( 12 ) United States Patent

Total Page:16

File Type:pdf, Size:1020Kb

( 12 ) United States Patent US010106817B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 106 ,817 B2 Weinberger ( 45 ) Date of Patent: Oct . 23 , 2018 ( 54 ) COMPOSITIONS AND METHODS OF USE 2009/ 0210952 A1* 8/ 2009 Wu .. .. .. C12N 15 /63 THEREOF FOR IDENTIFYING ANTI -VIRAL 800 / 13 2011/ 0136896 A1 * 6 /2011 Fu .. .. .. CO7K 14 /005 AGENTS 514 /44 R 2012/ 0156238 AL 6 / 2012 Silverstein et al. ( 71 ) Applicant : The J . David Gladstone Institutes , 2013 / 0345294 A1 * 12/ 2013 Yang .. .. .. .. C12N 15 /63 San Francisco , CA (US ) 514 / 44 R ( 72 ) Inventor: Leor S . Weinberger , San Francisco , 2015 /0218584 A1 * 8 /2015 Payne .. .. .. .. .. .. C12N 15 /85 CA (US ) 435 / 455 ( 73 ) Assignee : The J . David Gladstone Institutes, FOREIGN PATENT DOCUMENTS San Francisco , CA (US ) WO WO 199303769 3 / 1993 Wo WO 199309239 5 / 1993 ( * ) Notice : Subject to any disclaimer , the term of this WO WO 199319191 9 / 1993 patent is extended or adjusted under 35 WO WO 199412649 6 / 1994 U . S . C . 154 ( b ) by 0 days . WO WO 199428938 12 / 1994 WO WO 199500655 1 / 1995 WO WO 199511984 5 / 1995 (21 ) Appl. No. : 14 / 767, 541 WO WO 2009155535 A2 * 12 / 2009 . .. A61K 31/ 7105 ( 22 ) PCT Filed : Feb . 13 , 2014 OTHER PUBLICATIONS ( 86 ) PCT No .: PCT/ US2014 /016296 Zheng C , Brownlie R , Babiuk LA , van Drunen Littel- van den Hurk $ 371 ( c ) ( 1 ) , S . Characterization of the nuclear localization and nuclear export ( 2 ) Date : Aug . 12 , 2015 signals ofbovine herpesvirus 1 VP22 . J Virol. Sep . 2005 ;79 ( 18 ) : 11864 72 . * ( 87) PCT Pub . No. : WO2014 /127148 Bieleski L , Talbot SL . Kaposi' s sarcoma- associated herpesvirus PCT Pub . Date : Aug . 21, 2014 VCyclin open reading frame contains an internal ribosome entry site . J Virol . Feb . 2001; 75 ( 4 ) :1864 - 9 . * (65 ) Prior Publication Data Souza AP, Haut L , Reyes- Sandoval A , Pinto AR . Recombinant viruses as vaccines against viral diseases . Braz J Med Biol Res . Apr. US 2016 /0002668 A1 Jan . 7 , 2016 2005 ; 38 ( 4 ) :509 - 22. Epub Apr. 13 , 2005 . * Teng MW , Bolovan - Fritts C , Dar RD , Womack A , Simpson ML , Related U . S . Application Data Shenk T , Weinberger LS . An endogenous accelerator for viral gene expression confers a fitness advantage . Cell. Dec. 21, 2012 ; 151 (7 ) :1569 ( 60 ) Provisional application No . 61/ 764 , 854, filed on Feb . 80. * 14 , 2013 Asmar J , Wiebusch L , Truss M , Hagemeier C . The putative zinc finger of the human cytomegalovirus IE2 86 - kilodalton protein is (51 ) Int . Ci. dispensable for DNA binding and autorepression , thereby demar GOIN 33 /50 ( 2006 .01 ) cating a concise core domain in the C terminus of the protein . J C12N 15 / 86 ( 2006 .01 ) ( 52 ) U . S . CI. Virol. Nov. 2004 ;78 ( 21 ) : 11853 -64 . * CPC .. .. C12N 15 /86 ( 2013 .01 ) ; GOIN 33 /5023 ( Continued ) ( 2013 . 01 ) ; C12N 2710 / 16122 ( 2013 .01 ) ; CI2N 2710 / 16143 ( 2013 .01 ) ; C12N 2740 / 15043 Primary Examiner — Catherine S Hibbert ( 2013 .01 ) ; C12N 2830 /00 (2013 .01 ) ; C12N 2830 /48 (2013 .01 ) ; C12N 2830 /60 (2013 .01 ) ; ( 74 ) Attorney , Agent, or Firm — Michael B . Rubin ; C12N 2840 / 203 (2013 . 01 ) Bozicevic , Field & Francis LLP (58 ) Field of Classification Search None See application file for complete search history. (57 ) ABSTRACT A recombinant expression vector comprising a nucleotide ( 56 ) References Cited sequence encoding a herpesvirus transactivator , where the nucleotide sequence is operably linked to a herpesvirus U . S . PATENT DOCUMENTS control element is provided as are cell lines genetically 5 , 674 ,730 A * 10 / 1997 Baim .. .. .. .. CO7K 14 / 005 modified to express a herpesvirus transactivator under the 435 /320 . 1 control of a herpesvirus control element. Also provided are 5 , 945 ,276 A * 8 / 1999 Wu .. .. .. .. C12N 15 /85 435 / 235 . 