Overland Migration of Marine Birds in a Wind Energy Corridor

Total Page:16

File Type:pdf, Size:1020Kb

Overland Migration of Marine Birds in a Wind Energy Corridor doi: 10.1111/jav.01474 49 1–9 JOURNAL OF AVIAN BIOLOGY Letters A bridge between oceans: overland migration of marine birds in a wind energy corridor Juliet S. Lamb, David J. Newstead, Lianne M. Koczur, Bart M. Ballard, M. Clay Green and Patrick G. R. Jodice J. S. Lamb (http://orcid.org/0000-0003-0358-3240) ([email protected]) and P. G. R. Jodice, Dept of Forestry and Environmental Conservation, Clemson Univ., Clemson, SC, USA. JSL also at: South Carolina Cooperative Fish and Wildlife Research Unit, Clemson, SC, USA. PGRJ also at: U.S. Geological Survey South Carolina Cooperative Fish and Wildlife Research Unit, Clemson, SC, USA. – D. J. Newstead, Coastal Bend Bays and Estuaries Program, Corpus Christi, TX, USA. – L. M. Koczur, B. M. Ballard and DJN, Caesar Kleberg Wildlife Research Inst., Texas A&M Univ.-Kingsville, Kingsville, TX, USA. – M. C. Green, Dept of Biology, Texas State Univ., San Marcos, TX, USA. Journal of Avian Biology Located at the shortest overland route between the Gulf of Mexico and the Pacific 2018: e01474 Ocean, Mexico’s Tehuantepec Isthmus is a globally important migratory corridor doi: 10.1111/jav.01474 for many terrestrial bird species. The Pacific coast of the Isthmus also contains a significant wetland complex that supports large multi-species aggregations of non- Subject Editor: Paulo Catry breeding waterbirds during the boreal winter. In recent years, extensive wind energy Editor-in-Chief: Thomas Alerstam development has occurred in the plains bordering these wetlands, directly along Accepted 2 October 2017 the migratory flyway. Using recent studies of movement patterns of three marine- associated bird species – reddish egrets Egretta rufescens, brown pelicans Pelecanus occidentalis, and red knots Calidris canutus – from the northern Gulf of Mexico, we assess the use of the isthmus as a migratory corridor. Our data provide evidence that marine birds from the Gulf region regularly overwinter along the Pacific coast of Mexico and use the isthmus as a migratory corridor, creating the potential for interac- tion with terrestrial wind farms during non-breeding. This study is the first to describe migration by marine-associated bird species between the Gulf of Mexico and Pacific coast. These data contribute new information toward ongoing efforts to understand the complex migration patterns of mobile marine species, with the goal of inform- ing integrated conservation efforts for species whose year-round habitat needs cross ecoregional and geopolitical boundaries. Introduction Although avian migration is a readily observable phenomenon, its outward simplicity masks a complex reality. Species, populations, and individuals vary in their migratory behavior based on a complex suite of internal and external factors that vary across space and time (Alerstam et al. 2003, Vardanis et al. 2011). At the same time, understanding the broader principles governing migration patterns and habitat connectivity is a –––––––––––––––––––––––––––––––––––––––– © 2017 The Authors. Journal of Avian Biology © 2017 Nordic Society Oikos www.avianbiology.org 1 critical component of conservation planning (Webster et al. create favorable migratory paths have also made the region 2002). As human activity alters natural environments with a focus of infrastructure development for wind energy. unprecedented rapidity, species’ migratory patterns may come Since 2010, the southern portion of the Isthmus has expe- under threat due to changes in resource availability relative to rienced intense wind energy development, and in 2013 the migration timing (Saino et al. 2011), loss of crucial migra- Tehuantepec Isthmus was designated an IBA in Danger tory stopover habitat (Weber et al. 1999), or physical barriers due to development-related habitat deterioration (BirdLife along migration routes (Masden et al. 2009). Understanding International 2015). why, when, and how birds make their migratory decisions is In addition to its importance as a migration corridor, the not only a matter of biological interest, but a conservation Tehuantepec region is also a key wintering area for water- necessity (Martin et al. 2007). birds of unknown breeding origin. The Lagunas del Istmo, One of the most significant international bird migration a vast, remote wetland complex on the Pacific coast of the corridors in the Americas is Mexico’s Tehuantepec Isthmus isthmus, supports large numbers of shorebirds, wading (Cabrera-Cruz et al. 2017). Classified as an Important Bird birds, and nearshore seabirds representing a variety of spe- Area (IBA) based on its concentration of