Growth and Variation in Eurypterus Remipes Dekay

Total Page:16

File Type:pdf, Size:1020Kb

Growth and Variation in Eurypterus Remipes Dekay Bull. geo!. Instn Univ. Upsala: N. S. 4, 6: 81-114, 1974 GROWTH AND VARIATION IN EURYPTERUS REMIPES DEKAY By H. E. Andrews, ]. C. Brower, S. ]. Gould, and R. A. Reyment Andrews, H. E., Brower, ]. C., Gould, S. ]., Reyment, R. A.: Growth and Variation in EurypteruJ remipes DeKay, Bull. geo!. Instn Univ. Upsala, Vol. N. S 4, pp. 81-114. Th e statistic al analysis of two subspecies of Eurypterus remipes shows that both of them display very high integratio:� among all measures considered. The prosomal set of variables are highly integrated with the body set. There is little allometry in bivariate growth sequences. As best known at the present time, trilobites show an analogous leve! of integration; there is therefore reason to suspect that the gr owth relationships here recorded are wide-spread among some arthropods. Ontogenetic growth is analysed for E. remipes remipes, after the establishment of growth stages by a stepwise multivariate technique. Canonical correlation is used to examine the pattern of integration between head and body. This is, again, exceptionally high. Other methods of multi­ variate statistics are applied the analysis of the underlying relationships between variables. The palaeoec ology of the Fiddlersto Gr een Member (Bertie Formation, Upper Silurian) is discussed. H. E. Andrews, Department of Geology, \'(/ellesley Colle�;e, \'(/ellesley, Mass., U.S.A., S. ]. Gould, Museum of Comparative Zoology, Harvard University, Cambridge, Mass., U.S.A., ]. C. Brower, Department of Geology, Syracuse University, U.S.A., R. A. Reyment, Paleontologiska Institutionen, Uppsala Unit;ersitet. Su,eden. INTRODUCTION remipes and the E. tetragonophthalmus of Fischer Ever smce Mitchill (1818) recorded the first de Waldheim (synonym E. fischeri) , the other eurypterid from the Upper Silurian of Oneida taxon examined in this paper, became E. remipes County, New York, this group of fossils has fasci­ tetragonophthalmus. nated palaeonrologists. The original Eurypterus Kjellesvig-Waering (1958, p. 1136) , in dis­ remipes DeKay came from the Fiddlers' Green cussing the high degree of likeness between the Member of the Bertie Formation: this stratigra­ two subspecies (for a long time, the European phical leve! is still an abundant source of excell­ one was referred the American remipes), wrote to e:uly preserved specimens. The original specimen that "differences between them are minor and was imerpreted as a catfish of the genus Silurus probably of a geographic or tempora! character" (the appendages of the prosoma were identified and on p. 1137, "E. remipes tetragonophthalmus as the barbels of the fish). Since E. remipes, the is doser to E. remipes remipes than to any other type species of the genus, was first described by American subspecies". He noted that the prosomas DeKay (1825, p. 375, pl. 29), it has been the of the two have the same length-to-width propor­ object of numerous studies. Note-:vorthy are those tions, but the lateral eyes of tetragonopbthalmus of Hall (1859), Holm (1899), and Clarke and appear be larger, the prosomal ornament is to Ruedemann (1912). Kjellesvig-Waering (1958) different, the relative proportions of the sixth grouped several taxa, previously considered as and sevemh segments of the paddle are reversed species, around E. remipes as subspecies. Conse­ and the pre-telson of remipes lacks the epimeral quently, according ro this revision, the E. remipes spines possessed by the other subspecies. More of DeKay, Hall and Clarke became E. remipes recently, StØrmer (1973) has come to the con- 82 H. E. Andrews, ]. C. Brower, S. ]. Gould, and R. A. Reyment dusion that differences in the paddles of the indeed: the extreme intensity of integration among European and American forms are great enough nearly all measures is also the primary condusion warrant generic separation and has therefore of Andrews' and Gould's work. Moreover, the few to made tetragonophthalmus the type of his new multivariate studies of trilobites that we know genus, Baltoeurypterus. Kjellesvig-Waering has (Eldredge, 1972, in particular, and references informed us that he is in agreement with StØnner. therein) have independently discovered the exi­ We have Iooked into the grounds for this genus stence of very high correlations and little allometry and Gould and Reyment think that such slight in omogenetic series. W e feel that we may there­ differences can hardly be of more than minor fore be stating a quite general principle of growth taxonomic importance. There is a distinct danger in certain arthropods. Ostracods display a much that we have here a case of the "key character lower leve! of integration (Reyment, 1960, 1963, concept". That is, a certain character is defined as 1966). being of "generic" value (rather than "specific" Gould and Andrews studied a collection of or "varietal") and then one is forced honour eurypterids from the upper Silurian of the Baltic to every variation in this character with a high-leve! island Saaremaa, Estonian S.S.R. The