Geologic Mapping of the Upper Iowa River Watershed

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Mapping of the Upper Iowa River Watershed Bedrock Geology of the Cresco NE (Iowa) 7.5' Quadrangle 92°7'30"W 92°5'0"W 92°2'30"W 92°0'0"W LEGEND D 43°30'0"N 43°30'0"N Owd Od Om D Owd Om CENOZOIC DD D Owd Owd QUATERNARY SYSTEM D D Qu – Undifferentiated unconsolidated sediment Consists of loamy soils developed in loess and glacial till of variable thickness, and alluvial Om Om D Qu Om clay, silt, sand and gravel. Unit shown on cross-section only, and not on map. Od Om D D Owd PALEOZOIC D D D D D D Om DEVONIAN SYSTEM Dw Dc - Dolomite and Limestone (Cedar Valley Group) The lowest subdivision of this map unit, the Little Cedar Formation, occurs in the Om Owd Dc southwest corner of the quad and attains a thickness up to 12 m (40 ft). It is dominated by slightly argillaceous to argillaceous dolomite and dolomitic limestone, commonly fossiliferous and vuggy, and partially laminated. Dw Om Dw Dw - Dolomite, Limestone, Shale, and minor Sandstone (Wapsipinicon Group) This map unit includes the Spillville Formation, up to 27 m Om (89 ft), overlain by the Pinicon Ridge Formation, up to 11 m (36 ft), for a maximum total thickness up to 38 m (125 ft). The Spillville Od D Formation is dominated by medium to thick bedded dolomite, with scattered to abundant fossil molds, and vugs commonly filled with calcite Om D crystals; basal portion is sandy or silty; a distinctive stromatolitic limestone facies occurs locally in the upper part. The Spillville is quarried for D Owd local aggregate and also hosts numerous small springs. The Pinicon Ridge Formation is dominated by shaly, laminated or brecciated, Owd D D D D D D D unfossiliferous limestone and dolomite. D Od D Dw D D D D D Owd ORDOVICIAN SYSTEM Om Owd Om Om Om - Shale, Limestone, and Dolostone (Maquoketa Formation) A nonresistant slope-forming map unit up to 40 m (131 ft) composed of variably cherty, interbedded argillaceous limestone, dolostone and grey and brown shale. Fragmentary trilobite and graptolite fossils are common in the basal Elgin Limestone Member, and chert nodules are notable in the middle Fort Atkinson Member. It forms an upper Om confining unit that bounds the karst system in the underlying Wise Lake and Dunleith formations, and may host sinkholes in its lower portion. Om D D Od D Owd Owd - Limestone and minor Shale (Wise Lake Formation and overlying Dubuque Formation) A prominent ledge and cliff-forming unit of Owd up to 31 m (102 ft) of limestone with notable thin interbedded shale in the upper 6 m. This map unit is the upper of two successive major Om D cavern and karst-forming bedrock units in the area. The Wise Lake Formation consists of 21 m (67 ft) of medium to thick-bedded relatively D Dw 43°27'30"N chert-free limestone, portions of which exhibit a distinctive bioturbated fabric; serves as a quarried aggregate source The Dubuque Formation Dw 43°27'30"N D consists of 10 m (34 ft) of crinoidal limestones and thin interbedded shale. Sinkholes are common to abundant within this map unit. Often mantled by 0 m to 2 m (0 –6 ft) of loess-derived and weathered bedrock-derived colluvium. Om Owd Owd Od Od - Limestone (Dunleith Formation) A prominent ledge and cliff-forming unit of up to 42 m (137 ft) of limestone with minor thin Dw Om interbedded shale. This is the lower of two successive major cavern and karst-forming bedrock units in the area. The formation consists of Dw fossiliferous limestone and argillaceous limestone with common chert nodules; it is commonly quarried for aggregate. Major springs occur near the base, and sinkholes and karst features are common. Frequently mantled by 0 m to 2 m (0 – 6 ft) of loess-derived and weathered D bedrock-derived colluvium. D Drill Holes D Om D Outcrops D D B D Om Dw D D D Dw Om D D Od D DD D Adjacent 7.5' Quadrangles Owd D Om Od Quadrangle Location D LYON OSCEOLA