Identification of Lyotropic Liquid Crystalline Mesophases

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Lyotropic Liquid Crystalline Mesophases CHAPTER 16 Identification of Lyotropic Liquid Crystalline Mesophases Stephen T. Hyde Australian National University, Canberra, Australia 1 Introduction: Liquid Crystals versus 2.1.8 Intermediate mesophases: Crystals and Melts .................. 299 (novel bi- and polycontinuous 2 Lyotropic Mesophases: Curvature and space partitioners) ......... 316 Types 1 and 2 ..................... 301 2.2 Between order and disorder: 2.1 Ordered phases ................. 307 topological defects .............. 317 2.1.1 Smectics: lamellar (“neat”) 2.2.1 Molten mesophases: mesophases .............. 307 microemulsion (L1,L2)and 2.1.2 Gel mesophases (Lβ ) ....... 307 sponge (L3) phases ........ 318 2.1.3 Lamellar mesophases (Lα) ... 308 2.3 Probing topology: swelling laws .... 319 2.1.4 Columnar mesophases ...... 308 3 A Note on Inhomogeneous Lyotropes .... 321 2.1.5 Globular mesophases: discrete 4 Molecular Dimensions Within Liquid micellar (I1,I2) ........... 310 Crystalline Mesophases ............... 323 2.1.6 Bicontinuous mesophases .... 310 5 Acknowledgements .................. 326 2.1.7 Mesh mesophases ......... 315 6 References ........................ 327 1 INTRODUCTION: LIQUID positions, due to thermal motion of the atoms. How- CRYSTALS VERSUS CRYSTALS AND ever, this motion is small, and typically far less the MELTS average spacing between the atoms. (In some solids, the material forms a glass rather than a crystal, in which case the solid consists of a spatially disordered and Liquid crystals are a distinct phase of condensed materi- non-crystalline arrangement of atoms, although it does als, which typically form under physical conditions that exhibit short-range order, and is locally similar to a lie between those giving rise to solids and melts. crystal.) The melt is typically freely flowing, and char- In the (crystalline) solid phase, the relative locations acterized by large fluctuations in the atomic positions, of all atoms in the material are fixed, defining the crystal both in time and space, so that it is invariably optically structure that can adopt a variety of symmetries com- isotropic. Those fluctuations imply that it is difficult to mensurate with our three-dimensional (3D) Euclidean associate the atomic arrangement with a geometric struc- space. The crystal is optically isotropic if it crystal- ture, in contrast to crystals. lizes in a cubic space group, and anisotropic otherwise, Liquid crystals share features of both a crystal and a with distinct physical features along different directions melt, i.e. with partial order/disorder of atomic species. in the crystal. There is some uncertainty in atomic The ordering may be purely orientational, with no spatial Handbook of Applied Surface and Colloid Chemistry. Edited by Krister Holmberg ISBN 0471 490830 2001 John Wiley & Sons, Ltd 300 ANALYSIS AND CHARACTERIZATION IN SURFACE CHEMISTRY order (nematics and cholesterics), or spatial. Spatial Lyotropic mesophases contain at least two chemi- order in liquid crystals can occur on the atomic scale cal components: the organic molecule and its solvent. (with melting of some atoms in the molecule, while the The organic moiety must exhibit some chemical com- others remains frozen) or on longer length scales, such as plexity, or otherwise the solvent will simply dissolve the mesoscale ordering found in many solvent-induced the molecule, forming a structureless – and certainly liquid crystals. In the latter case, the material may not liquid crystalline – molecular solution of dispersed exhibit no atomic ordering, so that the material is a pure and disordered molecules. The simplest examples are melt on the atomic scale. Collective order of molecular amphiphilic molecules. The addition of a solvent such aggregates leads to a well-defined structure on a larger as water will selectively hydrate the hydrophilic moi- length scale, typically beyond 20 A.