Object Oriented Programming in Java Object Oriented

Total Page:16

File Type:pdf, Size:1020Kb

Object Oriented Programming in Java Object Oriented Object Oriented Programming in Java Introduction Object Oriented Programming in Java Introduction to Computer Science II I Java is Object-Oriented I Not pure object oriented Christopher M. Bourke I Differs from other languages in how it achieves and implements OOP [email protected] functionality I OOP style programming requires practice Objects in Java Objects in Java Java is a class-based OOP language Definition Contrast with proto-type based OOP languages A class is a construct that is used as a blueprint to create instances of I Example: JavaScript itself. I No classes, only instances (of objects) I Constructed from nothing (ex-nihilo) I Objects are concepts; classes are Java’s realization of that concept I Inheritance through cloning of original prototype object I Classes are a definition of all objects of a specific type (instances) I Interface is build-able, mutable at runtime I Classes provide an explicit blueprint of its members and their visibility I Instances of a class must be explicitly created Objects in Java Objects in JavaI Paradigm: Singly-Rooted Hierarchy Object methods 1 //ignore: 2 protected Object clone(); 3 protected void finalize(); I All classes are subclasses of Object 4 Class<? extends Object> getClass(); 5 I Object is a java object, not an OOP object 6 //multithreaded applications: I Makes garbage collection easier 7 public void notify(); 8 public void notifyAll(); I All instances have a type and that type can be determined 9 public void wait(); I Provides a common, universal minimum interface for objects 10 public void wait(long timeout); I Avoids complex lattice relations in other OOP languages: no multiple 11 public void wait(long timeout, int nanos); inheritance 12 13 //important ones: 14 public boolean equals(Object obj); 15 public int hashCode(); 16 public String toString(); Objects in JavaII Declaring Classes Object methods Syntax I Classes must be defined in file of the same name ( .java ) I equals returns true/false whether or not obj is equal to this I Class names should be upper-camel case, singular form I Default behavior: uses reference comparison 1 package foo.bar; I hashCode returns an integer hash of this object 2 3 /* imports here */ I Default behavior: typically the memory address of the object 4 I toString provides a human readable representation of the object 5 public class MyClass{ I Default behavior: qualified class name plus JVM memory address 6 7 /* static field declarations */ 8 /* member field declarations */ 9 /* member method declarations */ 10 11 } Object Life CycleI Object Life CycleII Instantiation Persistence I New objects created using the new operator: Student s= new Student(); I Instances persist until they are out of scope, no longer referenced, etc. I All classes have a default constructor if no constructor is defined I Can be serialized (written to disk, database, or transmitted over a I If non-default constructor defined, default constructor is not provided network) I Can have multiple constructors I Serializable interface, using writeObject(java.io.ObjectOutputStream out) I Good practice: constructor variants should call other constructors when appropriate readObject(java.io.ObjectInputStream in) I Example: this(...) I If calling another constructor: must be done first! Object Life Cycle III Inner Classes Destruction I Can set a reference to null: Integer a= 10;a= null; I Java allows you to declare a class within a class I When no reference to an object exists, eligible for garbage collection I Visibility: allowed to be public, private, protected I No guarantee of when it gets destroyed I Static or not I No destructors in Java I Static fields must be final I Cannot rely on finalize() I No static methods allowed unless inner class is static I Cannot rely on System.gc() I Example? I Good practice: Do all cleanup manually in a finally block Anonymous ClassesI Anonymous ClassesII 1 List<Integer> myNumbers= new ArrayList<Integer>(); 2 ... I An anonymous class is a class declared and defined inline 3 Collections.sort(myNumbers, new Comparator<Integer>(){ I Not bound to a (class) name or identifier 4 @Override 5 public int compare(Integer arg0, Integer arg1){ I Useful idiom: allows you to provide a component declared and 6 if(arg0 == null) return-1; defined inline as an argument 7 else if(arg1 == null) return1; I Not just a convenience: prevents reuse of an ad-hoc class 8 else return arg0.compareTo(arg1); 9 }}); I Example: providing a comparator to the collection’s sort method Note: Normally, the sort method cannot handle null values, here we do! Abstract Classes Abstraction I A class can be made abstract I All public methods and fields available to client code I Such a class cannot be instantiated I Static methods/fields available without an instance I Instances must be created from non-abstract subclasses I Interfaces (revisited) I May contain abstract and