DICKINSON EMMET D WINNEBAGO WORTH MITCHELL HOWARD GREENLEAFTON HARMONY CANTON_MN WINNESHIEK ALLAMAKEE KOSSUTH D SIOUX Om OBRIEN CLAY PALO ALTO HANCOCK CERRO GORDO FLOYD CHICKASAW FAYETTE CLAYTON PLYMOUTH CHEROKEE HUMBOLDT BREMER BUENA VISTA POCAHONTAS WRIGHT FRANKLIN BUTLER D BLACK HAWK BUCHANAN DELAWARE DUBUQUE WOODBURY IDA WEBSTER SAC CALHOUN HAMILTON HARDIN GRUNDY D JACKSON D D JONES LINN MONONA CRAWFORD TAMA BENTON CRESCO_NW CRESCO_NE BLUFFTON CARROLL GREENE BOONE STORY MARSHALL CLINTON Owd CEDAR HARRISON SHELBY AUDUBON GUTHRIE DALLAS POLK JASPER POWESHIEK IOWA JOHNSON SCOTT MUSCATINE POTTAWATTAMIE D CASS ADAIR MADISON WARREN MARION MAHASKA KEOKUK WASHINGTON Dw D 43°25'0"N LOUISA D MILLS MONTGOMERY ADAMS UNION CLARKE LUCAS MONROE WAPELLO JEFFERSON 43°25'0"N HENRY DES MOINES Dw FREMONT CRESCO_SW CRESCO_SE RIDGEWAY PAGE TAYLOR RINGGOLD DECATUR WAYNE APPANOOSE DAVIS VAN BUREN D D D LEE D D Om D D D D D Om Dw Base map from USGS Cresco NE 7.5' Digital Raster Graphic (IGS GIS file DRGB38.TIF) which was scanned from the Cresco NE 7.5' Topographic Quadrangle map, published by US Geological Survey in 1981 Topographic contours and land features based on 1975 aerial photography, field checked in 1977 D Land elevation contours (20' interval) based on NGVD 1929. Iowa Geological Survey digital cartographic file Cresco_NEquad08_bedrock.mxd, version 8/18/08 (ArcGIS 9.2) D Map projection and coordinate system based on Universal Transverse Mercator (UTM) Zone 15, datum NAD83. Owd D The map and cross section are based on interpretations of the best available information at the time of Om D Dw mapping. Map interpretations are not a substitute for detailed site specific studies. D D D D D D D D Dw Dc D Om Dw D D D Dw Dw Dc Dw 43°22'30"N Dc 43°22'30"N GEOLOGIC MAPPING OF A THE UPPER IOWA RIVER WATERSHED: 92°7'30"W 92°5'0"W 92°2'30"W 92°0'0"W PHASE 4: Cresco NE 7.5’ Quadrangle 1:24,000 0 0.5 1 2 3 4 Iowa Geological Survey Miles Open File Map OFM-08-1 0 0.5 1 2 3 4 Kilometers August 2008 ± prepared by GEOLOGIC CROSS-SECTION A-B Huaibao Liu, Robert M. McKay, Stephanie Tassier-Surine, and James D. Giglierano Iowa Geological Survey, Iowa City, Iowa A B Dc Silver Minor Upper Iowa 1300 Qu Creek Creek River Valley 1300 Iowa Department of Natural Resources, Richard A. Leopold, Director Qu Iowa Geological Survey, Robert D. Libra, State Geologist Qu 1200 Qu 1200 Supported in part by the U.S. Geological Survey Dw E ) l Cooperative Agreement Number 07HQAG0087 l e e v National Cooperative Geologic Mapping Program (STATEMAP) v a e l t i o a n e s ( 1100 1100 f e e ACKNOWLEDGMENTS e v Om t o a b b a We thank the staff of the Northeast Iowa RC & D for their efforts in helping to initiate this mapping project and for supporting our o t work in the Upper Iowa River watershed. New subsurface geologic data was generated by the University of Iowa students Thomas v e e e Marshall, Kelly Wilhelm and Gregory Stark who produced descriptive logs of water well drill samples. Luther College in Decorah f ( 1000 s 1000 actively participated in the project through subcontract 07-7380-01 for field mapping support. Luther College students Gabriel e n a o Demuth and Carl Haakenstad were participants in field and office work in support of the mapping effort. Birgitta Meade of Luther i t Owd l e College was instrumental in accurately locating and elevating water wells in the map area. Drilling in selected sites was provided a v v under contract by Aquadrill, Inc. of Swisher, Iowa. Deborah Quade, Iowa Geological Survey (IGS) lent support with Quaternary field e e l l ) and office expertise; Robert Rowden (IGS) participated in part of the field work; Amy Sabin (IGS) prepared well samples for E 900 900 stratigraphic logging; Brian Witzke (IGS) provided valued information concerning the Ordovician and Devonian stratigraphy of the area; and Andy Asell and Chris Kahle (IGS) provided GIS mapping technical help. Od 800 800.
