GUs V. Unit & Compound GUs VI. Forced GUs IV. Continuum of GUs V. Fluvial Taxonomy GUs (Topographically Defined) I. Tier 1 – Stage II. Tier 2 – Shape / Form III. Tier 3 – Attributed VI. GUT (Geomorphic Unit Toolkit) Reminder… • In fluvial, we found over 100 different terms to describe geomorphic units, of which 68 were actually distinctive… • This is based on same units as above, but with some clarifications • Done with your Book’s Authors • The legend should include a) margins, b) geomorphic units, and c) structural elements From: Wheaton et al. (2015) – Geomorphology; DOI: 10.1016/j.geomorph.2015.07.010 Taxonomy for Mapping Fluvial Landforms • Four Tiers • Stage Height • Shape / Form • Morphology • Roughness/Vegetation • Over 100 fluvial geomorphic units found in literature, of which 68 are distinctive (3b) • Clearer, topographically based definitions From: https://riverscapes.github.io/pyGUT/ Wheaton et al. (2015) DOI: 10.1016/j.geomorph.2015.07.010 Williams et al. (2020) DOI: 10.1016/j.scitotenv.2020.136817 Instream Geomorphic Units I. Intro → Geomorphic Units & Process-Form Associations II. Classification & Field Identification III. Your Book (River Styles) I. Sculpted, Erosional Bedrock & Boulder GUs II. Mid-Channel, Depositional GUs III. Bank-Attached, Depositional GUs IV. Sculpted, Erosional Fine-Grained GUs V. Unit & Compound GUs VI. Forced GUs IV. Continuum of GUs V. Fluvial Taxonomy GUs (Topographically Defined) I. -
Determining Flow Directions in River Channel Networks Using Planform Morphology and Topology
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2019-19 Manuscript under review for journal Earth Surf. Dynam. Discussion started: 23 May 2019 c Author(s) 2019. CC BY 4.0 License. Determining flow directions in river channel networks using planform morphology and topology Jon Schwenk1*, Anastasia Piliouras1, Joel C. Rowland1 5 1Los Alamos National Laboratory, Earth and Environmental Sciences Division Correspondence to: Jon Schwenk ([email protected]) Abstract. The abundance of global, remotely-sensed surface water observations has paved the way toward characterizing and modeling how water moves across the Earth’s surface through complex channel networks. In 10 particular, deltas and braided river channel networks may contain thousands of links that route water, sediment, and nutrients across landscapes. In order to model flows through channel networks and characterize network structure, the direction of flow for each link within the network must be known. In this work, we propose a rapid, automatic, and objective method to identify flow directions for all links of a channel network using only remotely-sensed imagery and knowledge of the network’s inlet and outlet locations. We designed a suite of direction-predicting 15 algorithms (DPAs), each of which exploits a particular morphologic characteristic of the channel network to provide a prediction of a link’s flow direction. DPAs were chained together to create “recipes”, or algorithms that set all the flow directions of a channel network. Separate recipes were built for deltas and braided rivers and applied to seven delta and two braided river channel networks. Across all nine channel networks, the recipes’ predicted flow directions agreed with expert judgement for 97% of all tested links, and most disagreements were attributed to 20 unusual channel network topologies that can easily be accounted for by pre-seeding critical links with known flow directions. -
INSTITUTIONALISING the PICTURESQUE: the Discourse of the New Zealand Institute of Landscape Architects
INSTITUTIONALISING THE PICTURESQUE: The discourse of the New Zealand Institute of Landscape Architects A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Landscape Architecture at Lincoln University by Jacky Bowring Lincoln University 1997 To Dorothy and Ella iii Abstract of a thesis submitted in fulfIlment of the requirements for the degree of Doctor of Philosophy in Landscape Architecture INSTITUTIONALISING THE PICTURESQUE: The discourse of the New Zealand Institute of Landscape Architects by Jacky Bowring Despite its origins in England two hundred years ago, the picturesque continues to influence landscape architectural