˚ Like crystals, liquid ety of each molecule, avoiding the hydrophobic regions. crystals are sometimes optically isotropic (cubic phases), This “schizophrenic” relationship between the solvent or otherwise optically anisotropic (lamellar “smectics”, and solute drives the molecules to self-assemble, thereby hexagonal and intermediate phases). Liquid crystalline minimizing the exposure of hydrophobic moieties to phases are called, to quote a pioneer of the field, Jacques the water. (Clearly, the argument holds in reverse if a Friedel, mesophases, from the Greek prefix denoting lipophilic solvent, such as an alkane, is used. Indeed, a an intermediate. In addition to the clear biological and combination of hydrophobic and hydrophilic solvents materials importance of liquid crystals, they are of can also lead to the formation of liquid crystalline fundamental importance to the issue of disorder. Despite mesophases.) its frequent use in the scientific literature, the term The essential phenomenon common to all liquid is a difficult one to define precisely. (For example, crystalline states is the presence of (at the bare mini- all melts are conventionally “disordered”, but how can mum) orientational order. In order to characterize the generic phase behaviour of liquid crystalline systems, one compare disordered materials at a structural level?) it is essential to acknowledge the existence of other It is becoming clear that the notion of disorder is a mesophases, which are not (stricto sensu) liquid crystals. “prickly” one, with the possibility of many distinct types These include the isotropic microemulsion and sponge of disorder disguised within that classification. mesophases (and, if one ignores the somewhat academic Many pure molecular substance form liquid crys- constraint of thermodynamic equilibrium, emulsions). tals during the melting process. Where the chemically We include some discussion of their role in the scheme, pure material is found to melt over a temperature range, as their physical properties also lie between those of rather than the abrupt first-order transition expected crystals and molecular melts. They retain a central fea- for the solid–melt phase transformation, the formation ture of lyotropes: self-assembly of the chemical moi- of liquid crystals within that range is certain. Such eties into multi-molecular domains, thus reducing the substances exhibit thermotropic liquid crystals, whose miscibility of one species in the other from the mono- stability is a function of temperature. (The term is molecular miscibility characteristic of a pure melt phase. used loosely to denote the temperature-dependent phase This self-assembled mesostructure is often idealized in behaviour of any liquid crystal condensate, including terms of the geometry and topology of the interface(s) chemical mixtures.) A good overview of thermotropic separating immiscible domains. From such a perspec- phases is that of Seddon (1). Materials (possibly mixed) tive, microemulsions and sponge mesophases are closely that form liquid crystals by the addition of solvents related to lyotropic liquid crystals, although the inter- are lyotropic liquid crystals. Many materials exhibit faces may themselves be devoid of any translational both thermotropic and lyotropic liquid crystalline tran- and/or orientational order. They are partial melts of the sitions, i.e. mesomorphism. Liquid crystals are typically liquid crystalline mesophases, although not dispersed at organic molecules, ranging from polyelectrolytes (e.g. the molecular scale. DNA, vegetable gums, etc.) to small molecules (mem- We have introduced two distinct perspectives of the brane lipids, detergents, etc.), in the presence of (some- liquid crystalline state. The first views them as partially times aromatic) hydrocarbon “oils” and water. Other defective crystals. The second as partially self-organized solvents, including glycerol, formamide, etc., result in melts. Such alternative understandings lead to subtly lyotropic mesophases in the absence of water. The different approaches to measuring and understanding hydrophobic chemical moieties are not limited to hydro- lyotropic mesophase behaviour. carbons: perfluorinated species – both as amphiphiles The former has led to a crystallographic analysis of and solvents – also exhibit lyotropic liquid crystalline lyotropes. This view has been championed particularly mesophases. by one of the pioneers of the field, Vittorio Luzzati. LYOTROPIC LIQUID CRYSTALLINE MESOPHASES 301 There is a strong emphasis on the (typically small-angle likely that such hybrid inorganic/organic liquid crystals X-ray or neutron) diffraction features of the mesophases, are already synthesised in vivo. and most mesophases are conventionally distinguished on that basis. Diffraction, a Fourier-transform technique, probes the geometric correlations within the material. 2 LYOTROPIC MESOPHASES: Detailed models of the idealized mesostructure can CURVATURE AND TYPES 1 AND 2 therefore be constructed. For this reason, mesophase structure is dominated by such an approach. A brief catalogue of currently known and labelled The latter is less developed, but, in this author’s lyotropic mesophases follows. For the reasons outlined opinion, equally important, certainly in an applied or above, we will focus first on those mesophases that industrial context. It implies the investigation of X-ray or are spatially ordered and lead to Bragg diffraction neutron scattering, rather than diffraction (if the reader (sometimes in an approximate sense, with rather diffuse will allow some momentary pedantry). Furthermore, an diffraction “spots”). explicit focus on the “molten”