collection taxonomic designation. The variational patterns was made in 1930 by W. Patten (who used them of the European and American eurypterids are to help argue his case for an arthropod origin of very dose indeed. Future study may bring light the vertebrates). Several hundred excellent speci­ to more substantial differences, bur until then, we have mens, ranging fro:n l to 30 cm in length, are chosen a conservative approach by retaining both in the Museum of Comparative Zoology, Harvard taxa as subspecies of Eurypterus remipes. University. The analysis was made on 44 specimens evenly spanning the entire range of size; all had As far as we know, this is the first detailed complete prosomas as well as the first segment of statistical study of a eurypterid appear. Indeed, to the mesosoma and seem to be preserved without Kjellesvig-Waering (1958) observed that the distortion. variability of the eurypterids had yet to be studied. The material studied by Brower and Reyment Qualitative observations occur scattered through­ comes from collections at Colgate University, out the literature, the most comprehensive being Hamilton, N.Y. and Syracuse University, Syracuse, those of Clarke and Ruedemann (1912); most of N.Y. the growth changes they noted in their qualitative appraisal of E. remipes remipes show up dearly in our statistical study. ACKNOWLEDGMENTS The purposes of this work are to study the ontogeny and variation of two dosely related Brower and Reyment are indebted to Colgate eurypterids, to contrast and compare the results University for giving them access a magnificient to obtained, and to attempt a palaeoecological analy­ collection of E. remipes remipes and, in particular, sis for E. remipes remipes. Professor Robert M. Linsley of the Geology to Befare making any general statements about the Department for giving us a set of prosomal nature of functional integration in eurypterids, we measurements on the Colgate specimens. A great must know whether the patterns discovered in one deal of the basic work on the material of E. remi­ species can be detected in related taxa. Thus, pes remipes was carried out as a dass project Brower and Reyment were pleased to learn that by the following students at Syracuse University: Andrews and Gould had done an independent Maurice Cucci, John Douglas, Duane Eppler, Susan mu!tivariate analysis of a European eurypterid. Siwek, John Kennedy, and Ghan Shyam Srivastava. Because the two groups worked in complete in­ Acknowledgment is made in the text for the resu!ts dependence and used different measures and obtained by them. methods, a set of similar results would seem all Measurements on the Syracuse University E. re­ the more compelling. The similarity is striking mipes remipes prosomas and Limulus polyphemus Growtb and Variation in Eurypterus remipes DeKay 83 were made by Edna S. Kaneshiro (1962, un­ ANALYSIS OF EURYPTERUS REMIPES published Master's thesis) who also did much pre­ TETRAGONOPHTHALMUS liminary processing of these data. By The Syracuse University specimens were collec­ Harold E. Andrews and Stephen Jay Gould ted by Adawia Alousi, Nora Kula, Sachiko Naka­ gawa, E. S. Kaneshiro, Ralph Watson, J. L. Craft Twenty seven measurements were made on each and the writers. specimen. We attempted to establish a well-spaced We thank Robert M. Linsley, Erik N. Kjelles­ grid of general lengths, widths and diagonals; vig-Waering (Amoco International Oil Co., Chi­ allometric changes produced by gradients of diffe­ cago, Illinois, USA), C. D. Waterston (Royal rential growth (Huxley, 1932; Gould, 1966) should Scottish Museum, Edinburgh) and D. F. Merriam have a multivariate expression in the clustering (Syracuse University) for reviewing the manu­ of dimensions expressing a gradient. W e also script and making helpful suggestions for im­ constructed a set of measures for anatomical fea­ provement. tures of particular interest (the eyes and the first The identifications of most of the species occur­ mesosomal segment). ring with Eurypterus remipes remipes were kindly We analyzed our 44 X 27 matrix with COVAP made by Professor John W. Wells of Cornell for R and Q mode principal components factor University (lthaca, New York), Dr. Erik Kjel­ analysis with options for varimax and oblique lesvig-Waering, and Professor Robert M. Linsley. rotations. As these techniques assume a linear The text figures were drawn by Mrs. Dagmar relationship between pairs of variables, we trans­ Engstrom and the manuscript typed by Mrs. Eva formed all measures tO their logarithms before Eklind, both of the Palaeontological Department, the analysis. About the only allometric relation­ Uppsala University. The Syracuse University and ship consistently found in arthropods is the nega­ Uppsala University Computer Centers provided tive differential growth of the eyes. Bivariate computer time; James Wilson of the Syracuse plots show that the Saaremaa eurypterids are no Computer Center aided in APL programming. exception to this general trend. Reyment's contribution to the study was made The variables are listed in the explanation to while he was a Visiting Professor at Syracuse Fig.