1 methods of identifying agents that disrupt feedback regula 2002/ 0065243 A1 * 5 / 2002 Fung .. A61K 38 / 1709 tion of a herpesvirus transcriptional control element by a 514 /44 A herpesvirus transactivator . 2002/ 0151049 A1 * 10 / 2002 Mueller .. .. .. A61K 38 /47 435 /320 . 1 2005/ 0003343 A1 * 1/ 2005 Palese .. C12N 15 / 1086 435 / 5 24 Claims, 62 Drawing Sheets 2005/ 0266564 Al 12/ 2005 Yao et al . Specification includes a Sequence Listing. US 10 ,106 ,817 B2 Page 2 (56 ) References Cited Choi , K . H . et al; (2005 ) “ Activation of CMV promoter- controlled glycosyltransferase and beta - galactosidase glycogenes by butyrate , tricostatin A , and 5 -aza - 2 ' -deoxycytidine ” ; Glycoconj J 22 ; pp . OTHER PUBLICATIONS 63 -69 . Sussman H . “ Choosing the Best Reporter Assay . ” The Scientist . Jul. Cuevas - Bennett, C ., and Shenk , T. ; ( 2008) “ Dynamic histone H3 2001. http :/ /www .the - scientist .com / ? articles. view /articleNo / 135071 acetylation and methylation at human cytomegalovirus promoters title / Choosing - the - Best -Reporter -Assay / . * during replication in fibroblasts ” ; J Virol 82, pp . 9525 -9536 . “ Epitope Tags in Protein Research : Tag Selection & Immunotechniques. ” Damania et al ; ( 2004 ) “ Comparison of the Rta / Orf50 transactivator Sigma Life Science. Feb . 12 , 2012, http : // www . sigmaaldrich . com / proteins of gamma- 2 -herpesviruses . " ; J Virol. 78 ; pp . 5491 -5499 . content/ dam / sigma- aldrich /docs / Sigma - Aldrich /Brochure / 1 / epitope Deshaies , R . J ., and Ferrell, J. E . , Jr. ; ( 2001) “ Multisite phosphorylation tags - in - protein - research .pdf . * and the countdown to S phase ” ; Cell107 ; pp . 819 - 822 . Dull , T . et al ; ( 1998 ) “ A third - generation lentivirus vector with a Luke G , Escuin H , De Felipe P , Ryan M . 2A to the fore — research , conditional packaging system ” ; J Virol 72 ; pp . 8463 - 8471 . technology and applications. Biotechnol Genet Eng Rev. 2010 ; 26 : 223 Dwarakanath , R . S . et al ; (2001 ) “ The use of recombinant baculoviruses 60 . * for sustained expression of human cytomegalovirus immediate Fukui et al ( " Establishment of a Cell - Based Assay for Screening of early proteins in fibroblasts ” ; ' Virology 284 ; pp . 297 - 307 . Compounds Inhibiting Very Early Events in the Cytomegalovirus Everett, R . D . , and Chelbi- Alix , M . K ., ( 2007 ) “ PML and PML Replication Cycle and Characterization of a Compound Identified nuclear bodies: implications in antiviral defence " ; Biochimie 89 ; pp . Using the Assay " Antimicrobiol ( Year : 2008 ) . * 819 -830 . Lu , Rui et al ( 1998 ) “ The herpesvirus transactivator VP16 mimics Fan , S . et al; (2005 ) “ Valproic acid enhances gene expression from a human basic domain leucine zipper protein , luman , in its inter viral gene transfer vectors ” ; J Virol Methods 125 , pp . 23 -33 . action with HCF ” ; Journal of Virology ; pp . 6291 -6297 . Flannery et al. , ( 1997 ) ; “ Efficient photoreceptor- targeted gene expres Luganini, A . et al ; (2008 ) “ New cell -based indicator assays for the sion in vivo by recombinant adeno -associated virus” ; PNAS 94 : pp . detection of human cytomegalovirus infection and screening of 6916 -6921 . inhibitors of viral immediate -early 2 protein activity ” ; Journal of Flemington ; (2001 ) “ Herpesvirus lytic replication and the cell cycle : Applied Microbiology 105 ( 6 ) ; pp . 1791 - 1801 . arresting new developments ” ; J Virol. 75 ( 10 ) :4475 -4481 . Papworth , Monika et al ( 2003 ) “ Inhibition of herpes simplex virus Flotte et al ., ( 1993 ) " Stable in vivo expression of the cystic fibrosis 1 gene expression by designer zinc - finger transcription factors” transmembrane conductance regulator with an adeno -associated Proc Natl Acad Sci US A . 100 ( 4 ) ; pp . 