Recommended publications
  • Phase Behavior and Aggregate Structure in Mixtures of Dioleoylphosphatidylethanolamine and Poly(Ethylene Glycol)-Lipids
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal Volume 80 January 2001 313–323 313 Phase Behavior and Aggregate Structure in Mixtures of Dioleoylphosphatidylethanolamine and Poly(Ethylene Glycol)-Lipids Markus Johnsson and Katarina Edwards Department of Physical Chemistry, Uppsala University, S-751 21 Uppsala, Sweden ABSTRACT Cryo-transmission electron microscopy has been used to investigate the phase behavior and aggregate structure in dilute aqueous mixtures of dioleoylphosphatidylethanolamine (DOPE) and poly(ethylene glycol)-phospholipids (PEG-lipids). It is shown that PEG-lipids (micelle-forming lipids) induce a lamellar phase in mixtures with DOPE (inverted hexagonal forming lipid). The amount of PEG-lipid that is needed to induce a pure dispersed lamellar phase, at physiological conditions, depends on the size of the PEG headgroup. In the transition region between the inverted hexagonal phase and the lamellar phase, particles with dense inner textures are formed. It is proposed that these aggregates constitute dispersed cubic phase particles. Above bilayer saturating concentration of PEG-lipid, small disks and spherical micelles are formed. The stability of DOPE/PEG-lipid liposomes, prepared at high pH, against a rapid drop of the pH was also investigated. It is shown that the density of PEG-lipid in the membrane, sufficient to prevent liposome aggregation and subsequent phase transition, depends on the size of the PEG headgroup. Below a certain density of PEG-lipid, aggregation and phase transition occurs, but the processes involved proceed relatively slow, over the time scale of weeks. This allows detailed studies of the aggregate structure during membrane fusion.
    [Show full text]
  • Micelle Formation and the Hydrophobic Effect†
    6778 J. Phys. Chem. B 2004, 108, 6778-6781 Micelle Formation and the Hydrophobic Effect† Lutz Maibaum,‡ Aaron R. Dinner,§ and David Chandler*,‡ Department of Chemistry, UniVersity of California, Berkeley, California 94720, and Department of Chemistry, UniVersity of Chicago, Chicago, Illinois 60637 ReceiVed: NoVember 14, 2003; In Final Form: January 14, 2004 The tendency of amphiphilic molecules to form micelles in aqueous solution is a consequence of the hydrophobic effect. The fundamental difference between micelle assembly and macroscopic phase separation is the stoichiometric constraint that frustrates the demixing of polar and hydrophobic groups. We present a theory for micelle assembly that combines the account of this constraint with a description of the hydrophobic driving force. The latter arises from the length scale dependence of aqueous solvation. The theoretical predictions for temperature dependence and surfactant chain length dependence of critical micelle concentrations for nonionic surfactants agree favorably with experiment. I. Introduction in accord with experimental observations. An appendix is used to augment the discussion in section II. This paper concerns the formation of micelles, which are the simplest form of amphiphilic assemblies. Our treatment of this II. Theory phenomenon is based upon the length scale dependence of hydrophobic effects.1,2 Namely, the free energy to solvate small A. Law of Mass Action. We consider an aqueous solution hydrophobic molecules scales linearly with solute volume, of neutral amphiphilic molecules (i.e., nonionic surfactants), each whereas that to solvate large hydrophobic species scales linearly of which has a single alkyl chain as its hydrophobic tail. In with surface area. The crossover from one regime to the other general, amphiphiles can form aggregates of various sizes and occurs when the oily species presents a surface in water shapes.