non-abstract methods I Abstract classes (revisited) I final keyword: I Non-abstract methods provide a “default” behavior for subclasses I A final class cannot be subclassed Need to provide a default? Use an abstract class! Don’t or don’t want to? I A final method cannot be overridden in a subclass Use an interface! I A final field cannot be reassigned (does not imply immutable) InterfacesI InterfacesII An interface is an abstract type that defines method signatures that Syntax: must be implemented by a class 1 public interface InterfaceName{ 2 return-type methodName(); I Methods are always public (or default) and abstract 3 ... I May also define ( final static ) constants 4 } I No default implementation can be defined 1 public class Foo implements InterfaceA, InterfaceB{ I A class can implements multiple interfaces 2 ... 3 } I Allows us to simulate multiple inheritance without being locked into a hierarchy Interface Example Advantages of an interfaceI 1 public interface Gradeable{ 2 public double getScore(); 3 public String getLabel(); 4 } Interfaces provide a means to: 5 ... 6 public class Exam implements Gradeable{ I Simulate multiple inheritance 7 ... 8 public double getScore(){ I Provide interface (an is-a relationship) without locking you into a 9 return this.numPoints/ this.totalPoints; hierarchy 10 } 11 public String getLabel(){ 12 return "Exam: "+ this.examNumber; 13 } 14 } Advantages of an interfaceII Other interface items Example: I Collections framework: java.util.List , java.util.Set Person Payable I Note: an interface can extend other interfaces (sub/super interface) I Example: java.util.List extends java.util.Collection Intern Employee Supplier I Though not a class, still provides the is-a relation I You can refer to an implementing class as its interface: Hourly Salaried 1 List l= null; 2 ArrayList al= new ArrayList(); Figure : Inheritance through interfaces 3 l= al; Encapsulation InheritanceI I Encapsulation achieved through declaring member fields, methods I Visibility provides protection I Java supports inheritance through subclassing I Common idiom: Mutators and Accessors (getters and setters) I Syntax: extends keyword public class MySubClass extends MySuperClass{ ...} Modifier Class Package Subclass World I Superclass methods and fields are inherited (provided they are not public Y Y Y Y private) protected Y Y Y N I Subclasses may override superclass methods none (default) Y Y N N private Y N N N I Good practice: use the @Override annotation Table : Java Access Levels InheritanceII Composition I Subclass methods can access super class methods and fields using I Java supports composition through the same mechanism as super encapsulation I Can be a pure substitution: no new methods introduced in a I A Java class can have classes as members subclass, or I What’s responsible for constructing it? I New methods may be declared in a subclass I May be completely internal, may be provided, etc. I Preventing subclassing: final (examples: java.lang.Integer , libraries) 1 public class Foo{ I Recall: all methods in Java are virtual by default 2 private Integer a; 3 private Graph g; I Note: a pure virtual method in java is an abstract method 4 protected List<Integer> myList; 5 } Polymorphism Automatic Type CastingI I Many mechanisms for polymorphism I Many different types of polymorphism supported I Numerical operators support mixed types ( int, double , etc.) I Some types not supported: I Simpler types are up-casted to compatible types and (may be) I Operator overloading not allowed 1 downcasted in the final result I Behavioral polymorphism I A form of coercion I Polymorphic behavior not always apparent 1A form is enforced in that super() must be called first in a constructor, ensuring an is-a relationship before anything else can be done Automatic Type CastingII AutoboxingI 1 inta= 10; 2 doubleb= 20.5,c= 10.5,f; I Autoboxing/unboxing: mixing primitive numeric types with Java 3 intd,e; wrapper classes 4 //d = a + b; <- compile error. 5 // requires explicit cast to int, works in C! I As needed, compiler replaces expressions with value methods 6 f=a+b; I May result in runtime NullPointerException 7 e=(int)(b+c); 8 System.out.println("f = "+f); I Need to be careful when mixing types with comparison operators 9 System.out.println("e = "+e); I Form of coercion AutoboxingII Autoboxing III From the Java documentation: So when should you use autoboxing and unboxing? Use them only when there is an impedance mismatch between reference 1 Integer a= new Integer(10); types and primitives, for example, when you have to put 2 Double pi= new Double(3.14); numerical values into a collection. It is not appropriate to use 3 intb= 20; autoboxing and unboxing for scientific computing, or other 4 doublec=a+b+ pi; 5 //becomes: performance-sensitive numerical code. An Integer is not a 6 //double c = a.doubleValue() + b + pi.doubleValue(); substitute for an int ; autoboxing and unboxing blur the distinction between primitive types and reference types, but they do not eliminate it.