Recommended publications
  • Biostratigraphy of Some Early Middle Silurian Ostracoda, Eastern Canada PART 11- Additional Silurian Arthropoda from Arctic and Eastern Canada
    This document was produced by scanning the original publication. Ce document est Ie produit d'une numerisation par balayage de la publication originale. BULLETIN 200 PART I - Biostratigraphy of some early Middle Silurian Ostracoda, eastern Canada PART 11- Additional Silurian Arthropoda from Arctic and eastern Canada M. J. Copeland Ottawa Canada Price $1.50 1971 PART I - Biostratigraphy of some Early Middle Silurian Ostracoda, eastern Canada PART II-Additional Silurian Arthropoda from Arctic and eastern Canada 1,IOO.1970.6119 GEOLOGICAL SURVEY OF CANADA BULLETIN 200 PART I - Biostratigraphy of some Early Middle Silurian Ostracoda, eastern Canada PART II-Additional Silurian Arthropoda from Arctic and eastern Canada By M. J. Copeland DEPARTMENT OF ENERGY, MINES AND RESOURCES CANADA © Crown Copyrights reserved Available by mail from Information Canada, Ottawa, from neological Survey of Canada, 601 Booth St., Oltawa. and at the following Information Canada bookshops: HALIFAX 1735 Barrington Street MONTREAL Mterna-Vie Building, 1182 St. Catherine Street West OITAWA 171 Slater Street TORONTO 221 Yonge Street WINNIPEG Mall Center Building, 499 Portage Avenue VANCOUVER 657 Granville Street or through your bookseller A deposit copy of this publication is also available for reference in public libraries across Canada Price: $1.50 Catalogue No. M42-200 Price subject to change without notice Information Canada Ottawa, 1971 PREFACE As more detailed information is obtained on the stra­ tigraphic occurrence and systematic paleontology of Paleozoic Arthropoda, it is increasingly evident that these forms present a useful key for determining the paleontological zonation and age relationships of the enclosing rocks. They are particularly important in strata of lacustrine, brackish, or restricted marine environments in which rapidly evolving leperditiid ostra­ codes, eurypterids, and phyllocarids may occur to the exclusion of other distinctive faunal elements.
    [Show full text]
  • Revised Correlation of Silurian Provincial Series of North America with Global and Regional Chronostratigraphic Units 13 and D Ccarb Chemostratigraphy
    Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units 13 and d Ccarb chemostratigraphy BRADLEY D. CRAMER, CARLTON E. BRETT, MICHAEL J. MELCHIN, PEEP MA¨ NNIK, MARK A. KLEFF- NER, PATRICK I. MCLAUGHLIN, DAVID K. LOYDELL, AXEL MUNNECKE, LENNART JEPPSSON, CARLO CORRADINI, FRANK R. BRUNTON AND MATTHEW R. SALTZMAN Cramer, B.D., Brett, C.E., Melchin, M.J., Ma¨nnik, P., Kleffner, M.A., McLaughlin, P.I., Loydell, D.K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F.R. & Saltzman, M.R. 2011: Revised correlation of Silurian Provincial Series of North America with global 13 and regional chronostratigraphic units and d Ccarb chemostratigraphy. Lethaia,Vol.44, pp. 185–202. Recent revisions to the biostratigraphic and chronostratigraphic assignment of strata from the type area of the Niagaran Provincial Series (a regional chronostratigraphic unit) have demonstrated the need to revise the chronostratigraphic correlation of the Silurian System of North America. Recently, the working group to restudy the base of the Wen- lock Series has developed an extremely high-resolution global chronostratigraphy for the Telychian and Sheinwoodian stages by integrating graptolite and conodont biostratigra- 13 phy with carbonate carbon isotope (d Ccarb) chemostratigraphy. This improved global chronostratigraphy has required such significant chronostratigraphic revisions to the North American succession that much of the Silurian System in North America is cur- rently in a state of flux and needs further refinement. This report serves as an update of the progress on recalibrating the global chronostratigraphic correlation of North Ameri- can Provincial Series and Stage boundaries in their type area.
