Migration of Birds Circular 16

Total Page:16

File Type:pdf, Size:1020Kb

Migration of Birds Circular 16 U.S. Fish and Wildlife Service Migration of Birds Circular 16 Migration of Birds Circular 16 by Frederick C. Lincoln, 1935 revised by Steven R. Peterson, 1979 revised by John L. Zimmerman, 1998 Division of Biology, Kansas State University, Manhattan, KS Associate editor Peter A. Anatasi Illustrated by Bob Hines U.S. FISH & WILDLIFE SERVICE D E R P O A I R R E T T M N EN I T OF THE U.S. Department of the Interior U.S. Fish and Wildlife Service TABLE OF CONTENTS Page PREFACE..............................................................................................................1 INTRODUCTION ................................................................................................2 EARLY IDEAS ABOUT MIGRATION............................................................4 TECHNIQUES FOR STUDYING MIGRATION..........................................6 Direct Observation ....................................................................................6 Aural ............................................................................................................7 Preserved Specimens ................................................................................7 Marking ......................................................................................................7 Radio Tracking ..........................................................................................8 Radar Observation ....................................................................................9 EVOLUTION OF MIGRATION......................................................................10 STIMULUS FOR MIGRATION......................................................................13 WHEN BIRDS MIGRATE ..............................................................................16 Time of Year..............................................................................................16 Time of Day ..............................................................................................19 FLIGHT SPEED AND RATE OF MIGRATION........................................24 MIGRATORY FLIGHT ALTITUDE..............................................................30 SEGREGATION DURING MIGRATION ....................................................32 As Individuals or Groups of Species......................................................32 By Age ......................................................................................................34 By Sex........................................................................................................35 GEOGRAPHIC PATTERNS OF MIGRATION ..........................................37 Populations Within Species ....................................................................37 Short Distance Migration ......................................................................38 Long Distance Migration........................................................................40 iii ORIENTATION AND NAVIGATION ..........................................................42 Vector Navigation ....................................................................................42 Orientation Cues ......................................................................................43 INFLUENCE OF WEATHER........................................................................46 INFLUENCE OF TOPOGRAPHY ................................................................49 PERILS OF MIGRATION ..............................................................................51 Storms........................................................................................................51 Aerial Obstructions..................................................................................51 Exhaustion ................................................................................................52 ROUTES OF MIGRATION..............................................................................53 General Considerations ..........................................................................53 Flyways and Corridors............................................................................53 Narrow Routes ........................................................................................54 Converging Routes ..................................................................................57 Principal Routes From North America ................................................61 Atlantic Oceanic Route ............................................................................61 Atlantic Coast Route and Tributaries ..................................................61 Mackenzie Valley-Great Lakes-Mississippi Valley Routes and Tributaries ................................................................................65 Great Plains-Rocky Mountain Routes ..................................................67 Pacific Coast Route ..................................................................................68 Pacific Oceanic Route ..............................................................................72 Arctic Routes ............................................................................................72 PATTERNS OF MIGRATION ........................................................................73 Loops..........................................................................................................73 Dog-legs ....................................................................................................78 Pelagic Wandering....................................................................................81 Leap-frogging ..........................................................................................83 Vertical Migration ....................................................................................83 Pre-migratory Movements ....................................................................84 Vagrant Migration....................................................................................84 FUTURE DIRECTIONS ................................................................................87 BIBLIOGRAPHY ..............................................................................................90 LIST OF BIRD SPECIES MENTIONED IN TEXT ..............................109 iv PREFACE TO THE 1998 EDITION Frederick C. Lincoln’s “Migration of Birds” was published in 1935. Lincoln’s writing style effectively communicated the wonders of bird migration to a wide audience, both young and old, experienced observers of birds as well as the simply curious. Indeed the demand for this little book was so great that it was revised in 1950 and soon was out of print again. In 1979, Steven R. Peterson developed a second revision, adding additional examples and presenting an understanding of bird migration that reflected current research. The style, figures, and most of the content of the origi- nal publication were retained, but new illustrations were added where appropriate. In this present revision large sections of the text have remained unchanged from the previous revision or only slightly modified to make the discussion compatible with current understanding. The geographic emphasis of Lincoln and the wealth of pertinent examples added by Peterson have been maintained. I have made substantial changes, however, in sections dealing with the evolution of migration, stimulus for migration, orientation and navigation, and the influence of weather. I have also changed the emphasis of the final section to reflect current concerns. While some investigators are mentioned by name, specific studies are not cited in the text. An exten- sive bibliography has been included for those interested in pursuing the subject further. I have relied heavily upon the bibliographies on migration research prepared by Stanley H. Anderson and Loren W. Ayers, University of Wyoming Fish and Wildlife Coop Unit and Thomas S. Litwin, as well as the bibliography in Peterson’s revision. Additional citations have been suggested by Daniel R. Petit and Stephanie L. Jones, U.S. Fish and Wildlife Service. This edition was due to the support of the Fish and Wildlife Service Regional Nongame Migratory Bird Coordinators: Tara Zimmerman, Kent Wohl, Steve Lewis, Daniel Petit, Diane Pence, Stephanie Jones, Bill Howe, and Richard Coon. I am indebted to all these investiga- tors and most grateful for their assistance. John Zimmerman, 1998 1 INTRODUCTION The changing picture of bird populations throughout the year intrigues those who are observant and who wish to know the source and destination of these birds. While many species of fish, mammals, and even insects undertake amazing migratory journeys, birds as a group are the most mobile creatures on Earth. Even humans with their many vehicles of loco- motion do not equal some birds in mobility. No human population moves each year as far as from the Arctic to the Antarctic with subsequent return, yet Arctic Terns do. Birds are adapted in their body structure and physiology to life in the air. Their feathered wings and tails, bones, lungs and air sacs, and their meta- bolic abilities all contribute to this amazing faculty. These adaptations make it possible for birds to seek out environments most favorable to their needs at different times of the year. This results in the marvelous phenom- enon we know as migration––the regular, recurrent, seasonal movement of populations from one geographic location to another and back again. Throughout human experience, migratory birds have been
Recommended publications
  • How Does Season Affect Passage Performance and Fatigue of Potamodromous Cyprinids? an Experimental Approach in a Vertical Slot Fishway
    water Article How Does Season Affect Passage Performance and Fatigue of Potamodromous Cyprinids? An Experimental Approach in a Vertical Slot Fishway Filipe Romão 1,* ID , José M. Santos 2 ID , Christos Katopodis 3, António N. Pinheiro 1 and Paulo Branco 2 1 CEris-Civil Engineering for Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; [email protected] 2 CEF-Forest Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; [email protected] (J.M.S.); [email protected] (P.B.) 3 Katopodis Ecohydraulics Ltd., 122 Valence Avenue, Winnipeg, MB R3T 3W7, Canada; [email protected] * Correspondence: fi[email protected]; Tel.: +351-91-861-2529 Received: 11 February 2018; Accepted: 27 March 2018; Published: 28 March 2018 Abstract: Most fishway studies are conducted during the reproductive period, yet uncertainty remains on whether results may be biased if the same studies were performed outside of the migration season. The present study assessed fish passage performance of a potamodromous cyprinid, the Iberian barbel (Luciobarbus bocagei), in an experimental full-scale vertical slot fishway during spring (reproductive season) and early-autumn (non-reproductive season). Results revealed that no significant differences were detected on passage performance metrics, except for entry efficiency. However, differences between seasons were noted in the plasma lactate concentration (higher in early-autumn), used as a proxy for muscular fatigue after the fishway navigation. This suggests that, for potamodromous cyprinids, the evaluation of passage performance in fishways does not need to be restricted to the reproductive season and can be extended to early-autumn, when movements associated with shifts in home range may occur.