1621 - 1626 . virus vector” ; PNAS 90 ( 22 ) : 10613 - 10617 . Ali et al ; ( 1996 ) “Gene transfer into the mouse retina mediated by Garcia - Pino , A . et al ; ( 2010 ) “ Allostery and intrinsic disorder an adeno -associated viral vector ” Hum Mol Genet 5 : pp . 591 594 . mediate transcription regulation by conditional cooperativity ” ; Cell Ali et al ; ( 1998 ) " Adeno - Associated Virus Gene Transfer to Mouse 142 , pp . 101 - 111. Retina ” ; Human Gene Therapy 9 ; pp . 81 86 . Gardner, T . S . et al; ( 2000 ) “ Construction of a genetic toggle switch Barrasa , M . I. et al; (2005 ) “ The phosphorylation status of the in Escherichia coli” ; Nature 403 ; pp . 339 - 342 . serine - rich region of the human cytomegalovirus 86 -kilodalton Gautier , I. , et al ; ( 2001) “ Homo - FRET microscopy in living cells to major immediate - early protein IE2 / IEP86 affects temporal viral measure monomer -dimer transition of GFP - tagged proteins" ; Biophys gene expression " ; Journal of Virology 79 , pp . 1428 - 1437 . J 80 ; pp . 3000 - 3008 . Bennett et al; “ Real - Time, Noninvasive in Vivo Assessment of Gebert , S . et al; ( 1997 ) “ The UL84 protein of human cytomegalovirus Adeno - Associated Virus- Mediated Retinal Transduction " ; Investi acts as a transdominant inhibitor of immediate -early -mediated gative Ophthalmology & Visual Science, vol . 38 , No . 13; (Dec . transactivation that is able to prevent viral replication ” ; J Virol 71; 1997 ) pp . 2857 - 2863 pp . 7048 -7060 . Black , H . S . ( 1999 ) “ Stabilized feed -back amplifiers ” ; (Reprinted Haase , A . T ., (2010 ) “ Targeting early infection to prevent HIV - 1 from Electrical Engineering , vol. 53 , p . 114 - 120 , 1934 ) . Proceed mucosal transmission ” ; Nature 464 ; pp . 217 - 223 . ings of the IEEE 87 , pp . 379 - 385 . Hofmann , H ., et al ; (2000 ) “ Covalent modification of the transactiva Bolovan - Fritts, C . and Wiedeman , J . A . (2001 ). “ Human cytomegalovirus tor protein IE2 - p86 of human
Recommended publications
  • Micelle Formation and the Hydrophobic Effect†
    6778 J. Phys. Chem. B 2004, 108, 6778-6781 Micelle Formation and the Hydrophobic Effect† Lutz Maibaum,‡ Aaron R. Dinner,§ and David Chandler*,‡ Department of Chemistry, UniVersity of California, Berkeley, California 94720, and Department of Chemistry, UniVersity of Chicago, Chicago, Illinois 60637 ReceiVed: NoVember 14, 2003; In Final Form: January 14, 2004 The tendency of amphiphilic molecules to form micelles in aqueous solution is a consequence of the hydrophobic effect. The fundamental difference between micelle assembly and macroscopic phase separation is the stoichiometric constraint that frustrates the demixing of polar and hydrophobic groups. We present a theory for micelle assembly that combines the account of this constraint with a description of the hydrophobic driving force. The latter arises from the length scale dependence of aqueous solvation. The theoretical predictions for temperature dependence and surfactant chain length dependence of critical micelle concentrations for nonionic surfactants agree favorably with experiment. I. Introduction in accord with experimental observations. An appendix is used to augment the discussion in section II. This paper concerns the formation of micelles, which are the simplest form of amphiphilic assemblies. Our treatment of this II. Theory phenomenon is based upon the length scale dependence of hydrophobic effects.1,2 Namely, the free energy to solvate small A. Law of Mass Action. We consider an aqueous solution hydrophobic molecules scales linearly with solute volume, of neutral amphiphilic molecules (i.e., nonionic surfactants), each whereas that to solvate large hydrophobic species scales linearly of which has a single alkyl chain as its hydrophobic tail. In with surface area. The crossover from one regime to the other general, amphiphiles can form aggregates of various sizes and occurs when the oily species presents a surface in water shapes.