three of the four cies (Aid et al. 1997, Rioja-Paradela et al. 2014). Since many major North American migratory flyways (Devenish et al. of the nearest breeding aggregations of coastal birds in the 2009), the isthmus links North American breeding habitat region are located along the coast of the Gulf of Mexico, to Central and South American wintering grounds for mil- observers have suggested that marine-associated bird spe- lions of migratory birds each year (Winker 1995, Bildstein cies may cross the Tehuantepec Isthmus to winter in the 2006, Cabrera-Cruz et al. 2013). The isthmus, a saddle Lagunas (Binford 1989). However, migration of marine between the Sierra Madre de Oaxaca and Sierra Madre de birds between the Gulf of Mexico and the Pacific coast has Chiapas mountain ranges, concentrates crosswinds from yet to be directly quantified. It is important to understand the north and creates a tailing wind for southward migrants movement patterns and habitat use in the region in order during the boreal autumn (Romero-Centeno et al. 2003; to estimate the extent to which individuals may be exposed Fig. 1). The forceful and predictable wind conditions that to collision risk at new and proposed wind turbine sites Figure 1. Capture locations and dates of individual tracking studies in the northern Gulf of Mexico (2010–2014), relative to the Isthmus of Tehuantepec (inset). Wind farm locations are indicated by brown stars in the inset map. 2 (Furness et al. 2013), which could affect mortality rates and, of Veracruz, Mexico, and the southern portion, including thus, long-term population parameters in long-lived marine the Lagunas del Istmo, in the states of Oaxaca and Chiapas, birds (Croxall et al. 2012). Mexico. Between 2010 and 2014, wind infrastructure in the Mark–recapture data from individual leg bands (Calvo region has increased from 225 turbines in five complexes to and Furness 1992) provide one means of illuminating 1451 turbines in sixteen complexes (Wind Power 2014). connectivity between populations and habitats; however, Wind energy installations in the area are primarily concen- these data alone offer limited information about when or trated in a 3000 km2 area around the town of Juchitán de how individuals travel between locations (Gillespie 2001), Zaragoza in Oaxaca (Fig. 1). The area currently accounts for and the difficulty of re-encountering marked individuals approximately 84% of Mexico’s total wind energy production in remote, inaccessible areas may result in underestima- (Wind Power 2014). The Lagunas del Istmo cover an area tion of key habitat areas and risk factors for marine birds of ca 785 km2 on the Pacific coast of the Isthmus over seven (Montevecchi et al. 2012). Recently, miniaturized tracking principal lagoons. technologies have allowed collection of year-round individual movement data for many species whose nonbreeding move- Mark–recapture ment patterns were previously unknown (Wakefield et al. 2009). Individual tracking of long-distance migrants has For the three focal species (Table 1), we accessed data on helped to reveal complex migratory patterns that cross geo- individual leg band (ring) re-encounters from the U.S. political and ecoregional boundaries (Webster et al. 2002, Bird Banding Lab (BBL) database, which contains records Jodice and Suryan 2010), to elucidate sources and patterns of birds marked from 1973 to 2017. We determined the of adult mortality (Montevecchi et al. 2012, Klaassen et al. number of individuals banded in northwestern Gulf Coast 2014), and to identify previously unknown migration routes states (Alabama, Mississippi, Louisiana, and Texas) and later (Gillespie 2001). Although sample sizes from telemetry stud- re-encountered along the Pacific coast of the Tehuantepec ies are often small, they can be combined with mark–recapture isthmus, as a percentage of all individuals from the same data to yield important insights into population connectivity region re-encountered. Each individual was counted only and conservation of wide-ranging marine bird species. once; thus, we excluded multiple re-encounters of the same To determine the extent to which marine birds migrate individual. For red knots, small teams of 3–5 biologists also between the Gulf of Mexico and the Pacific coast, and conducted opportunistic resighting of uniquely-numbered whether movement pathways intersected with wind energy leg flags during annual visits to the Lagunas del Istmo in installations, we compared band encounter records and indi- January and February of 2012 through 2016. Resighting vidual tracking data collected from marine-associated water- efforts were focused primarily on the northwestern edge bird species in the northwestern Gulf of Mexico (Garrison of Laguna Superior (Fig. 1), near the town of Santa Maria and Martin 1973). We focused our analysis on the only three Xadani. species in the region for which both mark–recapture records and year-round tracking data were available,