Recommended publications
  • Stratographic Coloumn of Iowa
    Iowa Stratographic Column November 4, 2013 QUATERNARY Holocene Series DeForest Formation Camp Creek Member Roberts Creek Member Turton Submember Mullenix Submember Gunder Formation Hatcher Submember Watkins Submember Corrington Formation Flack Formation Woden Formation West Okoboji Formation Pleistocene Series Wisconsinan Episode Peoria Formation Silt Facies Sand Facies Dows Formation Pilot Knob Member Lake Mills Member Morgan Member Alden Member Noah Creek Formation Sheldon Creek Formation Roxana/Pisgah Formation Illinoian Episode Loveland Formation Glasford Formation Kellerville Memeber Pre-Illinoian Wolf Creek Formation Hickory Hills Member Aurora Memeber Winthrop Memeber Alburnett Formation A glacial tills Lava Creek B Volcanic Ash B glacial tills Mesa Falls Volcanic Ash Huckleberry Ridge Volcanic Ash C glacial tills TERTIARY Salt & Pepper sands CRETACEOUS "Manson" Group "upper Colorado" Group Niobrara Formation Fort Benton ("lower Colorado ") Group Carlile Shale Greenhorn Limestone Graneros Shale Dakota Formation Woodbury Member Nishnabotna Member Windrow Formation Ostrander Member Iron Hill Member JURASSIC Fort Dodge Formation PENNSYLVANIAN (subsystem of Carboniferous System) Wabaunsee Group Wood Siding Formation Root Formation French Creek Shale Jim Creek Limestone Friedrich Shale Stotler Formation Grandhaven Limestone Dry Shale Dover Limestone Pillsbury Formation Nyman Coal Zeandale Formation Maple Hill Limestone Wamego Shale Tarkio Limestone Willard Shale Emporia Formation Elmont Limestone Harveyville Shale Reading Limestone Auburn
    [Show full text]
  • Download Printable Version of the Geology and Why It Matters Story
    Geology and Why it Matters This story was made with Esri's Story Map Journal. Read the interactive version on the web at http://arcg.is/qrG8W. The geology, landforms and land features are extremely important components of watersheds. They influence water quality, hydrology and watershed resiliency. Every watershed has critical areas where water interacts with and mobilizes contaminants, including non-point and point source contributions to surface water bodies. Where and how nutrients, bacteria and/or pesticides are mobilized to reach surface water can be better understood through a careful study of subsurface hydrology, or hydrogeology, which, according to the Iowa Geological and Water Survey Bureau, “allows better identification for sources, pathways and delivery points for groundwater and contaminants transported through the watershed’s subsurface geological plumbing system.” Diagram courtesy of Iowa DNR Iowa Geological Survey The highly developed karst topography and highly permeable bedrock layers of the Upper Iowa River increase the depth from which actively circulating groundwater contributes to stream flows, making an understanding of the hydrogeology even more important. Fortunately, the Iowa Geological and Water Survey Bureau completed a detailed mapping project of bedrock geologic units, key subsurface horizons, and surficial karst features in the Iowa portion of the Upper Iowa River watershed in 2011. The project “provides information on the subsurface part of the watersheds, which is necessary for evaluating the vulnerability of groundwater to nonpoint-source contamination, the groundwater contributions to surface water contamination, and for targeting best management practices for water quality improvements.” The map on the right shows the surface elevation of bedrock in the state of Iowa and the Upper Iowa River Watershed.