practice in late twentieth-century New Zealand. The evidence for this is derived from a close reading of the published discourse of the New Zealand Institute of Landscape Architects, particularly the now defunct professional journal, The Landscape. Through conceptualising the picturesque as a language, a model is developed which provides a framework for recording the survey results. The way in which the picturesque persists as naturalised conventions in the discourse is expressed as four landscape myths. Through extending the metaphor of language, pidgins and creoles provide an analogy for the introduction and development of the picturesque in New Zealand. Some implications for theory, practice and education follow. Keywords picturesque, New Zealand, landscape architecture, myth, language, natural, discourse iv Preface The motivation for this thesis was the way in which the New Zealand landscape reflects the various influences that have shaped it. In the context of landscape architecture the specific focus is the designed landscape, and particularly the perpetuation of design conventions. Through my own education at Lincoln College (now Lincoln University) I became aware of how aspects of the teaching of landscape architecture were based on uncritically presented design 'truths'. -
Springbrook Nutrient Dynamics
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2012 Spatial Drivers of Ecosystem Structure and Function in a Floodplain Riverscape: Springbrook Nutrient Dynamics Samantha Kate Caldwell The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Caldwell, Samantha Kate, "Spatial Drivers of Ecosystem Structure and Function in a Floodplain Riverscape: Springbrook Nutrient Dynamics" (2012). Graduate Student Theses, Dissertations, & Professional Papers. 902. https://scholarworks.umt.edu/etd/902 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. SPATIAL DRIVERS OF ECOSYSTEM STRUCTURE AND FUNCTION IN A FLOODPLAIN RIVERSCAPE: SPRINGBROOK NUTRIENT DYNAMICS By SAMANTHA KATE CALDWELL Bachelor of Science, Environmental Biology & Ecology, Appalachian State University, Boone, NC, 2008 Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Systems Ecology The University of Montana Missoula, MT May 2012 Approved by: Sandy Ross, Associate Dean of The Graduate School Graduate School Dr. H. Maurice Valett, Chair Division of Biological Sciences Dr. Jack Stanford Division of Biological Sciences Dr. Bonnie Ellis Division of Biological Sciences Dr. Solomon Dobrowski Department of Forest Management Caldwell, Samantha K., M.S., Spring 2012 Systems Ecology Spatial drivers of ecosystem structure and function in a floodplain riverscape: springbrook nutrient dynamics Chairperson: Dr. -
Braided River Management: from Assessment of River Behaviour to Improved Sustainable Development
BR_C12.qxd 08/06/2006 16:29 Page 257 Braided river management: from assessment of river behaviour to improved sustainable development HERVÉ PIÉGAY*, GORDON GRANT†, FUTOSHI NAKAMURA‡ and NOEL TRUSTRUM§ *UMR 5600—CNRS, 18 rue Chevreul, 69362 Lyon, cedex 07, France (Email: [email protected]) †USDA Forest Service, Corvallis, USA ‡University of Hokkaido, Japan §Institute of Geological and Natural Sciences, Lower Hatt, New Zealand ABSTRACT Braided rivers change their geometry so rapidly, thereby modifying their boundaries and flood- plains, that key management questions are difficult to resolve. This paper discusses aspects of braided channel evolution, considers management issues and problems posed by this evolution, and develops these ideas using several contrasting case studies drawn from around the world. In some cases, management is designed to reduce braiding activity because of economic considerations, a desire to reduce hazards, and an absence of ecological constraints. In other parts of the world, the eco- logical benefits of braided rivers are prompting scientists and managers to develop strategies to preserve and, in some cases, to restore them. Management strategies that have been proposed for controlling braided rivers include protecting the developed floodplain by engineered structures, mining gravel from braided channels, regulat- ing sediment from contributing tributaries, and afforesting the catchment. Conversely, braiding and its attendant benefits can be promoted by removing channel vegetation, increasing coarse sediment supply, promoting bank erosion, mitigating ecological disruption, and improving planning and devel- opment. These different examples show that there is no unique solution to managing braided rivers, but that management depends on the stage of geomorphological evolution of the river, ecological dynamics and concerns, and human needs and safety. -