Recommended publications
  • Bear River Refuge
    Bear River Refuge MIGRATION MATTERS Summary Student participants increase their understanding of migration and migratory birds by playing Migration Matters. This game demonstrates the main needs Grade Level: (habitat, food/water, etc.) for migratory birds, and several of the pitfalls and 1 - 6 dangers of NOT having any of those needs readily available along the migratory flyway. Setting: Outside – pref. on grass, or large indoor Objectives - “Students will…” space with room to run. ● understand the concept of Migration / Migratory birds and be able to name at least two migratory species Time Involved: 20 – 30 min. ● indentify three reasons/barriers that explain why “Migration activity, 5 – 10 min. setup isn’t easy” (example: loss of food, habitat) Key Vocabulary: Bird ● describe how invasive species impact migratory birds Migration, Flyways, Wetland, Habitat, Invasive species Materials ● colored pipe-cleaners in rings to represent “food” Utah Grade Connections 5-6 laminated representations of wetland habitats 35 Bird Name tags (1 bird per student; 5 spp / 7 ea) 2 long ropes to delineate start/end of migration Science Core Background Social Studies Providing food, water, and habitat for migratory birds is a major portion of the US FWS & Bear River MBR’s mission. Migratory birds are historically the reason the refuge exists, and teaching the students about the many species of migratory birds that either nest or stop-off at the refuge is an important goal. The refuge hosts over 200 migratory species including large numbers of Wilson’s phalaropes, Tundra swans and most waterfowl, and also has upwards of 70 species nesting on refuge land such as White-faced ibis, American Avocet and Grasshopper sparrows.
    [Show full text]
  • The Cuckoo Sheds New Light on the Scientific Mystery of Bird Migration 20 November 2015
    The cuckoo sheds new light on the scientific mystery of bird migration 20 November 2015 Evolution and Climate at the University of Copenhagen led the study with the use of miniature satellite tracking technology. In an experiment, 11 adult cuckoos were relocated from Denmark to Spain just before their winter migration to Africa was about to begin. When the birds were released more than 1,000 km away from their well-known migration route, they navigated towards the different stopover areas used along their normal route. "The release site was completely unknown to the cuckoos, yet they had no trouble finding their way back to their normal migratory route. Interestingly though, they aimed for different targets on the route, which we do not consider random. This individual and flexible choice in navigation indicates an ability to assess advantages and disadvantages of different routes, probably based on their health, age, experience or even personality traits. They evaluate their own condition and adjust their reaction to it, displaying a complicated behavior which we were able to document for the first time in migratory birds", says postdoc Mikkel Willemoes from the Center for Macroecology, Evolution and Climate at the University of Copenhagen. Previously, in 2014, the Center also led a study mapping the complete cuckoo migration route from Satellite technology has made it possible for the first Denmark to Africa. Here they discovered that time to track the complete migration of a relocated during autumn the birds make stopovers in different species and reveal individual responses. Credit: Mikkel areas across Europe and Africa.
    [Show full text]
  • The Migration Strategy, Diet & Foraging Ecology of a Small
    The Migration Strategy, Diet & Foraging Ecology of a Small Seabird in a Changing Environment Renata Jorge Medeiros Mirra September 2010 Thesis submitted for the degree of Doctor of Philosophy, Cardiff School of Biosciences, Cardiff University UMI Number: U516649 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U516649 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Declarations & Statements DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidature for any degree. Signed j K>X).Vr>^. (candidate) Date: 30/09/2010 STATEMENT 1 This thasjs is being submitted in partial fulfillment of the requirements for the degree o f ..................... (insertMCh, MD, MPhil, PhD etc, as appropriate) Signed . .Ate .^(candidate) Date: 30/09/2010 STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledgedjjy explicit references. Signe .. (candidate) Date: 30/09/2010 STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.