    [Show full text]
  • Columnals (PDF)
    2248 22482 2 4 V. INDEX OF COLUMNALS 8 Remarks: In this section the stratigraphic range given under the genus is the compiled range of all named species based solely on columnals assigned to the genus. It should be noted that this range may and often differs considerably from the range given under the same genus in Section I, because that range is based on species identified on cups or crowns. All other abbreviations and format follow that of Section I. Generic names followed by the type species are based on columnals. Genera, not followed by the type species, are based on cups and crowns as given in Section I. There are a number of unlisted columnal taxa from the literature that are indexed as genera recognized on cups and crowns. Bassler and Moodey (1943) did not index columnal taxa that were not new names or identified genera with the species unnamed. I have included some of the omissions of Bassler and Moodey, but have not made a search of the extensive literature specifically for the omitted citations because of time constraints. Many of these unlisted taxa are illustrated in the early state surveys of the eastern and central United States. Many of the columnal species assigned to genera based on cups or crowns are incorrect assignments. An uncertain, but significant, number of the columnal genera are synonyms of other columnal genera as they are based on different parts of the stem of a single taxon. Also a number of the columnal genera are synonyms of genera based on cups and crowns as they come from more distal parts of the stem not currently known to be associated with the cup or crown.
    [Show full text]
  • An Examination of the Devonian Bedrock and Overlying Pleistocene Sediments at Messerly & Morgan Quarries, Blackhawk County, Iowa
    FromFFrroomm OceanOOcceeaann tottoo Ice:IIccee:: AnAAnn examinationeexxaammiinnaattiioonn ofooff thetthhee DevonianDDeevvoonniiaann bedrockbbeeddrroocckk andaanndd overlyingoovveerrllyyiinngg PleistocenePPlleeiissttoocceennee sedimentssseeddiimmeennttss ataatt MesserlyMMeesssseerrllyy &&& MorganMMoorrggaann Quarries,QQuuaarrrriieess,, BlackBBllaacckk HawkHHaawwkk County,CCoouunnttyy,, IowaIIoowwaa Geological Society of Iowa ______________________________________ April 24, 2004 Guidebook 75 Cover photograph : University of Northern Iowa Professor and field trip leader Dr. Jim Walters points to a stromatoporoid-rich bed in the Osage Springs Member of the Lithograph City Formation at the Messerly Quarry, the first stop of this field trip From Ocean to Ice: An examination of the Devonian bedrock and overlying Pleistocene sediments at Messerly & Morgan Quarries, Blackhawk County, Iowa prepared and led by: James C. Walters Department of Earth Science University of Northern Iowa Cedar Falls, IA 50614 John R. Groves Department of Earth Science University of Northern Iowa Cedar Falls, IA 50614 Sherman Lundy 4668 Summer St. Burlington IA 52601 with contributions by: Bill J. Bunker Iowa Geological Survey Iowa Department Natural Resources Iowa City, Iowa 52242-1319 Brian J. Witzke Iowa Geological Survey Iowa Department Natural Resources Iowa City, Iowa 52242-1319 April 24, 2004 Geological Society of Iowa Guidebook 75 i ii Geological Society of Iowa TABLE OF CONTENTS From Ocean to Ice: An examination of the Devonian bedrock and overlying Pleistocene
    [Show full text]
  • Revised Correlation of Silurian Provincial Series of North America with Global and Regional Chronostratigraphic Units 13 and D Ccarb Chemostratigraphy
    Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units 13 and d Ccarb chemostratigraphy BRADLEY D. CRAMER, CARLTON E. BRETT, MICHAEL J. MELCHIN, PEEP MA¨ NNIK, MARK A. KLEFF- NER, PATRICK I. MCLAUGHLIN, DAVID K. LOYDELL, AXEL MUNNECKE, LENNART JEPPSSON, CARLO CORRADINI, FRANK R. BRUNTON AND MATTHEW R. SALTZMAN Cramer, B.D., Brett, C.E., Melchin, M.J., Ma¨nnik, P., Kleffner, M.A., McLaughlin, P.I., Loydell, D.K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F.R. & Saltzman, M.R. 2011: Revised correlation of Silurian Provincial Series of North America with global 13 and regional chronostratigraphic units and d Ccarb chemostratigraphy. Lethaia,Vol.44, pp. 185–202. Recent revisions to the biostratigraphic and chronostratigraphic assignment of strata from the type area of the Niagaran Provincial Series (a regional chronostratigraphic unit) have demonstrated the need to revise the chronostratigraphic correlation of the Silurian System of North America. Recently, the working group to restudy the base of the Wen- lock Series has developed an extremely high-resolution global chronostratigraphy for the Telychian and Sheinwoodian stages by integrating graptolite and conodont biostratigra- 13 phy with carbonate carbon isotope (d Ccarb) chemostratigraphy. This improved global chronostratigraphy has required such significant chronostratigraphic revisions to the North American succession that much of the Silurian System in North America is cur- rently in a state of flux and needs further refinement. This report serves as an update of the progress on recalibrating the global chronostratigraphic correlation of North Ameri- can Provincial Series and Stage boundaries in their type area.