Recommended publications
  • Practical Perl Tools: Scratch the Webapp Itch With
    last tIme, we had the pleasure oF exploring the basics of a Web applica- DaviD n. BLank-EdeLman tion framework called CGI::Application (CGI::App). I appreciate this particular pack- age because it hits a certain sweet spot in practical Perl tools: terms of its complexity/learning curve and scratch the webapp itch with power. In this column we’ll finish up our exploration by looking at a few of the more CGI::Application, part 2 powerful extensions to the framework that David N. Blank-Edelman is the director of can really give it some oomph. technology at the Northeastern University College of Computer and Information Sci- ence and the author of the O’Reilly book Quick review Automating System Administration with Perl (the second edition of the Otter book), Let’s do a really quick review of how CGI::App available at purveyors of fine dead trees works, so that we can build on what we’ve learned everywhere. He has spent the past 24+ years as a system/network administrator in large so far. CGI::App is predicated on the notion of “run multi-platform environments, including modes.” When you are first starting out, it is easi- Brandeis University, Cambridge Technology est to map “run mode” to “Web page” in your head. Group, and the MIT Media Laboratory. He was the program chair of the LISA ’05 confer- You write a piece of code (i.e., a subroutine) that ence and one of the LISA ’06 Invited Talks will be responsible for producing the HTML for co-chairs.
    [Show full text]
  • Better PHP Development I
    Better PHP Development i Better PHP Development Copyright © 2017 SitePoint Pty. Ltd. Cover Design: Natalia Balska Notice of Rights All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical articles or reviews. Notice of Liability The author and publisher have made every effort to ensure the accuracy of the information herein. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any damages to be caused either directly or indirectly by the instructions contained in this book, or by the software or hardware products described herein. Trademark Notice Rather than indicating every occurrence of a trademarked name as such, this book uses the names only in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of the trademark. Published by SitePoint Pty. Ltd. 48 Cambridge Street Collingwood VIC Australia 3066 Web: www.sitepoint.com Email: [email protected] ii Better PHP Development About SitePoint SitePoint specializes in publishing fun, practical, and easy-to-understand content for web professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles, and community forums. You’ll find a stack of information on JavaScript, PHP, design,
    [Show full text]
  • Introducing Javascript OSA
    Introducing JavaScript OSA Late Night SOFTWARE Contents CHAPTER 1 What is JavaScript OSA?....................................................................... 1 The OSA ........................................................................................................................ 2 Why JavaScript? ............................................................................................................ 3 CHAPTER 2 JavaScript Examples.............................................................................. 5 Learning JavaScript ....................................................................................................... 6 Sieve of Eratosthenes..................................................................................................... 7 Word Histogram Example ............................................................................................. 8 Area of a Polygon .......................................................................................................... 9 CHAPTER 3 The Core Object ................................................................................... 13 Talking to the User ...................................................................................................... 14 Places ........................................................................................................................... 14 Where Am I?................................................................................................................ 14 Who Am I? .................................................................................................................