    [Show full text]
  • 6.5 Coastal Cactus Wren (Campylorhynchus Brunneicapillus Sandiegensis) – Category SO Management Units with Known Occurrences
    Volume 2D: Goals and Objectives for Species Focus Management Species 6.0 Birds 6.5 Coastal Cactus Wren (Campylorhynchus brunneicapillus sandiegensis) – Category SO Management Units with Known Occurrences Coastal cactus wrens are restricted to cactus-dominated coastal sage scrub habitats in Southern California, from Ventura south to San Diego County and inland to western San Bernardino and western Riverside Counties. These wrens differ ecologically from more common desert wrens in the southwestern United States and northern Mexico. Coastal cactus wrens began significantly declining in San Diego County in the early 1980s due to habitat loss to agriculture and urban development (Rea and Weaver 1990). By 1990 there was a 33% population decline from the previous decade as a result of the loss of coastal birds and smaller populations, and a decline in abundance of remaining populations. Coastal cactus wren surveys and cactus mapping were implemented on Conserved Lands in the MSPA in 2009 and 2011 (USFWS 2011). Cactus wrens were documented on Conserved Lands in MUs 1, 2, 3, 4, 5, and 6 (see Occurrence Table and online map: http://arcg.is/2kU1bka). A range-wide genetics and banding study was conducted across occupied cactus scrub habitats in 2011–2013 by USGS to determine coastal cactus wren population genetic structure, connectivity, and genetic diversity in Southern California (Barr et al. 2015). The study found 3 main genetic clusters in San Diego County: Otay; San Diego/El Cajon (Sweetwater/Encanto/Lake Jennings); and San Pasqual. In the San Diego/El Cajon genetic cluster, wrens in the Sweetwater River watershed are connected to occurrences in Fletcher Hills and Lake Jennings to the northeast in MU4 and to occurrences in Encanto Canyon and other urban canyons to the west in MU2.
    [Show full text]
  • Salt Exploitation and Landscape Structure in a Breeding Population of the Threatened Bluethroat (Luscinia Svecica) in Salt-Pans in Western France
    Biological Conservation 107 (2002) 283–289 www.elsevier.com/locate/biocon Salt exploitation and landscape structure in a breeding population of the threatened bluethroat (Luscinia svecica) in salt-pans in western France T. Geslina,*, J.-C. Lefeuvrea, Y. Le Pajoleca, S. Questiaub, M.C. Eyberta aUMR 6553 ECOBIO, Universite´ de Rennes I, Avenue du Ge´ne´ral Leclerc, 35042 Rennes cedex, France bLaboratoire d’Ecologie animale, Universite´ d’Angers, 2 Boulevard Lavoisier, Campus Belle-Beille, 49045 Angers cedex, France Received 12 June 2001; received in revised form 10 January 2002; accepted 10 January 2002 Abstract The Gue´ rande salt-pans represent the main French breeding area of bluethroat, a migrating passerine. Salt exploitation has cre- ated a geometrical artificial landscape in which we investigated factors influencing spatial distribution and breeding success of this species using a Geographical Information System. We compared data for four sites in these salt-pans, for three zones in the most densely populated site, and for 2500 m2 grid cells defined for this same site. This study showed the influence of (1) the level of salt exploitation activity, (2) the density of bank intersections, (3) the extent of area covered by Suaeda vera bushes and (4) the structural heterogeneity. The continued management of these salt-pans enhanced bird breeding success. Thus, traditional salt exploitation contributes directly to the conservation of bluethroat, considered as an endangered species in Europe. # 2002 Elsevier Science Ltd. All rights reserved. Keywords: Breeding bluethroat; Human activity; Salt-pans area; Landscape heterogeneity; Breeding success 1. Introduction throats. Then, bluethroats decreased and finally dis- appeared with decline of salt extraction and use of The bluethroat (Luscinia svecica) is a migrating pas- banks for crops and pasture.
    [Show full text]
  • Partial Altitudinal Migration of the Near Threatened Satyr Tragopan Tragopan Satyra in the Bhutan Himalayas: Implications for Conservation in Mountainous Environments
    Partial altitudinal migration of the Near Threatened satyr tragopan Tragopan satyra in the Bhutan Himalayas: implications for conservation in mountainous environments N AWANG N ORBU,UGYEN,MARTIN C. WIKELSKI and D AVID S. WILCOVE Abstract Relative to long-distance migrants, altitudinal mi- To view supplementary material for this article, please visit grants have been understudied, perhaps because of a percep- http://dx.doi.org/./S tion that their migrations are less complex and therefore easier to protect. Nonetheless, altitudinal migrants may be at risk as they are subject to ongoing anthropogenic pressure from land use and climate change. We used global position- Introduction ing system/accelerometer telemetry to track the partial alti- tudinal migration of the satyr tragopan Tragopan satyra in elative to long-distance migrants, altitudinal migrants central Bhutan. The birds displayed a surprising diversity of Rhave been understudied, perhaps because of a percep- migratory strategies: some individuals did not migrate, tion that their migrations are less complex and easier to pro- others crossed multiple mountains to their winter ranges, tect. In montane regions many species migrate altitudinally others descended particular mountains, and others as- up and down mountain slopes (Stiles, ; Powell & Bjork, cended higher up into the mountains in winter. In all ; Burgess & Mlingwa, ; Chaves-Champos et al., cases migration between summer breeding and winter ; Faaborg et al., ). Although attempts have been non-breeding grounds was accomplished largely by walk- made (Laymon, ; Cade & Hoffman, ; Powell & ing, not by flying. Females migrated in a south-easterly dir- Bjork, ; Chaves-Champos et al., ; Hess et al., ection whereas males migrated in random directions.