    [Show full text]
  • Strophomenide and Orthotetide Silurian Brachiopods from the Baltic Region, with Particular Reference to Lithuanian Boreholes
    Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes PETRAS MUSTEIKIS and L. ROBIN M. COCKS Musteikis, P. and Cocks, L.R.M. 2004. Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes. Acta Palaeontologica Polonica 49 (3): 455–482. Epeiric seas covered the east and west parts of the old craton of Baltica in the Silurian and brachiopods formed a major part of the benthic macrofauna throughout Silurian times (Llandovery to Pridoli). The orders Strophomenida and Orthotetida are conspicuous components of the brachiopod fauna, and thus the genera and species of the superfamilies Plec− tambonitoidea, Strophomenoidea, and Chilidiopsoidea, which occur in the Silurian of Baltica are reviewed and reidentified in turn, and their individual distributions are assessed within the numerous boreholes of the East Baltic, particularly Lithua− nia, and attributed to benthic assemblages. The commonest plectambonitoids are Eoplectodonta(Eoplectodonta)(6spe− cies), Leangella (2 species), and Jonesea (2 species); rarer forms include Aegiria and Eoplectodonta (Ygerodiscus), for which the new species E. (Y.) bella is erected from the Lithuanian Wenlock. Eight strophomenoid families occur; the rare Leptaenoideidae only in Gotland (Leptaenoidea, Liljevallia). Strophomenidae are represented by Katastrophomena (4 spe− cies), and Pentlandina (2 species); Bellimurina (Cyphomenoidea) is only from Oslo and Gotland. Rafinesquinidae include widespread Leptaena (at least 11 species) and Lepidoleptaena (2 species) with Scamnomena and Crassitestella known only from Gotland and Oslo. In the Amphistrophiidae Amphistrophia is widespread, and Eoamphistrophia, Eocymostrophia, and Mesodouvillina are rare. In the Leptostrophiidae Mesoleptostrophia, Brachyprion,andProtomegastrophia are com− mon, but Eomegastrophia, Eostropheodonta, Erinostrophia,andPalaeoleptostrophia are only recorded from the west in the Baltica Silurian.