    [Show full text]
  • Tutorial on Working with Micelles and Other Model Membranes
    Tutorial on Working with Micelles and Model Membranes Chuck Sanders Dept. of Biochemistry, Dept. of Medicine, and Center for Structural Biology Vanderbilt University School of Medicine. http://structbio.vanderbilt.edu/sanders/ March, 2017 There are two general classes of membrane proteins. This presentation is on working with integral MPs, which traditionally could be removed from the membrane only by dissolving the membrane with detergents or organic solvents. Multilamellar Vesicles: onion-like assemblies. Each layer is one bilayer. A thin layer of water separates each bilayer. MLVs are what form when lipid powders are dispersed in water. They form spontaneously. Cryo-EM Micrograph of a Multilamellar Vesicle (K. Mittendorf, C. Sanders, and M. Ohi) Unilamellar Multilamellar Vesicle Vesicle Advances in Anesthesia 32(1):133-147 · 2014 Energy from sonication, physical manipulation (such as extrusion by forcing MLV dispersions through filters with fixed pore sizes), or some other high energy mechanism is required to convert multilayered bilayer assemblies into unilamellar vesicles. If the MLVs contain a membrane protein then you should worry about whether the protein will survive these procedures in folded and functional form. Vesicles can also be prepared by dissolving lipids using detergents and then removing the detergent using BioBeads-SM dialysis, size exclusion chromatography or by diluting the solution to below the detergent’s critical micelle concentration. These are much gentler methods that a membrane protein may well survive with intact structure and function. From: Avanti Polar Lipids Catalog Bilayers can undergo phase transitions at a critical temperature, Tm. Native bilayers are usually in the fluid (liquid crystalline) phase.
    [Show full text]
  • The Mechanism Whereby Bile Acid Micelles Increase the Rate of Fatty Acid and Cholesterol Uptake Into the Intestinal Mucosal Cell
    The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell. H Westergaard, J M Dietschy J Clin Invest. 1976;58(1):97-108. https://doi.org/10.1172/JCI108465. Research Article Studies were undertaken to define the mechanism whereby bile acid facilitates fatty acid and cholesterol uptake into the intestinal mucosal cell. Initial studies showed that the rate of uptake (Jd) of several fatty acids and cholesterol was a linear function of the concentration of these molecules in the bulk phase if the concentration of bile acid was kept constant. In contrast, Jd decreased markedly when the concentration of bile acid was increased relative to that of the probe molecule but remained essentially constant when the concentration of both the bile acid and probe molecule was increased in parallel. In other studies Jd for lauric acid measured from solutions containing either 0 or 20 mM taurodeoxycholate and saturated with the fatty acid equaled 79.8+/-5.2 and 120.8+/-9.4 nmol.min(-1).100 mg(-1), respectively: after correction for unstirred layer resistance, however, the former value equaled 113.5+/-7.1 nmol.min(- 1).100 mg(-1). Maximum values of Jd for the saturated fatty acids with 12, 16, and 18 carbons equaled 120.8+/-9.4, 24.1+/-3.2, and 13.6+/-1.1 nmol.min(-1).100 mg(-1), respectively. These values essentially equaled those derived by multiplying the maximum solubility times the passive permeability coefficients appropriate for each of these compounds. The theoretical equations were then derived that define the expected behavior of Jd for the various lipids under these different experimental circumstances where the mechanism of absorption was assumed to occur either by […] Find the latest version: https://jci.me/108465/pdf The Mechanism Whereby Bile Acid Micelles Increase the Rate of Fatty Acid and Cholesterol Uptake into the Intestinal Mucosal Cell HEmN WESTEGAABD and JoHN M.