    [Show full text]
  • Concepts in Programming Languages Practicalities
    Concepts in Programming Languages Practicalities I Course web page: Alan Mycroft1 www.cl.cam.ac.uk/teaching/1617/ConceptsPL/ with lecture slides, exercise sheet and reading material. These slides play two roles – both “lecture notes" and “presentation material”; not every slide will be lectured in Computer Laboratory detail. University of Cambridge I There are various code examples (particularly for 2016–2017 (Easter Term) JavaScript and Java applets) on the ‘materials’ tab of the course web page. I One exam question. www.cl.cam.ac.uk/teaching/1617/ConceptsPL/ I The syllabus and course has changed somewhat from that of 2015/16. I would be grateful for comments on any remaining ‘rough edges’, and for views on material which is either over- or under-represented. 1Acknowledgement: various slides are based on Marcelo Fiore’s 2013/14 course. Alan Mycroft Concepts in Programming Languages 1 / 237 Alan Mycroft Concepts in Programming Languages 2 / 237 Main books Context: so many programming languages I J. C. Mitchell. Concepts in programming languages. Cambridge University Press, 2003. Peter J. Landin: “The Next 700 Programming Languages”, I T.W. Pratt and M. V.Zelkowitz. Programming Languages: CACM (published in 1966!). Design and implementation (3RD EDITION). Some programming-language ‘family trees’ (too big for slide): Prentice Hall, 1999. http://www.oreilly.com/go/languageposter http://www.levenez.com/lang/ ? M. L. Scott. Programming language pragmatics http://rigaux.org/language-study/diagram.html (4TH EDITION). http://www.rackspace.com/blog/ Elsevier, 2016. infographic-evolution-of-computer-languages/ I R. Harper. Practical Foundations for Programming Plan of this course: pick out interesting programming-language Languages.
    [Show full text]
  • The C Programming Language
    The C programming Language The C programming Language By Brian W. Kernighan and Dennis M. Ritchie. Published by Prentice-Hall in 1988 ISBN 0-13-110362-8 (paperback) ISBN 0-13-110370-9 Contents ● Preface ● Preface to the first edition ● Introduction 1. Chapter 1: A Tutorial Introduction 1. Getting Started 2. Variables and Arithmetic Expressions 3. The for statement 4. Symbolic Constants 5. Character Input and Output 1. File Copying 2. Character Counting 3. Line Counting 4. Word Counting 6. Arrays 7. Functions 8. Arguments - Call by Value 9. Character Arrays 10. External Variables and Scope 2. Chapter 2: Types, Operators and Expressions 1. Variable Names 2. Data Types and Sizes 3. Constants 4. Declarations http://freebooks.by.ru/view/CProgrammingLanguage/kandr.html (1 of 5) [5/15/2002 10:12:59 PM] The C programming Language 5. Arithmetic Operators 6. Relational and Logical Operators 7. Type Conversions 8. Increment and Decrement Operators 9. Bitwise Operators 10. Assignment Operators and Expressions 11. Conditional Expressions 12. Precedence and Order of Evaluation 3. Chapter 3: Control Flow 1. Statements and Blocks 2. If-Else 3. Else-If 4. Switch 5. Loops - While and For 6. Loops - Do-While 7. Break and Continue 8. Goto and labels 4. Chapter 4: Functions and Program Structure 1. Basics of Functions 2. Functions Returning Non-integers 3. External Variables 4. Scope Rules 5. Header Files 6. Static Variables 7. Register Variables 8. Block Structure 9. Initialization 10. Recursion 11. The C Preprocessor 1. File Inclusion 2. Macro Substitution 3. Conditional Inclusion 5. Chapter 5: Pointers and Arrays 1.
    [Show full text]
  • 210 CHAPTER 7. NAMES and BINDING Chapter 8
    210 CHAPTER 7. NAMES AND BINDING Chapter 8 Expressions and Evaluation Overview This chapter introduces the concept of the programming environment and the role of expressions in a program. Programs are executed in an environment which is provided by the operating system or the translator. An editor, linker, file system, and compiler form the environment in which the programmer can enter and run programs. Interac- tive language systems, such as APL, FORTH, Prolog, and Smalltalk among others, are embedded in subsystems which replace the operating system in forming the program- development environment. The top-level control structure for these subsystems is the Read-Evaluate-Write cycle. The order of computation within a program is controlled in one of three basic ways: nesting, sequencing, or signaling other processes through the shared environment or streams which are managed by the operating system. Within a program, an expression is a nest of function calls or operators that returns a value. Binary operators written between their arguments are used in infix syntax. Unary and binary operators written before a single argument or a pair of arguments are used in prefix syntax. In postfix syntax, operators (unary or binary) follow their arguments. Parse trees can be developed from expressions that include infix, prefix and postfix operators. Rules for precedence, associativity, and parenthesization determine which operands belong to which operators. The rules that define order of evaluation for elements of a function call are as follows: • Inside-out: Evaluate every argument before beginning to evaluate the function. 211 212 CHAPTER 8. EXPRESSIONS AND EVALUATION • Outside-in: Start evaluating the function body.