    [Show full text]
  • Bedrock Geology of Dodge County, Wisconsin (Wisconsin Geological
    MAP 508 • 2021 Bedrock geology of Dodge County, Wisconsin DODGE COUNTY Esther K. Stewart 88°30' 88°45' 88°37'30" 88°52'30" 6 EXPLANATION OF MAP UNITS Tunnel City Group, undivided (Furongian; 0–155 ft) FOND DU LAC CO 630 40 89°0' 6 ! 6 20 ! 10 !! ! ! A W ! ! 1100 W ! GREEN LAKE CO ! ! ! WW ! ! ! ! DG-92 ! ! ! 1100 B W! Includes Lone Rock and Mazomanie Formations. These formations are both DG-53 W ! «49 ! CORRELATION OF MAP UNITS !! ! 7 ! !W ! ! 43°37'30" R16E _tc EL709 DG-1205 R15E W R14E R15E DG-24 W! ! 1 Quaternary ! 980 ! W W 1 ! ! ! 6 DG-34 6 _ ! 1 R17E Os Lake 1 R16E 6 interbedded and laterally discontinuous and therefore cannot be mapped 1 6 W ! ! 1100 !! 175 940 Waupun DG-51 ! 980 « Oa ! R13E 6 Emily R14E W ! 43°37'30" ! ! ! 41 ¤151 B «49 ! ! ! ! Opc ! Drew «68 ! W ! East ! ! ! individually at this scale in Dodge County. Overlies Elk Mound Group across KW313 940 ! ! ! ! ! ! 940 ! W B ! ! - ! ! W ! ! ! ! ! ! !! Waupun ! W ! Undifferentiated sediment ! ! W! B 000m Cr W! ! º Libby Cr ! 3 INTRUSIVE SUPRACRUSTAL 3 1020 ! ! Waupun ! DG-37 W ! ! º 1020 a sharp contact. W ! 50 50 N ! ! KS450 ! ! ! IG300 ! B B Airport ! RO703 ! ! Brownsville ! ! ! ! ! ! 1060 ! ROCKS W ! ! ROCKS Unconsolidated sediments deposited by modern and glacial processes. 940 ° ! Qu ! W Br Rock SQ463 B ! Pink, gray, white, and green; coarse- to fine-grained; moderately to poorly 980 B River B B ! ! KT383 ! ! Generally 20–60 feet (ft) thick; ranges from absent where bedrock crops ! !! ! ! ! ! ! Su Lower Silurian ° ! ! ! ! ! 940 860 ! ! ! ! ! ! ! ! ! ! sorted; glauconitic sandstone, siltstone, and mudstone with variable W ! B B B ! ! ! 980 ! ! ! 780 ! Kummel !! out to more than 200 ft thick in preglacial bedrock valleys.
    [Show full text]
  • Groundwater Issues in the Paleozoic Plateau a Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery
    GGroundwaterroundwater IssuesIssues inin tthehe PaleozoicPaleozoic PlateauPlateau A Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery Iowa Groundwater Association Field Trip Guidebook No. 1 Iowa Geological and Water Survey Guidebook Series No. 27 Dunning Spring, near Decorah in Winneshiek County, Iowa September 29, 2008 In Conjunction with the 53rd Annual Midwest Ground Water Conference Grand River Center, Dubuque, Iowa, September 30 – October 2, 2008 Groundwater Issues in the Paleozoic Plateau A Taste of Karst, a Modicum of Geology, and a Whole Lot of Scenery Iowa Groundwater Association Field Trip Guidebook No. 1 Iowa Geological and Water Survey Guidebook Series No. 27 In Conjunction with the 53rd Annual Midwest Ground Water Conference Grand River Center, Dubuque, Iowa, September 30 – October 2, 2008 With contributions by M.K. Anderson Robert McKay Iowa DNR-Water Supply Engineering Iowa DNR-Geological and Water Survey Bruce Blair Jeff Myrom Iowa DNR-Forestry Iowa DNR-Solid Waste Michael Bounk Eric O’Brien Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Karen Osterkamp Lora Friest Iowa DNR-Fisheries Northeast Iowa Resource Conservation and Development Jean C. Prior Iowa DNR-Geological and Water Survey James Hedges Luther College James Ranum Natural Resources Conservation Service John Hogeman Winneshiek County Landfi ll Operator Robert Rowden Iowa DNR-Geological and Water Survey Claire Hruby Iowa DNR-Geographic Information Systems Joe Sanfi lippo Iowa DNR-Manchester Field Offi ce Bill Kalishek Gary Siegwarth Iowa DNR-Fisheries Iowa DNR-Fisheries George E. Knudson Mary Skopec Luther College Iowa DNR-Geological and Water Survey Bob Libra Stephanie Surine Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Huaibao Liu Paul VanDorpe Iowa DNR-Geological and Water Survey Iowa DNR-Geological and Water Survey Iowa Department of Natural Resources Richard Leopold, Director September 2008 CONTENTS INTRODUCTION .