    [Show full text]
  • A New Eurypterid from the Saaremaa- (Oesel-) Beds in Estonia
    TARTU ÜLIKOOLI GEOLOOGIA-INSTITUUDI TOIMETUSED .M 37 PUBLIGA TIONS OF THE GEOLOGICAL INSTITUTION .M 37 OF THE UNIVERSITY OF TARTU A NEW EURYPTERID FROM THE SAAREMAA- (OESEL-) BEDS IN ESTONIA BY LEIF STÖRMER TARTU 1934 K. Mattieseni trükikoda o-ü., Tartu 1934. A new Eurypterid from the Saaremaa- (Oesal-) bads in Estonia. B y L ei f Stör m er. The famous Eurypterus fi�cheri-faunaof Rootsiküla (Rootziküll), Saaremaa, became known to science through the monographs of N iesz kow sk i (1858), Sc hmidt (1.883), and Ho lm (1898). The unique preservation of the eurypterid shells has made it possible to study in detail the finest morphv logical structures of these old arthropods. By means of a special metbod, Ho lm succeeded in separating the chitinaus tests from the matrix. The Saaremaa beds have also furnished a considerable supply of vertebrates and crustaceans. In later years Professor dr. W. Patten from Dartmouth College, Hanover, N. H., U. S. A. made extensive collections in tbe Saaremaa beds. He was specially interested in the remains of the primitive vertebra tes, but also collected a considerable mate­ rial of merostomes. The sad death of Professor Pat.ten in the fall of 1932 prevented him frorn finishing bis interesting studies on the valuable material of prim itive >ertebrates. In May 1932 I had the fortunate opportunity to visit Professor Patten in Dartmouth Col­ lege. He very kindly showed me bis fine collections of eurypterids from Saaremaa. Looking through the material I became aware of an eurypterid specimen , belanging to a genus not known, from tbe Eurypterus fischeri-fauna of Saaremaa.
    [Show full text]
  • Year in Review 2018/2019
    Contents Shaping the Museum of the Future 2 Philanthropy on View 4 The Year at a Glance 8 Compelling Mix of Original and Touring Exhibitions 12 ROM Objects on Loan Locally and Globally 26 Leading-Edge Research 36 ROM Scholarship in Print 46 Community Connections 50 Access to First Peoples Art and Culture 58 Programming That Inspires 60 Learning at the ROM 66 Members and Volunteers 70 Digital Readiness 72 Philanthropy 74 ROM Leadership 80 Our Supporters 86 2 royal ontario museum year in review 2018–2019 3 One of the initiatives we were most proud of in 2018 was the opening of the Daphne Cockwell Gallery dedicated to First Peoples art & culture as free to the public every day the Museum is open. Initiatives such as this represent just one step on our journey. ROM programs and exhibitions continue to be bold, ambitious, and diverse, fostering discourse at home and around the world. Being Japanese Canadian: reflections on a broken world, Gods in My Home: Chinese New Year with Ancestor Portraits and Deity Prints and The Evidence Room helped ROM visitors connect past to present and understand forces and influences that have shaped our world, while #MeToo & the Arts brought forward a critical conversation about the arts, institutions, and cultural movements. Immersive and interactive exhibitions such as aptured in these pages is a pivotal Zuul: Life of an Armoured Dinosaur and Spiders: year for the Royal Ontario Museum. Fear & Fascination showcased groundbreaking Shaping Not only did the Museum’s robust ROM research and world-class storytelling. The Cattendance of 1.34 million visitors contribute to success achieved with these exhibitions set the our ranking as the #1 most-visited museum in stage for upcoming ROM-originals Bloodsuckers: the Canada and #7 in North America according to The Legends to Leeches, The Cloth That Changed the Art Newspaper, but a new report by Deloitte shows World: India’s Painted and Printed Cottons, and the the ROM, through its various activities, contributed busy slate of art, culture, and nature ahead.