    [Show full text]
  • Migratory Bird Day Educator's Supplement
    Dear Educator, elcome to the International Migratory Bird Day Educator’s Supplement. The Supplement provides activities and direction to Wadditional resources needed to teach students about migratory birds. The activities are appropriate for grade levels three through eight and can be used in classrooms as well as in informal educational settings. Birds offer virtually endless opportunities to teach and learn. For many, these singing, colorful, winged friends are the only form of wildlife that students may experience on a regular basis. Wild birds seen in backyards, suburban neighborhoods, and urban settings can connect children to the natural world in ways that captive animals cannot. You may choose to teach one activity, a selection of activities, or all five activities. If you follow the complete sequence of activities, the Supplement is structured to lead students through an Adopt-a-Bird Project. Detailed instruc- tions for the Adopt-a-Bird Project are provided (Getting Started, p. 9). Your focus on migratory birds may be limited to a single day, to each day of IMBD week, or to a longer period of time. Regardless of the time period you choose, we encourage you to consider organizing or participating in a festival for your school, organization, or community during the week of International Migratory Bird Day, the second Saturday of May. The IMBD Educator’s Supplement is a spring board into the wondrous, mysterious, and miraculous world of birds and their migration to other lands. There are many other high quality migratory bird curriculum products currently available to support materials contained in the Supplement.
    [Show full text]
  • Bird Migration in South Florida
    BIRD MIGRATION IN SOUTH FLORIDA Many gardeners appreciate the natural world beyond plants and create landscapes with the intention of attracting and sustaining wildlife, particularly birds. Birds provide added interest, and often color, to the garden. In Miami-Dade county, there are familiar birds who reside here year round including the ubiquitous Northern Cardinal, Blue Jay and Northern Mockingbird, while others visit only during periods of migration. The fall migration of birds heading south to warmer climates for the winter usually begins in September and lasts well into November. The relatively warm weather of south Florida means that some bird species returning to their spring breeding grounds to the north can begin to be seen here as early as January, although February is generally regarded as the start of the spring migratory season. For some birds south Florida is a way station on their flight south to take advantage of warmer winter weather in the southern hemisphere. Others, such as the Blue-gray Gnatcatcher and the Palm WarBler, migrate to south Florida and make our area their winter home. The largest grouping of migratory birds seen here are the warBlers. While many have the word “warbler” in their names, others do not. They do share the distinction of being rather small birds – from the 4 ½ inch Northern Parula to the 6 inch Ovenbird – with most warblers measuring around 5 inches in length. Many warbler names reflect the color of their feathers, e.g., the Black-throated Blue Warbler and the Black-and-white Warbler. The Ovenbird gets its name from the dome shape of its nest built on the ground.
    [Show full text]
  • Inferring the Wintering Distribution of The
    1 1 INFERRING THE WINTERING DISTRIBUTION OF THE MEDITERRANEAN 2 POPULATIONS OF EUROPEAN STORM PETRELS (Hydrobates pelagicus ssp 3 melitensis) FROM STABLE ISOTOPE ANALYSIS AND OBSERVATIONAL FIELD 4 DATA 5 INFIRIENDO LA DISTRIBUCIÓN INVERNAL DE LAS POBLACIONES 6 MEDITERRÁNEAS DE PAÍÑO EUROPEO (Hydrobates pelagicus ssp melitensis) A 7 PARTIR DE ANÁLISIS DE ISÓTOPOS ESTABLES Y DATOS OBSERVACIONALES 8 DE CAMPO. 9 Carlos Martínez1-5-6, Jose L. Roscales2, Ana Sanz-Aguilar3-4 and Jacob González-Solís5 10 11 1. Departamento de Biologia, Universidade Federal do Maranhão, A. dos Portugueses S/N, 12 Campus do Bacanga, 65085-580, São Luís, Brazil, E-mail: [email protected] 13 2. Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, 14 Juan de la Cierva 3, 28006, Madrid, Spain, E-mail: [email protected] 15 3. Animal Demography and Ecology Group, Instituto Mediterráneo de Estudios 16 Avanzados, IMEDEA (CSIC-UIB), Miquel Marquès 21, E-07190 Esporles, Islas 17 Baleares, Spain, E-mail: [email protected] 18 4. Área de Ecología, Universidad Miguel Hernández, Avenida de la Universidad s/n, 19 Edificio Torreblanca, 03202 Elche, Alicante, Spain 20 5. Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, 21 Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. 22 Diagonal 643, 08028, Barcelona, Spain, E-mail: [email protected] 23 6. Corresponding author. 24 25 Author contributions: All authors formulated the questions; J. L. R., A. S.-A. and J. G.- 26 S. collected data; all authors supervised research; J. L. R. and J. G.-S.