    [Show full text]
  • Technical Report : Illinois Natural Areas Inventory
    illliii'p ]i i iiiilffl,'isiPSi fJi J! ! tUl! on or '"'^" before ,he La.es. Da.e !;S;ed ^1" .H.'W I .') 2001 MAR JUL 14 ^4 I 3 2003 AUG 1 8 1994 JIOV J^;.; 'J 4 M J! J OCT 9 1996 14 m 1 3 Wr1337 2007 JUL 1 8 DEC 07 1997 »r! I 1997 APR 91998 MAR 1811393 LI6I—O-l09« ILLINOIS NATURAL AREAS INVENTORY TECHNICAL REPORT UNIVERSITY OF AT L . _ .-AIGN BOOKSIAQKa TECHNICAL REPORT ILLINOIS NATURAL AREAS INVENTORY performed under contract to the ILLINOIS DEPARTMENT OF CONSERVATION by the DEPARTMENT OF LANDSCAPE ARCHITECTURE UNIVERSITY OF ILLINOIS • URBANA-CHAMPAIGN and the NATURAL LAND INSTITUTE ROCKFORD, ILLINOIS This study was conducted for the State of Illinois pursuant to Contract #50-75-226 of the Illinois De- partment of Conservation. The study was financed in part through a planning grant from the Heritage Conservation and Recreation Service, U.S. Depart- ment of the Interior, under provisions of the Land and Water Conservation Fund Act of 1965 (PL 88-578). Illinois Department of Conservation personnel re- sponsible for preparing the Request for Proposals and coordinating the work included John Schweg- man, contract liaison officer, and Dr. Edward Hoff- man, Dr. Robert Lee, Marlin Bowles, and Robert Schanzle. Published November 1978 Illinois Natural Areas Inventory, Urbana For additional Information Natural Areas Section Illinois Department of Conservation 605 Stratton Building Springfield, Illinois 62706 Dv\ '^^ Thf Illinois Natural Areas hwfutory u'os a 3-year project to find and describe natural areas for the Illinois Department of Consen'ation.
    [Show full text]
  • Deposition of the Cambrian Eau Claire Formation, Wisconsin: Hydrostratigraphic Implications of Fine-Grained Cratonic Sandstones
    DEPOSITION OF THE CAMBRIAN EAU CLAIRE FORMATION, WISCONSIN: HYDROSTRATIGRAPHIC IMPLICATIONS OF FINE-GRAINED CRATONIC SANDSTONES Wasinee Aswasereelert1, J.A. (Toni) Simo1, 2, and David L. LePain3 ABSTRACT Understanding the link between the sedimentology and the hydrogeology of the Eau Claire Formation within Dane and adjacent counties in western to south-central Wisconsin is critical to fl uid fl ow studies. The Eau Claire is a relatively fi ne-grained fossiliferous sandstone unit that lies between coarser-grained, highly porous, unfossiliferous sandstone of the underlying Mount Simon and the overlying Wonewoc Formations. It consists primarily of very fi ne- to medium-grained, variably feldspathic, glauconitic, and dolomitic sandstone locally interbedded with argillaceous siltstone and silty mudstone that has a coars- ening and thickening upward succession. On the basis of sedimentary structures, lithology, and bedding characteristics, the Eau Claire is divided into fi ve lithofacies representing different paleowater depths of an epeiric shelf environment. The Eau Claire shallowing-upward succession is subdivided into up to fi ve depositional cycles laid down by repetitive shoreface progradation ranging from offshore–shoreface– foreshore facies bounded at the base by a marine fl ooding surface. In places, sharp-based shoreface facies rest directly over offshore facies attesting to lowering of sea level. The depositional cycles and the structural contour and isopach maps suggest that the Eau Claire lithofacies deposition and distribution were controlled by the substrate, including the Wisconsin Arch and syndepositional faults, and sea level. The Eau Claire depositional facies model parallels a hydrostratigraphic model in which confi ning prop- erties of the Eau Claire Formation decrease from offshore to foreshore facies.