    [Show full text]
  • Hypothesis of Eurypterid Palaeoecology
    Palaeogeography, Palaeoclimatology, Palaeoecology 311 (2011) 63–73 Contents lists available at SciVerse ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Testing the ‘mass-moult-mate’ hypothesis of eurypterid palaeoecology Matthew B. Vrazo ⁎, Simon J. Braddy Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, UK article info abstract Article history: The eurypterids (Arthropoda: Chelicerata), some of the earliest arthropods to undertake amphibious Received 6 May 2011 excursions onto land, are generally rare in the fossil record, but are sometimes found in great abundance, for Received in revised form 16 July 2011 example in the Late Silurian Bertie Group of New York State. The mass-moult-mate hypothesis has been Accepted 29 July 2011 proposed to explain such occurrences, whereby eurypterids undertook mass migrations into near shore Available online 5 August 2011 settings and lagoons to moult, mate and spawn, similar to the behaviour of living horseshoe crabs. This hypothesis is tested using measurements from over 600 Eurypterus specimens from three localities in the Keywords: Arthropod Bertie Group; Eurypterus remipes, from the Fiddlers Green Formation, and the slightly larger Eurypterus Exuvia lacustris, from the overlying Williamsville Formation. Disarticulation patterns support previous evidence for Taphonomy moulted assemblages. A significant predominance of female exuviae is noted at each locality, unlike studies on Biofacies modern Limulus populations. Therefore, a modified mass-mate-spawn-moult hypothesis is proposed here: Silurian males returned to deeper waters after mating, whereas females, having mated, remained at the breeding sites Eurypterus to deposit their eggs before moulting. After hatching, eurypterid larvae and juveniles remained in these spawning grounds until they matured and could move to deeper water, in comparison with Limulus.
    [Show full text]
  • Zootaxa,Taxonomy of the Catfish Genus Pseudoplatystoma Bleeker
    Zootaxa 1512: 1–38 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Taxonomy of the catfish genus Pseudoplatystoma Bleeker (Siluriformes: Pimelodidae) with recognition of eight species URIEL ANGEL BUITRAGO–SUÁREZ and BROOKS M. BURR Department of Biological Sciences, Harper College, Palatine, Illinois 60067, USA; Telephone: 847–925–6718, e–mail: [email protected] and Department of Zoology, Southern Illinois University Carbondale, Carbondale, Illinois 62901, USA Abstract The genus Pseudoplatystoma Bleeker consists of three species long recognized as: P. fasciatum (Linnaeus), P. tigrinum (Valenciennes), and P. corruscans (Spix & Agassiz), and five species recently recognized or described here: P. punctifer (Castelnau), P. reticulatum Eigenmann & Eigenmann, P. orinocoense n. sp., P. m et ae n se n. sp., and P. magdaleniatum n. sp. The eight species form a monophyletic group with two clades that are supported by anatomical features (i.e., skeletal anatomy and myology). One clade (P. tigrinum and P. m e ta e ns e) is restricted to the Orinoco and Amazon basins, and the other clade, comprised of the remaining six species, is found in the Guyanas, Orinoco, Amazon, and Paraná basins. The species are diagnosed on the basis of body shape, color pattern (e.g., bars, loops, and spots), skeletal anatomy, and verte- bral numbers. Pseudoplatystoma punctifer and P. tigrinum) are sympatric in the Amazon Basin, P. m e ta e ns e and P. orinocoense in the Orinoco Basin, and P. corruscans and P. reticulatum, are sympatric in the Paraná. Pseudoplatystoma magdaleniatum (Magdalena basin) and P.