Open Source Riverscapes: Analyzing the Corridor of the Naryn River in Kyrgyzstan Based on Open Access Data
remote sensing Article Open Source Riverscapes: Analyzing the Corridor of the Naryn River in Kyrgyzstan Based on Open Access Data Florian Betz * , Magdalena Lauermann and Bernd Cyffka Catholic University Eichstaett-Ingolstadt, Applied Physical Geography, 85072 Eichstaett, Germany; [email protected] (M.L.); bernd.cyff[email protected] (B.C.) * Correspondence: fl[email protected]; Tel.: +49-8421-9323106 Received: 8 July 2020; Accepted: 5 August 2020; Published: 6 August 2020 Abstract: In fluvial geomorphology as well as in freshwater ecology, rivers are commonly seen as nested hierarchical systems functioning over a range of spatial and temporal scales. Thus, for a comprehensive assessment, information on various scales is required. Over the past decade, remote sensing-based approaches have become increasingly popular in river science to increase the spatial scale of analysis. However, data-scarce areas have been widely ignored so far, even if most remaining free flowing rivers are located in such areas. In this study, we suggest an approach for river corridor mapping based on open access data only, in order to foster large-scale analysis of river systems in data-scarce areas. We take the more than 600 km long Naryn River in Kyrgyzstan as an example, and demonstrate the potential of the SRTM-1 elevation model and Landsat OLI imagery in the automated mapping of various riverscape parameters, like the riparian zone extent, distribution of riparian vegetation, active channel width and confinement, as well as stream power. For each parameter, a rigor validation is performed to evaluate the performance of the applied datasets. The results demonstrate that our approach to riverscape mapping is capable of providing sufficiently accurate results for reach-averaged parameters, and is thus well-suited to large-scale river corridor assessment in data-scarce regions. -
Het Gastmaal Van Acheloüs Een Antwerps Fenomeen
HET GASTMAAL VAN ACHELOÜS EEN ANTWERPS FENOMEEN Aantal woorden: 32.822 Julien Delagrange Studentennummer: 01308910 Promotor: Prof. dr. Koenraad Jonckheere Masterproef voorgelegd voor het behalen van de graad master in de richting Kunstwetenschappen Academiejaar: 2017 - 2018 i De auteur en de promotor geven de toelating deze studie als geheel voor consultatie beschikbaar te stellen voor persoonlijk gebruik. Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting de bron uitdrukkelijk te vermelden bij het aanhalen van gegevens uit deze studie. Het auteursrecht betreffende de gegevens vermeld in deze studie berust bij de promotor. Het auteursrecht beperkt zich tot de wijze waarop de auteur de problematiek van het onderwerp heeft benaderd en neergeschreven. De auteur respecteert daarbij het oorspronkelijke auteursrecht van de individueel geciteerde studies en eventueel bijhorende documentatie, zoals tabellen en figuren. ii iii Dankwoord ‘Thesissen’ is niet alleen het meervoud van het woord ‘thesis’, het is ook een werkwoord. Na talloze uren ‘thesissen’ is het eindelijk zo ver en schrijf ik mijn dankwoord. Dit biedt mij de mogelijkheid om een aantal personen te bedanken zonder wie het niet mogelijk zou geweest zijn om dit proefschrift tot een goed einde te brengen. In eerste instantie uit ik mijn dankbaarheid aan mijn promotor, prof. dr. Koenraad Jonckheere. Naast de constructieve gespreksmomenten leerde ik dat een kritische en nieuwsgierige geest van primordiaal belang is voor de onderzoeker. Ik ben ook zeer dankbaar voor het onderwerp dat mijn promotor mij toereikte. Ondanks de vele zware loodjes kan ik nog steeds zeggen dat ik met heel veel plezier aan dit onderzoek heb gewerkt.