    [Show full text]
  • Bird Migration in Africa 11 12 Jane K
    1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 SUPERPILOTS 8 9 9 10 10 11 Bird migration in Africa 11 12 JANE K. TURPIE 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 Each year, thousands of 28 29 29 30 millions of African birds undertake 30 31 31 32 seasonal movements, ranging 32 33 33 34 from a few hundred kilometres to 34 35 35 36 epic trans-continental journeys of 36 37 37 38 more than 10 000 kilometres. 38 39 39 40 Of the approximately 1 800 bird 40 41 41 42 species found in sub-Saharan 42 43 43 44 Africa, nearly 200 species migrate 44 45 seasonally between the Palearctic 45 46 46 47 (Europe and Asia) and Afrotropical 47 48 48 49 (sub-Saharan Africa) regions. 49 50 50 51 A further 50 or so migrate between 51 52 52 53 Africa and the New World, 53 54 54 55 Antarctica and oceanic islands. 55 56 56 57 In addition to these, more 57 58 58 59 This intra-African migrant, the Diederik Cuckoo, will have than 580 species are known to 59 60 tackled the journey from southern Africa to its tropical 60 61 non-breeding grounds and back without ever having had undertake seasonal migrations 61 contact with its parents. 62 NIGEL J DENNIS/ABPL 62 within the continent. 63 1 here is no common thread linking habitats which undergo marked seasonal 1 2 the migratory bird species of changes in environmental conditions HOW DO MIGRANT BIRDS 2 FIND THEIR WAY? 3 T Africa.
    [Show full text]
  • Migration in Seabirds: Seasonal Structure in Space and Environment Across Species, Populations and Individuals
    Faculty of Bioscience, Fisheries and Economics Department of Arctic and Marine Biology Migration in seabirds: seasonal structure in space and environment across species, populations and individuals ——— Benjamin Merkel A dissertation for the degree of Philosophiae Doctor – April 2019 Cover image represents the guillemot spp. annual cycle as seasonal geographic similarity networks of the two study species during autumn (top right), early-winter, late-winter and spring. All photos © Hálfdán Helgi Helgason Migration in seabirds: seasonal structure in space and environment across species, populations and individuals Benjamin Merkel A dissertation for the degree of Philosophiae Doctor Tromsø, Norway, April 2019 Norwegian Polar Institute UiT The Arctic University of Norway Faculty of Bioscience, Fisheries and Economics SEATRACK project Department of Arctic and Marine Biology Supervisors Prof. Nigel G. Yoccoz Faculty of Bioscience, Fisheries and Economics Department of Arctic and Marine Biology UiT The Arctic University of Norway N-9037, Tromsø, Norway Dr. Sébastien Descamps Norwegian Polar Institute Fram Centre N-9296, Tromsø, Norway Hallvard Strøm Norwegian Polar Institute Fram Centre N-9296, Tromsø, Norway Acknowledgement I am incredibly grateful to a large number of people without whom this work would not have been possible. First, I would like to thank Hallvard, Sébastien and Nigel. Thanks for giving me the opportunity to be your PhD student, for your confidence in me, for your never ending support and guidance, for enduring my frustration as well as my enthusiasm (not sure which was harder to do), for helping me translate my thoughts into a language others might also understand (it is complex) and for giving me the freedom to shape my own work while also reining me in when I lost focus.