    [Show full text]
  • Trip A2 Paleoecology and Taphonomy of Some Eurypterid-Bearing
    Trip A2 Paleoecology and Taphonomy of Some Eurypterid-Bearing Horizons in the Finger Lakes Region of New York State STEPHEN M. MAYER 5475 East Lake Road, Romulus, NY 14541, USA INTRODUCTION The Upper Silurian Bertie Group in western and central New York State is famous for its eurypterid (Arthropoda: Chelicerata) Lagerstätten. From the earliest recognition of the genus Eurypterus by American zoologist James Ellsworth Dekay (1825), studies have concentrated on eurypterid growth and variation (see Andrews et al., 1974; Cuggy, 1994). More recent works have focused on ecdysis (Tetlie et al., 2008), and mating (Braddy, 2001; Vrazo and Braddy, 2011), as well as trace fossils and taphonomy (Vrazo et al., 2014, 2016, 2017, and Vrazo and Ciurca, 2018). Recurrent taphonomic patterns are recognized regardless of species with various hypotheses proposed to explain these occurrences. The purpose of this investigation is to provide an overview of the preservation patterns observed in the fossil record. The contortion of Eurypterus remipes and Erieopterus microphthalmus exuviae collected from different Finger Lake sites, as well as specimens held in the Samuel J. Ciurca Eurypterid Collection at Yale Peabody Museum of Natural History are interpreted to be the result of flexure of eurypterid exoskeletons by submarine paleocurrents. The present contribution and accompanying field guide review the facies and geological settings of the Bertie Group with an emphasis on eurypterid-bearing horizons in west central New York as well as a discussion of specific aspects of the preservation of these fossils. PALEOGEOGRAPHY AND PALEOENVIRONMENTAL SETTINGS Silurian stratigraphy and paleoenvironmental conditions of western and central New York State have been studied extensively by Rickard (1969, 1975), Ciurca (1973), Belak (1980), Hamell and Ciurca (1986), Brett et al.
    [Show full text]
  • Geology of the Grand River Watershed an Overview of Bedrock and Quaternary Geological Interpretations in the Grand River Watershed
    Geology of the Grand River Watershed An Overview of Bedrock and Quaternary Geological Interpretations in the Grand River watershed Prepared by Bob Janzen, GIT December 2018 i Table of Contents List of Maps ..................................................................................................................... iii List of Figures .................................................................................................................. iii 1.0 Introduction ........................................................................................................... 1 2.0 Bedrock Geology .................................................................................................. 1 Algonquin Arch ......................................................................................................... 2 Bedrock Cuestas ...................................................................................................... 3 2.1 Bedrock Surface ................................................................................................. 4 2.2 Bedrock Formations of the Grand River watershed ........................................... 8 2.2.1 Queenston Formation ................................................................................ 15 2.2.2 Clinton–Cataract Group ............................................................................. 15 2.2.2.1 Whirlpool Formation ............................................................................ 16 2.2.2.2 Manitoulin Formation ..........................................................................
    [Show full text]
  • Amur Fish: Wealth and Crisis
    Amur Fish: Wealth and Crisis ББК 28.693.32 Н 74 Amur Fish: Wealth and Crisis ISBN 5-98137-006-8 Authors: German Novomodny, Petr Sharov, Sergei Zolotukhin Translators: Sibyl Diver, Petr Sharov Editors: Xanthippe Augerot, Dave Martin, Petr Sharov Maps: Petr Sharov Photographs: German Novomodny, Sergei Zolotukhin Cover photographs: Petr Sharov, Igor Uchuev Design: Aleksey Ognev, Vladislav Sereda Reviewed by: Nikolai Romanov, Anatoly Semenchenko Published in 2004 by WWF RFE, Vladivostok, Russia Printed by: Publishing house Apelsin Co. Ltd. Any full or partial reproduction of this publication must include the title and give credit to the above-mentioned publisher as the copyright holder. No photographs from this publication may be reproduced without prior authorization from WWF Russia or authors of the photographs. © WWF, 2004 All rights reserved Distributed for free, no selling allowed Contents Introduction....................................................................................................................................... 5 Amur Fish Diversity and Research History ............................................................................. 6 Species Listed In Red Data Book of Russia ......................................................................... 13 Yellowcheek ................................................................................................................................... 13 Black Carp (Amur) ......................................................................................................................