    [Show full text]
  • General and Environmental
    GEOLOGY OF THE MOSCOW QUARRY, NORTHWEST MUSCATINE COUNTY, IOWA ___________________________________________________ by Jed Day Deborah Quade Raymond R. Anderson Geological Society of Iowa ______________________________________ Oct 22, 2011 Guidebook 89 Cover Photograph The cover photo was taken near the entrance of the Moscow Quarry looking west at the Devonian working face and the overlying Quaternary section. Geological Society of Iowa GEOLOGY OF THE MOSCOW QUARRY, NORTHWEST MUSCATINE COUNTY, IOWA Field Trip Leaders: Jed Day Deborah Quade Department of Geography & Geology Iowa Dept. Natural Resources Illinois State University Iowa Geological Survey Normal, Illinois 61790-4400 Iowa City, IA 52242-1319 [email protected] [email protected] Raymond R. Anderson Iowa Dept. Natural Resources Iowa Geological Survey Iowa City, IA 52242-1319 [email protected] October 22, 2011 Geological Society of Iowa Guidebook 89 This and other Geological Society of Iowa guidebooks may be downloaded as pdf files, or printed copies may be ordered from the GSI webpage at: www.iowageology.org i Guidebook 89 ii Geological Society of Iowa TABLE OF CONTENTS Introduction to Wendling Quarries Inc. Moscow Quarry by Raymond R. Anderson....................................................................................................1 Quaternary Geology Near the Moscow Quarry, Muscatine County, Iowa by Deborah J. Quade, E. Arthur Bettis III, Kathy Woida, Stephanie Tassier-Surine…….3 Introduction…………………………………………………………………….…….3 Regional Stratigraphic Units………………………………………………...…….....5
    [Show full text]
  • Geological-Geotechnical Studies for Siting the Superconducting Super Collider in Illinois: Results of Drilling Large- Diameter Test Holes in 1986
    LIBRARY. «-*/ f ion a JUN 1 2 1997 !L (jcul. ourWEY ; QoJ> 2«AAX-W f&S: EGN 124 GEOLOGICAL-GEOTECHNICAL STUDIES FOR SITING THE SUPERCONDUCTING SUPER COLLIDER IN ILLINOIS: RESULTS OF DRILLING LARGE- DIAMETER TEST HOLES IN 1986 / \ / 3 S z^rf / / y s > ',',',',', ' ', ', ', / ',',',',',, / ^ / / / zrzzzrzzzzz zrzzzzzzzzz. ^/^ ^ * / / / / ^7 R. C. Vaiden / / / / s^r M. J. Hasek / ; ; / ; / / / / /^7 / / / / / y C. R. Gendron * ^ / / ^ 7 ' '. /. /. B. B. Curry - '.', ; / / / ^ — A. M. Graese / / s / s z 5^^ ^ ^ R. A. Bauer /7777 > v v y y -Mum 1988 iiUN 1 3 ENVIRONMENTAL GEOLOGY NOTES 124 ''l. STATE GEOiOfiMKiip Department of Energy and Natural Resources ILLINOIS STATE GEOLOGICAL SURVEY LIBRARY. Vaiden, Ft. C. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of drilling large-diameter test holes in 1986/ by R. C. Vaiden ... et al.—Champaign, IL: Illinois State Geological Survey, 1988. 57 p.; 28 cm. — (Environmental Geology Notes; 124) Bibliography: p. 42-44. 1. Geology— Illinois—Kane County. 2. Geology— Illinois—DuPage County. 3. Hydrogeology— Illinois—Kane County. 4. Hydrogeol- ogy— Illinois—DuPage County. 5. Geophysical exploration— Illinois, Northeastern. 6. SSC. I. Title. II. Series. Printed by authority of the State of Illinois 1 1988 1 1500 ILLINOIS STATE GEOLOGICAL SURVEY 3 3051 00005 5016 GEOLOGICAL-GEOTECHNICAL STUDIES FOR SITING THE SUPERCONDUCTING SUPER COLLIDER IN ILLINOIS: RESULTS OF DRILLING LARGE- DIAMETER TEST HOLES IN 1986 ILLINOIS STATE GEOLOGICAL SURVEY Morris W. Leighton, Chief Natural Resources Building 61 5 East Peabody Drive Champaign, Illinois 61820 R. C. Vaiden M. J. Hasek C. R. Gendron B. B. Curry A. M. Graese R. A. Bauer 1988 ENVIRONMENTAL GEOLOGY NOTES 124 JUN13i U.
    [Show full text]