    [Show full text]
  • Session-Ocaml: a Session-Based Library with Polarities and Lenses
    Session-ocaml: a Session-based Library with Polarities and Lenses Keigo Imai1, Nobuko Yoshida2, and Shoji Yuen3 1 Gifu University, Japan 2 Imperial College London, UK 3 Nagoya University, Japan Abstract. We propose session-ocaml, a novel library for session-typed concurrent/distributed programming in OCaml. Our technique solely relies on parametric polymorphism, which can encode core session type structures with strong static guarantees. Our key ideas are: () polarised session types, which give an alternative formulation of duality enabling OCaml to automatically infer an appropriate session type in a session with a reasonable notational overhead; and () a parameterised monad with a data structure called ‘slots’ manipulated with lenses, which can statically enforce session linearity and delegations. We show applications of session-ocaml including a travel agency usecase and an SMTP protocol. Introduction Session types [], from their origins in the 휋-calculus [ ], serve as rigorous specifications for coordinating link mobility in the sense that a communication link can move among participants, while ensuring type safety. In session type systems such mobility is called delegation. Once the ownership of a session is delegated (transferred) to another participant, it cannot be used anymore at the sender side. This property is called linearity of sessions and appears indispensable for all session type systems. Linearity of session channels, however, is a major obstacle to adopt session type disciplines in mainstream languages, as it requires special syntax extensions for session communications [], or depends on specific language features, such as type-level functions in Haskell [, , , ], and affine types in Rust [], or even falling back on run-time and dynamic checking [, , , ].
    [Show full text]
  • Default Argument in Function Declaration
    Default Argument In Function Declaration Rory usually desulphurizes semasiologically or outgas subject when lopped Dani circularising colossally and nonchalantly. craunchesDewey masculinized her judgeship. weirdly if ungummed Demetris slims or cased. Teodoro is bituminous: she retes spiritoso and The actual call In declarations are declaring more organized, and declare an optional argument. The following function checks that is that can be combined with whitespace and assign values given general syntax can modify its local variables. Default parameters are declared in declarations in this is notoriously confusing at last two? Which function will you choose to owe two words? In typedefs, the logic required within the method implementation can be messy and hard to maintain. The value returned by a function is general value less the another expression evaluated, because it shut CHANGE. We learned all about how functions can accept different arguments and different styles by which we can pass those arguments in. Default values are specified during function declaration but there is no change in function definition. Input: an array of Promises. You can seize any function of that type call the argument for fidelity first parameter. First, and takes longer to write. Or counter this a typo? Default arguments are overwritten when calling function provides values for them. These examples assume common meanings of prefixes. In default parameter declaration of declaring a function is declared, this behavior of contents open file for. The parameter name is used in the implementation of the function. Optional parameters must conclude after the required parameters. This form style overrides are and two arguments in lots of parentheses.
    [Show full text]
  • Developing PHP Applications for IBM Database Servers
    Front cover Developing PHP Applications for IBM Data Servers Develop and deploy Web solutions using PHP and IBM data servers See PHP with DB2, Informix IDS, and Cloudscape examples Port PHP applications from MySQL to DB2 Whei-Jen Chen Holger Kirstein Daniel Krook Kiran H Nair Piotr Pietrzak ibm.com/redbooks International Technical Support Organization Developing PHP Applications for IBM Data Servers May 2006 SG24-7218-00 Note: Before using this information and the product it supports, read the information in “Notices” on page xi. First Edition (May 2006) This edition applies to DB2 UDB Version 8.2, Informix IDS Version 10, PHP Versions 4 and 5, Apache 1.3, and Apache 2. © Copyright International Business Machines Corporation 2006. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Figures . vii Tables . ix Notices . xi Trademarks . xii Preface . xiii The team that wrote this redbook. xiii Acknowledgement. xv Become a published author . xvi Comments welcome. xvi Chapter 1. Technology overview . 1 1.1 Web application environment . 2 1.1.1 Web application advantages . 2 1.1.2 Web application challenges . 3 1.1.3 The state of the Web application world . 4 1.1.4 Web application components . 4 1.2 IBM data servers . 5 1.2.1 DB2 data server . 5 1.2.2 Informix database server family . 8 1.2.3 Cloudscape . 10 1.3 HTTP Servers . 11 1.3.1 Apache HTTP Server . 12 1.3.2 IBM HTTP Server . 15 1.3.3 Which Web server do I choose? .