    [Show full text]
  • Description of the Niagara Quadrangle
    DESCRIPTION OF THE NIAGARA QUADRANGLE. By E. M. Kindle and F. B. Taylor.a INTRODUCTION. different altitudes, but as a whole it is distinctly higher than by broad valleys opening northwestward. Across northwestern GENERAL RELATIONS. the surrounding areas and is in general bounded by well-marked Pennsylvania and southwestern New York it is abrupt and escarpments. i nearly straight and its crest is about 1000 feet higher than, and The Niagara quadrangle lies between parallels 43° and 43° In the region of the lower Great Lakes the Glaciated Plains 4 or 5 miles back from the narrow plain bordering Lake Erie. 30' and meridians 78° 30' and 79° and includes the Wilson, province is divided into the Erie, Huron, and Ontario plains From Cattaraugus Creek eastward the scarp is rather less Olcott, Tonawanda, and Lockport 15-minute quadrangles. It and the Laurentian Plateau. (See fig. 2.) The Erie plain abrupt, though higher, and is broken by deep, narrow valleys thus covers one-fourth of a square degree of the earth's sur­ extending well back into the plateau, so that it appears as a line face, an area, in that latitude, of 870.9 square miles, of which of northward-facing steep-sided promontories jutting out into approximately the northern third, or about 293 square miles, the Erie plain. East of Auburn it merges into the Onondaga lies in Lake Ontario. The map of the Niagara quadrangle shows escarpment. also along its west side a strip from 3 to 6 miles wide comprising The Erie plain extends along the base of the Portage escarp­ Niagara River and a small area in Canada.
    [Show full text]
  • Defining Habitat Demands of Wels Catfish (Silurus Glanis) in a Swedish Lake - a Look Into Muddy Waters
    Faculty of Natural Resources and Agricultural Sciences Defining habitat demands of Wels catfish (Silurus glanis) in a Swedish lake - A look into muddy waters David Spange Department of Aquatic Resources Institute of Freshwater Research Master’s thesis • 30 hec Master Programme in Biology - Limnology Drottningholm 2018 Defining habitat demands of Wels catfish (Silurus glanis) in a Swedish lake - A look into muddy waters Definiering av den europeiska malens (Silurus glanis) habitatkrav i en svensk sjö. David Spange Supervisor: Henrik Jeuthe, Swedish University of Agricultural Sciences, Department of aquatic resources Assistant supervisor: Joep De Leeuw, Swedish University of Agricultural Sciences, Department of aquatic resources Examiner: Kerstin Holmgren, Swedish University of Agricultural Sciences, Department of aquatic resources Credits: 30 hec Level: A2E Course title: Independent Project in Biology – Master’s thesis Course code: EX0565 Programme/education: Master Programme in Biology Limnology – Ecology and Environment of Inland Waters, 120 hec Place of publication: Drottningholm Year of publication: 2018 Cover picture: David spange Online publication: https://stud.epsilon.slu.se Keywords: Wels catfish, Silurus glanis, Sweden, Spawning, Spawning habitats, acoustic camera, ARIS, telemetry Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Aquatic Resources Abstract The wels catfish (Silurus glanis) is a rare species in Swedish waters, it demands higher water temperatures than most lakes and rivers can offer. One of the few locations with naturally occurring wels catfish in Sweden is Lake Båven, situated about an hour and a half south of Stockholm, in the county of Södermanland. Due to declines of the Swedish catfish populations, which are mostly a result of human impacts such as the destruction of spawning habitats, conservational actions are now needed in purpose to secure the future of the species in Sweden.
    [Show full text]
  • Late Silurian Trilobite Palaeobiology And
    LATE SILURIAN TRILOBITE PALAEOBIOLOGY AND BIODIVERSITY by ANDREW JAMES STOREY A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Geography, Earth and Environmental Sciences University of Birmingham February 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Trilobites from the Ludlow and Přídolí of England and Wales are described. A total of 15 families; 36 genera and 53 species are documented herein, including a new genus and seventeen new species; fourteen of which remain under open nomenclature. Most of the trilobites in the British late Silurian are restricted to the shelf, and predominantly occur in the Elton, Bringewood, Leintwardine, and Whitcliffe groups of Wales and the Welsh Borderland. The Elton to Whitcliffe groups represent a shallowing upwards sequence overall; each is characterised by a distinct lithofacies and fauna. The trilobites and brachiopods of the Coldwell Formation of the Lake District Basin are documented, and are comparable with faunas in the Swedish Colonus Shale and the Mottled Mudstones of North Wales. Ludlow trilobite associations, containing commonly co-occurring trilobite taxa, are defined for each palaeoenvironment.
    [Show full text]