    [Show full text]
  • Surveillance of Migratory Birds in Uganda
    Surveillance of migratory birds in Uganda Progress Report Requisition Officer: Funded by USAID Strategic Objective 7 (S07) Contractor: Achilles Byaruhanga, Executive Officer Company: NatureUganda Duration of Project: January to August 2006 1. Introduction.....................................................................................................................................3 2. Objectives of the project................................................................................................................3 3. Activity progress.............................................................................................................................3 Deliverable #1 . Description of migration patterns .....................................................................3 a) Bird migration........................................................................................................................3 b) Bird Migrations in Africa.....................................................................................................7 c) Bird migrations in Uganda ...................................................................................................7 Deliverable #2. Progress on bird surveys and AI surveillance, January 2006..........................9 a) Preparations............................................................................................................................9 b) Sample collection materials for avian influenza diagnosis..............................................9 c) Survey
    [Show full text]
  • Local and Regional Movements of the Australian White Ibis Threskiornis Molucca in Eastern Australia
    Corella, 2011, 35(4): 89-94 Local and regional movements of the Australian White Ibis Threskiornis molucca in eastern Australia Andrew C. M. Smith and Ursula Munro1 Centre for Environmental Sustainability (CEnS), School of the Environment, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia 1Corresponding Author: E-mail: [email protected] Received: 19 February 2010 Little is known about the movements of Australian birds. Information is particularly scarce on large, aquatic birds, which are usually diffi cult to access and handle. Their movements are also often complex, and therefore diffi cult to identify. Here we present data on the local and long distance movements of the Australian White Ibis Threskiornis molucca, a highly mobile bird, which as many other waterbirds, continues to decline in its traditional ranges in inland Australia. At the same time it has invaded coastal urban environments, where its high abundances cause many problems and require management. Our analysis of past and present banding studies reveals that Australian White Ibis travel throughout the urban environment and visit landfi lls, where they forage in large numbers. They also conduct long distance movements, which lead birds from breeding sites in south-eastern Australia along the eastern coast to regions further north (Queensland and Papua New Guinea). Young birds return to their hatching site, when sexually mature. Their preferences for landfi lls, high mobility, complex movements and current decline in inland Australia need to be considered, when developing and implementing management strategies for Australian White Ibis and ecologically similar birds. INTRODUCTION (Murray and Shaw 2006; Corben and Munro 2008) into urban environments understanding their movements has gained In contrast to the extensive knowledge on the movements of importance.
    [Show full text]
  • Migration of Birds Circular 16
    U.S. Fish and Wildlife Service Migration of Birds Circular 16 Migration of Birds Circular 16 by Frederick C. Lincoln, 1935 revised by Steven R. Peterson, 1979 revised by John L. Zimmerman, 1998 Division of Biology, Kansas State University, Manhattan, KS Associate editor Peter A. Anatasi Illustrated by Bob Hines U.S. FISH & WILDLIFE SERVICE D E R P O A I R R E T T M N EN I T OF THE U.S. Department of the Interior U.S. Fish and Wildlife Service TABLE OF CONTENTS Page PREFACE..............................................................................................................1 INTRODUCTION ................................................................................................2 EARLY IDEAS ABOUT MIGRATION............................................................4 TECHNIQUES FOR STUDYING MIGRATION..........................................6 Direct Observation ....................................................................................6 Aural ............................................................................................................7 Preserved Specimens ................................................................................7 Marking ......................................................................................................7 Radio Tracking ..........................................................................................8 Radar Observation ....................................................................................9 EVOLUTION OF MIGRATION......................................................................10
    [Show full text]
  • A Bird's EYE View on Flyways
    A BIRD’S EYE VIEW ON FLywayS A brief tour by the Convention on the Conservation of Migratory Species of Wild Animals Second edition IMPRINT Published by the United Nations Environment Programme (UNEP) and the Secretariat of the Convention on the Conservation of Migratory Species of Wild Animals (CMS) A BIRD’S EYE VIEW ON FLywayS A brief tour by the Convention on the Conservation of Migratory Species of Wild Animals UNEP / CMS Secretariat, Bonn, Germany. 64 pages. Produced by UNEP/CMS Text based on a report by Joost Brouwer in collaboration with Gerard Boere Coordinator Hanah Al-Samaraie, E-mail: [email protected] Editing & Proof Reading Hanah Al-Samaraie, Robert Vagg, Darinka Blies, Tracy Johnston Publishing Manager Francisco Rilla, CMS Secretariat, E-mail: [email protected] Design Karina Waedt, E-mail: [email protected] Second edition © 2012 United Nations Environment Programme (UNEP)/Convention on Migratory Species (CMS). This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permis- sion in writing from the United Nations Environment Programme. DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP or contributory organizations.The designations employed and the presentations do not imply the expression of any opinion whatsoever on the part of UNEP or contri- butory organizations concerning the legal status of any country, territory, city or area in its authority, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]