    [Show full text]
  • Tutorial on Working with Micelles and Other Model Membranes
    Tutorial on Working with Micelles and Model Membranes Chuck Sanders Dept. of Biochemistry, Dept. of Medicine, and Center for Structural Biology Vanderbilt University School of Medicine. http://structbio.vanderbilt.edu/sanders/ March, 2017 There are two general classes of membrane proteins. This presentation is on working with integral MPs, which traditionally could be removed from the membrane only by dissolving the membrane with detergents or organic solvents. Multilamellar Vesicles: onion-like assemblies. Each layer is one bilayer. A thin layer of water separates each bilayer. MLVs are what form when lipid powders are dispersed in water. They form spontaneously. Cryo-EM Micrograph of a Multilamellar Vesicle (K. Mittendorf, C. Sanders, and M. Ohi) Unilamellar Multilamellar Vesicle Vesicle Advances in Anesthesia 32(1):133-147 · 2014 Energy from sonication, physical manipulation (such as extrusion by forcing MLV dispersions through filters with fixed pore sizes), or some other high energy mechanism is required to convert multilayered bilayer assemblies into unilamellar vesicles. If the MLVs contain a membrane protein then you should worry about whether the protein will survive these procedures in folded and functional form. Vesicles can also be prepared by dissolving lipids using detergents and then removing the detergent using BioBeads-SM dialysis, size exclusion chromatography or by diluting the solution to below the detergent’s critical micelle concentration. These are much gentler methods that a membrane protein may well survive with intact structure and function. From: Avanti Polar Lipids Catalog Bilayers can undergo phase transitions at a critical temperature, Tm. Native bilayers are usually in the fluid (liquid crystalline) phase.
    [Show full text]
  • Functional Consequences of Lipid Packing Stress
    Current Opinion in Colloid & Interface Science 5Ž. 2000 237᎐243 Functional consequences of lipid packing stress Sergey M. Bezrukov a,b,U aLaboratory of Physical and Structural Biology, NICHD, NIH, Bethesda, MD 20892-0924, USA bSt. Petersburg Nuclear Physics Institute, Gatchina, Russia 188350 Abstract When two monolayers of a non-lamellar lipid are brought together to form a planar bilayer membrane, the resulting structure is under elastic stress. This stress changes the membrane's physical properties and manifests itself in at least two biologically relevant functional aspects. First, by modifying the energetics of hydrophobic inclusions, it in¯uences protein᎐lipid interactions. The immediate consequences are seen in several effects that include changes in conformational equilibrium between different functional forms of integral proteins and peptides, membrane-induced interactions between proteins, and partitioning of proteins between different membranes and between the bulk and the membrane. Secondly, by changing the energetics of spontaneous formation of non-lamellar local structures, lipid packing stress in¯uences membrane stability and fusion. ᮊ Published by 2000 Elsevier Science Ltd. Keywords: Integral proteins; Intra-membrane pressure; Non-lamellar lipids 1. Introduction derived second messengers serve as ligands for highly speci®c biochemical reactions. Although a role for Membrane lipids are no longer regarded as a kind phosphoinositides in signal transduction was ®rst sug- wx of ®ller or passive solvent for the membrane protein gested about half a century ago, recent reviews 1,2 machinery. It is now well established that lipids play have demonstrated new exciting developments in this an important role at several levels of cell regulation.