    [Show full text]
  • Rheology of Surfactants: Wormlike Micelles and Lamellar Liquid Crystalline Phase - O
    RHEOLOGY - Vol. II - Rheology of Surfactants: Wormlike Micelles and Lamellar Liquid Crystalline Phase - O. Manero, F. Bautista, J. E. Puig RHEOLOGY OF SURFACTANTS: WORMLIKE MICELLES AND LAMELLAR LIQUID CRYSTALLINE PHASES O. Manero Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, México, D.F., 04510 F. Bautista Departamento de Física, Universidad de Guadalajara, Guadalajara, Jal., 44430, México J. E. Puig Departamento de Ingeniería Química, Universidad de Guadalajara, Guadalajara, Jal., 44430, México Keywords: Surfactants. Rheology, Linear viscoelasticity, Nonlinear viscoelasticity, Wormlike micelles, Lamellar liquid crystalline phases, Shear banding, Shear thickening, Stability, Heterogeneous flows, Flow-concentration coupling. Contents 1. Introduction 2. Wormlike Micellar Systems 2.1. Linear Viscoelasticity 2.2. Non-linear Viscoelasticiy 2.2.1. Shear banding Flow 2.2.2. Transient flows 2.2.3. Stability 2.3. Shear banding and linear viscoelasticity 2.4. Flow concentration coupling 2.5. Shear thickening 3. Surfactant Lamellar Liquid Crystal Phases 4. Concluding Remarks Acknowledgements Glossary UNESCO – EOLSS Bibliography Biographical Sketches Summary SAMPLE CHAPTERS In this chapter, the rheology of a special class of complex fluids is analyzed and reviewed. In particular, attention is focused on the dynamic behavior of systems constituted by aqueous phases of surfactants, namely, micellar solutions and lamellar liquid crystalline phases. Surfactants are molecules that possess a polar head and a non- polar tail (i.e., amphiphiles). The polar head may be nonionic or it may posses a charge, in which case they are classified as anionic (negatively charged), cationic (positively charged) and zwitterionic or amphoteric. In ionic surfactants, the polar head is balanced ©Encyclopedia of Life Support Systems (EOLSS) RHEOLOGY - Vol.
    [Show full text]
  • Micelle and Bilayer Formation of Amphiphilic Janus Particles in a Slit-Pore
    Int. J. Mol. Sci. 2012, 13, 9431-9446; doi:10.3390/ijms13089431 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Micelle and Bilayer Formation of Amphiphilic Janus Particles in a Slit-Pore Gerald Rosenthal * and Sabine H. L. Klapp Institute of Theoretical Physics, School II, Technical University Berlin, Sec. EW 7-1, Hardenbergstr. 36, Berlin D-10623, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-30-314-23763; Fax: +49-30-314-21130. Received: 5 June 2012; in revised form: 17 July 2012 / Accepted: 18 July 2012 / Published: 26 July 2012 Abstract: We employ molecular dynamics simulations to investigate the self-assembly of amphiphilic Janus particles in a slit-pore consisting of two plane-parallel, soft walls. The Janus particles are modeled as soft spheres with an embedded unit vector pointing from the hydrophobic to the hydrophilic hemisphere. The structure formation is analyzed via cluster size distributions, density and polarization profiles, and in-plane correlation functions. At low temperatures and densities, the dominating structures are spherical micelles, whereas at higher densities we also observe wall-induced bilayer formation. Finally, we compare the MD results with those from a previous density functional study. Keywords: Janus particles; amphiphilic systems; confinement; cluster formation; micelles; icosahedrons; bilayers 1. Introduction The term “Janus”-particles (named after the two-faced roman god) generally refers to particles composed of at least two chemically or physically distinctive surfaces. Significant experimental progress over the last years (see, e.g., [1–6]) nowadays allows us to create a wide class of Janus particles, including particles with “conventional” amphiphilic, but also with electric dipolar or quadrupolar, and even magnetic properties.