    [Show full text]
  • Bear River Refuge
    Bear River Refuge MIGRATION MATTERS Summary Student participants increase their understanding of migration and migratory birds by playing Migration Matters. This game demonstrates the main needs Grade Level: (habitat, food/water, etc.) for migratory birds, and several of the pitfalls and 1 - 6 dangers of NOT having any of those needs readily available along the migratory flyway. Setting: Outside – pref. on grass, or large indoor Objectives - “Students will…” space with room to run. ● understand the concept of Migration / Migratory birds and be able to name at least two migratory species Time Involved: 20 – 30 min. ● indentify three reasons/barriers that explain why “Migration activity, 5 – 10 min. setup isn’t easy” (example: loss of food, habitat) Key Vocabulary: Bird ● describe how invasive species impact migratory birds Migration, Flyways, Wetland, Habitat, Invasive species Materials ● colored pipe-cleaners in rings to represent “food” Utah Grade Connections 5-6 laminated representations of wetland habitats 35 Bird Name tags (1 bird per student; 5 spp / 7 ea) 2 long ropes to delineate start/end of migration Science Core Background Social Studies Providing food, water, and habitat for migratory birds is a major portion of the US FWS & Bear River MBR’s mission. Migratory birds are historically the reason the refuge exists, and teaching the students about the many species of migratory birds that either nest or stop-off at the refuge is an important goal. The refuge hosts over 200 migratory species including large numbers of Wilson’s phalaropes, Tundra swans and most waterfowl, and also has upwards of 70 species nesting on refuge land such as White-faced ibis, American Avocet and Grasshopper sparrows.
    [Show full text]
  • Visual Displays and Their Context in the Painted Bunting
    Wilson Bull., 96(3), 1984, pp. 396-407 VISUAL DISPLAYS AND THEIR CONTEXT IN THE PAINTED BUNTING SCOTT M. LANYON AND CHARLES F. THOMPSON The 12 species in the bunting genus Passerina have proved to be a popular source of material for studies of vocalizations (Rice and Thomp- son 1968; Thompson 1968, 1970, 1972; Shiovitz and Thompson 1970; Forsythe 1974; Payne 1982) migration (Emlen 1967a, b; Emlen et al. 1976) systematics (Sibley and Short 1959; Emlen et al. 1975), and mating systems (Carey and Nolan 1979, Carey 1982). Despite this interest, few detailed descriptions of the behavior of any member of this genus have been published. In this paper we describe aspects of courtship and ter- ritorial behavior of the Painted Bunting (Passerina ciris). STUDY AREA AND METHODS The study was conducted on St. Catherines Island, a barrier island approximately 50 km south of Savannah, Georgia. The 90-ha study area (“Briar Field” Thomas et al. [1978: Fig. 41) on the western side of the island borders extensive salt marshes dominated by cordgrasses (Spartina spp.). The tracts’ evergreen oak forest (Braun 1964:303) consists primarily of oaks (Quercus spp.) and pines (Pinus spp.), with scattered hickories (Carya spp.) and palmettos (Sabal spp. and Serenoe repens) also present. Undergrowth was scanty so that buntings were readily visible when on the ground. As part of a study of mating systems, more than 1800 h were devoted to watching buntings during daily fieldwork in the 1976-1979 breeding seasons. In 1976 and 1977 observations commenced the third week of May, after breeding had begun, and continued until breeding ended in early August.