    [Show full text]
  • Machine Learning for Condensed Matter Physics
    Review Article Machine Learning for Condensed Matter Physics Edwin A. Bedolla-Montiel1, Luis Carlos Padierna1 and Ram´on Casta~neda-Priego1 1 Divisi´onde Ciencias e Ingenier´ıas,Universidad de Guanajuato, Loma del Bosque 103, 37150 Le´on,Mexico E-mail: [email protected] Abstract. Condensed Matter Physics (CMP) seeks to understand the microscopic interactions of matter at the quantum and atomistic levels, and describes how these interactions result in both mesoscopic and macroscopic properties. CMP overlaps with many other important branches of science, such as Chemistry, Materials Science, Statistical Physics, and High-Performance Computing. With the advancements in modern Machine Learning (ML) technology, a keen interest in applying these algorithms to further CMP research has created a compelling new area of research at the intersection of both fields. In this review, we aim to explore the main areas within CMP, which have successfully applied ML techniques to further research, such as the description and use of ML schemes for potential energy surfaces, the characterization of topological phases of matter in lattice systems, the prediction of phase transitions in off-lattice and atomistic simulations, the interpretation of ML theories with physics- inspired frameworks and the enhancement of simulation methods with ML algorithms. We also discuss in detial the main challenges and drawbacks of using ML methods on CMP problems, as well as some perspectives for future developments. Keywords: machine learning, condensed matter physics Submitted
    [Show full text]
  • The Mechanism Whereby Bile Acid Micelles Increase the Rate of Fatty Acid and Cholesterol Uptake Into the Intestinal Mucosal Cell
    The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell. H Westergaard, J M Dietschy J Clin Invest. 1976;58(1):97-108. https://doi.org/10.1172/JCI108465. Research Article Studies were undertaken to define the mechanism whereby bile acid facilitates fatty acid and cholesterol uptake into the intestinal mucosal cell. Initial studies showed that the rate of uptake (Jd) of several fatty acids and cholesterol was a linear function of the concentration of these molecules in the bulk phase if the concentration of bile acid was kept constant. In contrast, Jd decreased markedly when the concentration of bile acid was increased relative to that of the probe molecule but remained essentially constant when the concentration of both the bile acid and probe molecule was increased in parallel. In other studies Jd for lauric acid measured from solutions containing either 0 or 20 mM taurodeoxycholate and saturated with the fatty acid equaled 79.8+/-5.2 and 120.8+/-9.4 nmol.min(-1).100 mg(-1), respectively: after correction for unstirred layer resistance, however, the former value equaled 113.5+/-7.1 nmol.min(- 1).100 mg(-1). Maximum values of Jd for the saturated fatty acids with 12, 16, and 18 carbons equaled 120.8+/-9.4, 24.1+/-3.2, and 13.6+/-1.1 nmol.min(-1).100 mg(-1), respectively. These values essentially equaled those derived by multiplying the maximum solubility times the passive permeability coefficients appropriate for each of these compounds. The theoretical equations were then derived that define the expected behavior of Jd for the various lipids under these different experimental circumstances where the mechanism of absorption was assumed to occur either by […] Find the latest version: https://jci.me/108465/pdf The Mechanism Whereby Bile Acid Micelles Increase the Rate of Fatty Acid and Cholesterol Uptake into the Intestinal Mucosal Cell HEmN WESTEGAABD and JoHN M.
    [Show full text]
  • Rheology of Surfactants: Wormlike Micelles and Lamellar Liquid Crystalline Phase - O
    RHEOLOGY - Vol. II - Rheology of Surfactants: Wormlike Micelles and Lamellar Liquid Crystalline Phase - O. Manero, F. Bautista, J. E. Puig RHEOLOGY OF SURFACTANTS: WORMLIKE MICELLES AND LAMELLAR LIQUID CRYSTALLINE PHASES O. Manero Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, México, D.F., 04510 F. Bautista Departamento de Física, Universidad de Guadalajara, Guadalajara, Jal., 44430, México J. E. Puig Departamento de Ingeniería Química, Universidad de Guadalajara, Guadalajara, Jal., 44430, México Keywords: Surfactants. Rheology, Linear viscoelasticity, Nonlinear viscoelasticity, Wormlike micelles, Lamellar liquid crystalline phases, Shear banding, Shear thickening, Stability, Heterogeneous flows, Flow-concentration coupling. Contents 1. Introduction 2. Wormlike Micellar Systems 2.1. Linear Viscoelasticity 2.2. Non-linear Viscoelasticiy 2.2.1. Shear banding Flow 2.2.2. Transient flows 2.2.3. Stability 2.3. Shear banding and linear viscoelasticity 2.4. Flow concentration coupling 2.5. Shear thickening 3. Surfactant Lamellar Liquid Crystal Phases 4. Concluding Remarks Acknowledgements Glossary UNESCO – EOLSS Bibliography Biographical Sketches Summary SAMPLE CHAPTERS In this chapter, the rheology of a special class of complex fluids is analyzed and reviewed. In particular, attention is focused on the dynamic behavior of systems constituted by aqueous phases of surfactants, namely, micellar solutions and lamellar liquid crystalline phases. Surfactants are molecules that possess a polar head and a non- polar tail (i.e., amphiphiles). The polar head may be nonionic or it may posses a charge, in which case they are classified as anionic (negatively charged), cationic (positively charged) and zwitterionic or amphoteric. In ionic surfactants, the polar head is balanced ©Encyclopedia of Life Support Systems (EOLSS) RHEOLOGY - Vol.