    [Show full text]
  • Membrane Protein Structure Determination and Characterisation by Solution and Solid-State NMR
    biology Review Membrane Protein Structure Determination and Characterisation by Solution and Solid-State NMR Vivien Yeh , Alice Goode and Boyan B. Bonev * School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] (V.Y.); [email protected] (A.G.) * Correspondence: [email protected] Received: 21 October 2020; Accepted: 11 November 2020; Published: 12 November 2020 Simple Summary: Cells, life’s smallest units, are defined within the enclosure of thin, continuous membranes, which confine the molecular machinery required for the life and replication of cells. Crucially, membranes of cells establish and actively maintain distinctly different environments inside cells, including electrical and solute gradients vital to normal cellular functions. Membrane proteins are in charge of transport, electrical polarisation, signalling, membrane remodelling and other important functions. As such, membrane proteins are key drug targets and understanding their structure and function is essential to drug development and cellular control. Membrane proteins have physical characteristics that make such studies very challenging. Nuclear magnetic resonance is one advanced tool that enables structural studies of membrane proteins and their interactions at the atomic level of detail. We discuss the applications of NMR in solution and solid state to membrane protein studies alongside new developments in signal and sensitivity enhancement through dynamic nuclear polarisation. Abstract: Biological membranes define the interface of life and its basic unit, the cell. Membrane proteins play key roles in membrane functions, yet their structure and mechanisms remain poorly understood. Breakthroughs in crystallography and electron microscopy have invigorated structural analysis while failing to characterise key functional interactions with lipids, small molecules and membrane modulators, as well as their conformational polymorphism and dynamics.
    [Show full text]
  • Micelles, Dispersions, and Liquid Crystals in the Catanionic Mixture Bile Saltdouble-Chained Surfactant. the Bile Salt-Rich Area
    Langmuir 2000, 16, 8255-8262 8255 Micelles, Dispersions, and Liquid Crystals in the Catanionic Mixture Bile Salt-Double-Chained Surfactant. The Bile Salt-Rich Area Eduardo F. Marques,*,†,‡ Oren Regev,§ Håkan Edlund,| and Ali Khan† Physical Chemistry 1, Center for Chemistry and Chemical Engineering, P.O. Box 124, Lund University, Lund SE-221 00, Sweden, Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel, Departamento de Quı´mica, Universidade de Coimbra, 3049 Coimbra, Portugal, and Department of Chemistry and Process Technology, Chemistry, Mid Sweden University, SE-851 70 Sundsvall, Sweden Received February 15, 2000. In Final Form: August 1, 2000 The phase behavior and phase structure for the catanionic pair sodium taurodeoxycholate-didodecyl- dimethylammonium bromide (DDAB) are investigated, at 25 °C. A combination of techniques is used including light and electron microscopy, small-angle X-ray scattering, and pulsed field gradient NMR self-diffusion. The bile salt micellar solution incorporates large amounts of the double-chained amphiphile, with the solution region extending to equimolarity. On the contrary, the hexagonal liquid-crystalline phase is destabilized by the addition of small amounts of DDAB. At equimolarity, coacervation instead of precipitation is observed, with formation of a viscous isotropic solution and a very dilute one. In the water-rich part of the phase diagram, a peculiar type of phase separation occurs, involving the formation of very fine bluish dispersions and a region of coexistence of two dispersions (double dispersion region). Microscopy and self-diffusion data for the solution region indicate limited growth of the mixed micelles.