    [Show full text]
  • Acoustic Monitoring of Night-Migrating Birds: a Progress Report
    Acoustic Monitoring of Night-Migrating Birds: A Progress Report William R. Evans Kenneth V. Rosenberg Abstract—This paper discusses an emerging methodology that to give regular vocalizations in night migration are the vireos uses electronic technology to monitor vocalizations of night-migrat- (Vireonidae), flycatchers (Tyrannidae), and orioles (Icterinae). ing birds. On a good migration night in eastern North America, If a monitoring protocol is consistently maintained, an array thousands of call notes may be recorded from a single ground-based, of microphone stations can provide information on how the audio-recording station, and an array of recording stations across a species composition and number of vocal migrants vary across region may serve as a “recording net” to monitor a broad front of time and space. Such data have application for monitoring migration. Data from pilot studies in Florida, Texas, New York, and avian populations and identifying their migration routes. In British Columbia illustrate the potential of this technique to gather addition, detection and classification of distinctive call-types information that cannot be gathered by more conventional methods, is possible with computers (Mills 1995; Taylor 1995), thus such as mist-netting or diurnal counts. For example, the Texas information on bird populations might be gained automati- station detected a major migration of grassland sparrows, and a cally. In this paper, we summarize the current state of station in British Columbia detected hundreds of Swainson’s knowledge for identifying night-flight calls to species; present Thrushes; both phenomena were not detected with ground monitor- selected results from four ongoing studies that are monitoring ing efforts.
    [Show full text]
  • The Cuckoo Sheds New Light on the Scientific Mystery of Bird Migration 20 November 2015
    The cuckoo sheds new light on the scientific mystery of bird migration 20 November 2015 Evolution and Climate at the University of Copenhagen led the study with the use of miniature satellite tracking technology. In an experiment, 11 adult cuckoos were relocated from Denmark to Spain just before their winter migration to Africa was about to begin. When the birds were released more than 1,000 km away from their well-known migration route, they navigated towards the different stopover areas used along their normal route. "The release site was completely unknown to the cuckoos, yet they had no trouble finding their way back to their normal migratory route. Interestingly though, they aimed for different targets on the route, which we do not consider random. This individual and flexible choice in navigation indicates an ability to assess advantages and disadvantages of different routes, probably based on their health, age, experience or even personality traits. They evaluate their own condition and adjust their reaction to it, displaying a complicated behavior which we were able to document for the first time in migratory birds", says postdoc Mikkel Willemoes from the Center for Macroecology, Evolution and Climate at the University of Copenhagen. Previously, in 2014, the Center also led a study mapping the complete cuckoo migration route from Satellite technology has made it possible for the first Denmark to Africa. Here they discovered that time to track the complete migration of a relocated during autumn the birds make stopovers in different species and reveal individual responses. Credit: Mikkel areas across Europe and Africa.
    [Show full text]
  • Thinking with Birds: Mary Elizabeth Barber's Advocacy for Gender
    Thinking with Birds: Mary Elizabeth Barber’s Advocacy for Gender Equality in Ornithology TANJA HAMMEL Department of History, University of Basel This article explores parts of the first South African woman ornithologist’s life and work. It concerns itself with the micro-politics of Mary Elizabeth Barber’s knowledge of birds from the 1860s to the mid-1880s. Her work provides insight into contemporary scientific practices, particularly the importance of cross-cultural collaboration. I foreground how she cultivated a feminist Darwinism in which birds served as corroborative evidence for female selection and how she negotiated gender equality in her ornithological work. She did so by constructing local birdlife as a space of gender equality. While male ornithologists naturalised and reinvigorated Victorian gender roles in their descriptions and depictions of birds, she debunked them and stressed the absence of gendered spheres in bird life. She emphasised the female and male birds’ collaboration and gender equality that she missed in Victorian matrimony, an institution she harshly criticised. Reading her work against the background of her life story shows how her personal experiences as wife and mother as well as her observation of settler society informed her view on birds, and vice versa. Through birds she presented alternative relationships to matrimony. Her protection of insectivorous birds was at the same time an attempt to stress the need for a New Woman, an aspect that has hitherto been overlooked in studies of the transnational anti-plumage
    [Show full text]
  • Observebserve a D Dinosaurinosaur
    OOBSERVEBSERVE A DDINOSAURINOSAUR How did ancient dinosaurs move and behave? To fi nd out, paleontologists look for clues in fossils, such as fossilized footprints, eggs, and even dung. They also observe and analyze the movement and behavior of living dinosaurs and other animals. These data help paleontologists interpret the fossil evidence. You can also observe living dinosaurs. Go outdoors to fi nd birds in their natural habitat. (Or you can use online bird videos, such as the Cornell Lab of Ornithology’s video gallery at www.birds.cornell.edu/AllAboutBirds/ BirdGuide/VideoGallery.html) 1. Record Your Observations What Evidence IndiCates In a notebook, fi rst record information That Birds Are Dinosaurs? about the environment: Over 125 years ago, paleontologists made a startling discovery. They • Date and Time recognized that the physical characteristics of modern birds and a • Location and Habitat species of small carnivorous dinosaur were alike. • Weather and temperature Take a look at the skeletons of roadrunner (a modern bird) and Coelophysis (an extinct dinosaur) to explore some of these shared Then observe a bird and record: characteristics. Check out the bones labeled on the roadrunner. • How does the bird move? Can you fi nd and label similar bones on the Coelophysis? • What does the bird eat? ROADRUNNER • Is the bird alone or in a group? S-shaped neck • How does the bird behave with Hole in hip socket members of its species? • How does the bird behave with members of other species? V-shaped furcula Pubis bone in hip (wishbone) points backwards Tips: • Weather conditions can affect how animals behave.