    [Show full text]
  • Calorimetric Study on Kinetics of Mesophase Transition in Thermotropic Copolyesters
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals IJRRAS 3 (1) ● April 2010 Talukdar & Achary ● Study on Kinetics of Mesophase Transition CALORIMETRIC STUDY ON KINETICS OF MESOPHASE TRANSITION IN THERMOTROPIC COPOLYESTERS Malabika Talukdar & P.Ganga Raju Achary Department Of Chemistry, Institute Of Technical Education and Research (ITER), S ‘O’A University, Bhubaneswar, Orissa, India ABSTRACT Macromolecular crystallization behaviour, especially those of liquid crystalline polymers, has been a subject of great interest. The crystallization process for the polyester samples under discussion are analyzed assuming a nucleation controlled process and by using the Avrami equation. The study mainly deals with the crystallization process from the mesophase of two thermotropic liquid crystalline polyesters exhibiting smectic order in their mesophasic state. In order to analyze crystallization behavior of the polyesters, crystallization rate constant and the Avrami exponent have been estimated. Total heat of crystallization and entropy change during the transition has been calculated for both the polyesters. Keywords: Crystallization; Mesophase; Nucleation; Orthorhombic; Smectic. 1. INTRODUCTION The transition kinetics of liquid crystal polymers appears to be of great interest in order to control the effect of processing conditions on the morphology as well as on the final properties of the materials. These LC polymers show at least three main transitions: a glass transition, a thermotropic transition from the crystal to the mesophase and the transition from the mesophase to the isotropic melt. The kinetics of phase transition in liquid crystals may be analyzed for three different processes, the three dimensional ordering from both the isotropic melt state and the mesophase and the formation of the mesophase from the isotropic melt.
    [Show full text]
  • Soft Matter Theory
    Soft Matter Theory K. Kroy Leipzig, 2016∗ Contents I Interacting Many-Body Systems 3 1 Pair interactions and pair correlations 4 2 Packing structure and material behavior 9 3 Ornstein{Zernike integral equation 14 4 Density functional theory 17 5 Applications: mesophase transitions, freezing, screening 23 II Soft-Matter Paradigms 31 6 Principles of hydrodynamics 32 7 Rheology of simple and complex fluids 41 8 Flexible polymers and renormalization 51 9 Semiflexible polymers and elastic singularities 63 ∗The script is not meant to be a substitute for reading proper textbooks nor for dissemina- tion. (See the notes for the introductory course for background information.) Comments and suggestions are highly welcome. 1 \Soft Matter" is one of the fastest growing fields in physics, as illustrated by the APS Council's official endorsement of the new Soft Matter Topical Group (GSOFT) in 2014 with more than four times the quorum, and by the fact that Isaac Newton's chair is now held by a soft matter theorist. It crosses traditional departmental walls and now provides a common focus and unifying perspective for many activities that formerly would have been separated into a variety of disciplines, such as mathematics, physics, biophysics, chemistry, chemical en- gineering, materials science. It brings together scientists, mathematicians and engineers to study materials such as colloids, micelles, biological, and granular matter, but is much less tied to certain materials, technologies, or applications than to the generic and unifying organizing principles governing them. In the widest sense, the field of soft matter comprises all applications of the principles of statistical mechanics to condensed matter that is not dominated by quantum effects.