    [Show full text]
  • Effects of Hydrophobic Chain Length on the Micelles of Heptaoxyethylene Hexadecyl C16E7 and Octadecyl C18E7 Ethers
    Polymer Journal, Vol. 37, No. 5, pp. 368–375 (2005) Effects of Hydrophobic Chain Length on the Micelles of Heptaoxyethylene Hexadecyl C16E7 and Octadecyl C18E7 Ethers y Yoshiyuki EINAGA, Ai KUSUMOTO, and Akane NODA Department of Chemistry, Nara Women’s University, Kitauoya Nishi-machi, Nara 630-8506, Japan (Received January 4, 2005; Accepted February 1, 2005; Published May 15, 2005) ABSTRACT: Micelles of heptaoxyethylene hexadecyl C16E7 and octadecyl C18E7 ethers in dilute aqueous solu- tions were characterized at finite surfactant concentrations c by static (SLS) and dynamic light scattering (DLS) experi- ments at several temperatures T below the critical points, in order to examine the effects of hydrophobic chain length on size, shape, structure, etc., of the micelles. The SLS results were successfully analyzed by the thermodynamic theory formulated with wormlike spherocylinder model for SLS of micelle solutions, thereby yielding the molar mass Mw of the micelles as a function of c and the cross-sectional diameter d, indicating that the micelles assume a flexible spher- 2 1=2 ocylindrical shape. The radius of gyration hS i and hydrodynamic radius RH of the micelles as functions of Mw were found to be also well described by the corresponding theories for the wormlike spherocylinder or wormlike chain mod- els. The micelles grow in size with increasing T to greater length for longer hydrophobic chain, i.e., alkyl group of the surfactants. They were rather flexible compared to the micelles formed with other polyoxyethylen alkyl ethers. The cross-sectional diameter d and spacings s between adjacent hexaoxyethylene chains on the micellar surface were sim- ilar in the C16E7 and C18E7 micelles.
    [Show full text]
  • Rapid Critical Micelle Concentration (CMC) Determination Using Fluorescence Polarization Analysis of the Physical-Chemical Properties of Detergents
    Application Note Critical Micelle Concentration Determination Using Fluorescence Polarization Rapid Critical Micelle Concentration (CMC) Determination Using Fluorescence Polarization Analysis of the Physical-Chemical Properties of Detergents Paul Held Ph. D., Lab Manager, Applications Department, BioTek Instruments, Inc., Winooski, VT The determination of the critical micelle concentration (CMC) value of surfactants under different environmental conditions is important for a number of different biological and chemical processes. Because the CMC is not a constant value, shifting with different environmental conditions, it is important that a rapid, reliable and easy methodology be available to facilitate testing. Here we describe the rapid semi-automated determination of CMC values for surfactants in 384-well microplates using fluorescence polarization. Introduction Surfactants are amphiphilic compounds that have a molecular structure containing both a hydrophilic (water loving) and a hydrophobic (water hating) region. The hydrophobic region is usually a long chain aliphatic hydrocarbon, whereas the hydrophilic portion can be composed of an ionic or non-ionic polar group. The physical nature of these molecules bestows the ability to reduce surface tension of solutions and to self aggregate into colloids known as micelles. A micelle is an aggregation of surfactant Figure 1. Schematic drawing of Micelle formation. Key Words: molecules in a colloidal suspension. A typical micelle in aqueous solution forms with the hydrophilic head regions in contact with the Amphiphilic surfactants have numerous properties Fluorescence Polarization water and the hydrophobic aliphatic tail regions other than lowering of surface tension and are Critical Micelle Concentration buried in the inner portion of the micelle. Useful often labeled as to the use (e.g.
    [Show full text]
  • 1 (199-210)病毒14-4期3475换.Indd
    VIROLOGICA SINICA 2014, 29 (4): 199-210 DOI 10.1007/s12250-014-3475-1 RESEARCH ARTICLE Labeling of infl uenza viruses with synthetic fl uorescent and biotin-labeled lipids Natalia A Ilyushina1#, Evgeny S Chernyy2#, Elena Y Korchagina2, Aleksandra S Gambaryan3, Stephen M Henry4, Nicolai V Bovin2 1. Food and Drug Administration, 29 Lincoln Drive, Bethesda 20892, MD, USA 2. Shemyakin Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho Maklaya 16/10, Moscow 117997, Russia 3. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region 142782, Russia 4. Biotechnology Research Institute, AUT University, Private Bag 92006, Auckland 1142, New Zealand Direct labeling of virus particles is a powerful tool for the visualization of virus–cell interaction events. However, this technique involves the chemical modification of viral proteins that affects viral biological properties. Here we describe an alternative approach of influenza virus labeling that utilizes Function-Spacer-Lipid (FSL) constructs that can be gently inserted into the virus membrane. We assessed whether labeling with fl uorescent (fl uo-Ad-DOPE) or biotin-labeled (biot- CMG2-DOPE) probes has any deleterious effect on influenza virus hemagglutinin (HA) receptor specificity, neuraminidase (NA) activity, or replicative ability in vitro. Our data clearly show that neither construct signifi cantly affected infl uenza virus infectivity or viral affi nity to sialyl receptors. Neither construct infl uenced the NA activities of the infl uenza viruses tested, except the A/Puerto Rico/8/34 (H1N1) strain. Our data indicate that lipid labeling provides a powerful tool to analyze infl uenza virus infection in vitro.