    [Show full text]
  • Python Tutorial Python Tutorial I the First Python Program: Hello.Py Syntax Based Types Strongly Type Language Strings
    Python Tutorial by OSOE Project. Details Python Tutorial I Details The First Python Program: hello.py Details Writing a script in Python to output “Hello World” on the screen can be as simple as 1,2,3. When, writing a Python program, it is useful to write it in a text editor and then save it with a .py extension. In python, there are three differents types of files ; the files with .py extension are the Python script files, the files ending .pyc represent the compiled files and the ones with .pyo extension represent the optimized byte code files. Usually, most people produce the .py files and the system handles the rest. #!/usr/bin/python invocation tells the Operating System that the Python intepreter is needed to execute this file. It is also important to change the executions rights by using the commands chmod +x hello.py. This command will now make the hello.py an executable file. Afterwards, ./hello.py automatically invokes the python interpreter which reads and interpretes the hello.py file. Unlike other languages, it is possible to write a simple python program with any variables or function definitions just type in the keyword print followed by the expression you want to print and then run your program. Syntax Details The syntax of a python code is pretty straightforward. Generally, the syntax consists of #!/usr/bin/python invocation followed by a list of statements. These statements can be of different kinds: variables declarations, function declarations, control flow statements, loops, etc. In Python, whenever a file is read, all the statements are executed contrary to other languages like C or Java where they only compiled.
    [Show full text]
  • How to Link Tables Using SQL Named Parameters"
    How to Link Tables Using SQL Named Parameters Distributed by The OpenOffice.org Documentation Project OpenOffice.org Documentation Project How-To Table of Contents Introduction.................................................................................................................................................. 3 Creating the Database, Tables, and Data Source..........................................................................................5 Adding Data to Tables ...............................................................................................................................10 Enabling Use of Named Parameters for the Data Source...........................................................................12 The Macro.................................................................................................................................................. 13 Creating a Form for the Data Source..........................................................................................................16 Adding a Subform...................................................................................................................................... 19 Linking the Subform to the Main Form..................................................................................................... 24 Formatting Data Fields...............................................................................................................................29 More Examples...........................................................................................................................................33
    [Show full text]
  • Modelica: Equation-Based, Object-Oriented Modelling of Physical Systems
    Chapter 3 Modelica: Equation-Based, Object-Oriented Modelling of Physical Systems Peter Fritzson Abstract The field of equation-based object-oriented modelling languages and tools continues its success and expanding usage all over the world primarily in engineering and natural sciences but also in some cases social science and economics. The main properties of such languages, of which Modelica is a prime example, are: acausal modelling with equations, multi-domain modelling capability covering several application domains, object-orientation supporting reuse of components and evolution of models, and architectural features facilitating modelling of system architectures including creation and connection of components. This enables ease of use, visual design of models with combination of lego-like predefined model building blocks, ability to define model libraries with reusable components enables. This chapter gives an introduction and overview of Modelica as the prime example of an equation-based object-oriented language. Learning Objectives After reading this chapter, we expect you to be able to: • Create Modelica models that represent the dynamic behaviour of physical components at a lumped parameter abstraction level • Employ Object-Oriented constructs (such as class specialisation, nesting and packaging) known from software languages for the reuse and management of complexity • Assemble complex physical models employing the component and connector abstractions • Understand how models are translated into differential algebraic equations for execution 3.1 Introduction Modelica is primarily a modelling language that allows specification of mathematical models of complex natural or man-made systems, e.g., for the purpose of computer simulation of dynamic systems where behaviour evolves as a function of time.
    [Show full text]