    [Show full text]
  • The Effect of Peptide/Lipid Hydrophobic Mismatch on the Phase Behavior of Model Membranes Mimicking the Lipid Composition in Escherichia Coli Membranes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal Volume 78 May 2000 2475–2485 2475 The Effect of Peptide/Lipid Hydrophobic Mismatch on the Phase Behavior of Model Membranes Mimicking the Lipid Composition in Escherichia coli Membranes Sven Morein,* Roger E. Koeppe II,† Go¨ran Lindblom,‡ Ben de Kruijff,* and J. Antoinette Killian* *Department of Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, the Netherlands; †Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701 USA; and ‡Biophysical Chemistry, Department of Chemistry, Umeå University, Umeå, Sweden ABSTRACT The effect of hydrophobic peptides on the lipid phase behavior of an aqueous dispersion of dioleoylphosphati- dylethanolamine and dioleoylphosphatidylglycerol (7:3 molar ratio) was studied by 31P NMR spectroscopy. The peptides (WALPn peptides, where n is the total number of amino acid residues) are designed as models for transmembrane parts of integral membrane proteins and consist of a hydrophobic sequence of alternating leucines and alanines, of variable length, that is flanked on both ends by tryptophans. The pure lipid dispersion was shown to undergo a lamellar-to-isotropic phase transition at ϳ60°C. Small-angle x-ray scattering showed that at a lower water content a cubic phase belonging to the space group Pn3m is formed, suggesting also that the isotropic phase in the lipid dispersion represents a cubic liquid crystalline phase. It was found that the WALP peptides very efficiently promote formation of nonlamellar phases in this lipid system.
    [Show full text]
  • Modulation of Non-Bilayer Lipid Phases and the Structure And
    www.nature.com/scientificreports OPEN Modulation of non‑bilayer lipid phases and the structure and functions of thylakoid membranes: efects on the water‑soluble enzyme violaxanthin de‑epoxidase Ondřej Dlouhý1, Irena Kurasová1,2, Václav Karlický1,2, Uroš Javornik3, Primož Šket3,4, Nia Z. Petrova5, Sashka B. Krumova5, Janez Plavec3,4,6, Bettina Ughy1,7*, Vladimír Špunda1,2* & Győző Garab1,7* The role of non‑bilayer lipids and non‑lamellar lipid phases in biological membranes is an enigmatic problem of membrane biology. Non‑bilayer lipids are present in large amounts in all membranes; in energy‑converting membranes they constitute about half of their total lipid content—yet their functional state is a bilayer. In vitro experiments revealed that the functioning of the water‑soluble violaxanthin de-epoxidase (VDE) enzyme of plant thylakoids requires the presence of a non-bilayer lipid phase. 31P-NMR spectroscopy has provided evidence on lipid polymorphism in functional thylakoid membranes. Here we reveal reversible pH‑ and temperature‑dependent changes of the lipid-phase behaviour, particularly the fexibility of isotropic non-lamellar phases, of isolated spinach thylakoids. These reorganizations are accompanied by changes in the permeability and thermodynamic parameters of the membranes and appear to control the activity of VDE and the photoprotective mechanism of non-photochemical quenching of chlorophyll-a fuorescence. The data demonstrate, for the frst time in native membranes, the modulation of the activity of a water-soluble enzyme by a non‑bilayer lipid phase. Te primary function of biological membranes is to allow compartmentalization of cells and cellular organelles and, in general, the separation of two aqueous phases with diferent compositions.
    [Show full text]
  • Liquid Crystal Nanoparticles for Commercial Drug Delivery
    This is a repository copy of Liquid crystal nanoparticles for commercial drug delivery. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/119939/ Version: Accepted Version Article: Mo, J, Milleret, G and Nagaraj, M orcid.org/0000-0001-9713-1362 (2017) Liquid crystal nanoparticles for commercial drug delivery. Liquid Crystals Reviews, 5 (2). pp. 69-85. ISSN 2168-0396 https://doi.org/10.1080/21680396.2017.1361874 © 2017 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in Liquid Crystals Reviews on 17 August 2017, available online: http://www.tandfonline.com/10.1080/21680396.2017.1361874. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Liquid crystal nanoparticles for commercial drug delivery J. Moa G. Millereta and M. Nagaraja* a School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK [email protected] 1 Liquid crystal nanoparticles for commercial drug delivery Liquid crystals are an intermediate state of matter that exists between conventional solids and liquids.
    [Show full text]