    [Show full text]
  • Molecular Thermodynamics of Micellization: Micelle Size Distributions and Geometry Transitions
    Brazilian Journal of Chemical ISSN 0104-6632 Printed in Brazil Engineering www.abeq.org.br/bjche Vol. 33, No. 03, pp. 515 - 523, July - September, 2016 dx.doi.org/10.1590/0104-6632.20160333s20150129 MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS M. S. Santos1, F. W. Tavares1,2* and E. C. Biscaia Jr1 1Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, C.P. 68502, CEP: 21941-972, Rio de Janeiro, RJ - Brazil. E-mail: [email protected] 2Escola de Química, Universidade Federal do Rio de Janeiro, CEP: 21941-909, Rio de Janeiro - RJ, Brazil. (Submitted: February 26, 2015 ; Revised: June 10, 2015 ; Accepted: June 18, 2015) Abstract - Surfactants are amphiphilic molecules that can spontaneously self-assemble in solution, forming structures known as micelles. Variations in temperature, pH, and electrolyte concentration imply changes in the interactions between surfactants and micelle stability conditions, including micelle size distribution and micelle shape. Here, molecular thermodynamics is used to describe and predict conditions of micelle formation in surfactant solutions by directly calculating the minimum Gibbs free energy of the system, corresponding to the most stable condition of the surfactant solution. In order to find it, the proposed methodology takes into account the micelle size distribution and two possible geometries (spherical and spherocylindrical). We propose a numerical optimization methodology where the minimum free energy can be reached faster and in a more reliable way. The proposed models predict the critical micelle concentration well when compared to experimental data, and also predict the effect of salt on micelle geometry transitions.
    [Show full text]
  • Preparation of Nanoliposomes by Microfluidic Mixing in Herring-Bone
    www.nature.com/scientificreports OPEN Preparation of nanoliposomes by microfuidic mixing in herring-bone channel and the role of membrane fuidity in liposomes formation Jan Kotouček1,8, František Hubatka1,8, Josef Mašek1, Pavel Kulich1, Kamila Velínská1, Jaroslava Bezděková1,2, Martina Fojtíková1, Eliška Bartheldyová1, Andrea Tomečková1, Jana Stráská3, Dominik Hrebík4, Stuart Macaulay5, Irena Kratochvílová 6*, Milan Raška 1,7* & Jaroslav Turánek1* Introduction of microfuidic mixing technique opens a new door for preparation of the liposomes and lipid-based nanoparticles by on-chip technologies that are applicable in a laboratory and industrial scale. This study demonstrates the role of phospholipid bilayer fragment as the key intermediate in the mechanism of liposome formation by microfuidic mixing in the channel with “herring-bone” geometry used with the instrument NanoAssemblr. The fuidity of the lipid bilayer expressed as fuorescence anisotropy of the probe N,N,N-Trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl) was found to be the basic parameter afecting the fnal size of formed liposomes prepared by microfuidic mixing of an ethanol solution of lipids and water phase. Both saturated and unsaturated lipids together with various content of cholesterol were used for liposome preparation and it was demonstrated, that an increase in fuidity results in a decrease of liposome size as analyzed by DLS. Gadolinium chelating lipids were used to visualize the fne structure of liposomes and bilayer fragments by CryoTEM. Experimental data and theoretical calculations are in good accordance with the theory of lipid disc micelle vesiculation. Liposomes, self-assembled nanoparticles based on lipid bilayers are widely employed for biomedical and bio- technological purposes1.
    [Show full text]