    [Show full text]
  • Campylorhynchus Rufinucha) Rufinucha) (Campylorhynchus
    Nest-site characteristics of Rufous-naped Wrens Artículo (Campylorhynchus rufinucha) in Acacia trees may serve to avoid vertebrate predators Características de sitios de los nidos de Campylorhynchus rufinucha en árboles de Acacia posiblemente sirven para evadir depredación por vertebrados Ignacio Escalante1 1Sistema de Estudios de Posgrado, Escuela de Biología, Universidad de Costa Rica. San José, Costa Rica. Ornitología Colombiana Ornitología [email protected] Abstract The high rate of nest predation in tropical birds results in strong selection pressure. The Rufous-naped Wren (Campylorhynchus rufinucha) nests in Bullhorn trees (Acacia) in the Mesoamerican dry forest. It has been proposed that bullhorns and their aggressive ants (Pseudomyrmex spp.) help to prevent nest predation. I tested the hypothesis that these birds place their nests in particular acacia micro- habitats to avoid predation by vertebrates such as tufted capuchin monkeys (Cebus capucinus). I expected to find nests in locations that avoided the foraging behavior preferences of the monkeys. Along 6 km gravel road in Palo Verde National Park, Guanacaste, Costa Rica, I found 52 Rufous-naped Wren nests. The proportion of ant species in acacias with nests did not differ from the background proportion of ant species in acacias without nests, so birds did not prefer to nest in acacias with the most aggressive ant species. Acacia trees with wren nests were larger in diameter than control acacias without nests. I found more nests in acacias that were clustered, which consisted of one to five acacias in a 3m radius plot around the acacia with nest. However, the number of acacias with or without nests did not differ in their isolation from other non-acacia trees.
    [Show full text]
  • Birds of the East Texas Baptist University Campus with Birds Observed Off-Campus During BIOL3400 Field Course
    Birds of the East Texas Baptist University Campus with birds observed off-campus during BIOL3400 Field course Photo Credit: Talton Cooper Species Descriptions and Photos by students of BIOL3400 Edited by Troy A. Ladine Photo Credit: Kenneth Anding Links to Tables, Figures, and Species accounts for birds observed during May-term course or winter bird counts. Figure 1. Location of Environmental Studies Area Table. 1. Number of species and number of days observing birds during the field course from 2005 to 2016 and annual statistics. Table 2. Compilation of species observed during May 2005 - 2016 on campus and off-campus. Table 3. Number of days, by year, species have been observed on the campus of ETBU. Table 4. Number of days, by year, species have been observed during the off-campus trips. Table 5. Number of days, by year, species have been observed during a winter count of birds on the Environmental Studies Area of ETBU. Table 6. Species observed from 1 September to 1 October 2009 on the Environmental Studies Area of ETBU. Alphabetical Listing of Birds with authors of accounts and photographers . A Acadian Flycatcher B Anhinga B Belted Kingfisher Alder Flycatcher Bald Eagle Travis W. Sammons American Bittern Shane Kelehan Bewick's Wren Lynlea Hansen Rusty Collier Black Phoebe American Coot Leslie Fletcher Black-throated Blue Warbler Jordan Bartlett Jovana Nieto Jacob Stone American Crow Baltimore Oriole Black Vulture Zane Gruznina Pete Fitzsimmons Jeremy Alexander Darius Roberts George Plumlee Blair Brown Rachel Hastie Janae Wineland Brent Lewis American Goldfinch Barn Swallow Keely Schlabs Kathleen Santanello Katy Gifford Black-and-white Warbler Matthew Armendarez Jordan Brewer Sheridan A.
    [Show full text]