Clinical and Molecular Pharmacology of Etomidate

Total Page:16

File Type:pdf, Size:1020Kb

Clinical and Molecular Pharmacology of Etomidate REVIEW ARTICLE David S. Warner, M.D., Editor Clinical and Molecular Pharmacology of Etomidate Stuart A. Forman, M.D., Ph.D.* ABSTRACT TOMIDATE [R-1-(1-ethylphenyl)imidazole-5-ethyl E ester] (fig. 1) is a unique drug used for induction of general anesthesia and sedation. The first report on etomi- This review focuses on the unique clinical and molecular date was published in 1965 as one of several dozen aryl alkyl pharmacologic features of etomidate. Among general anes- imidazole-5-carboxylate esters1 synthesized by Janssen Phar- thesia induction drugs, etomidate is the only imidazole, and maceuticals (a division of Ortho-McNeil-Jannsen Pharma- it has the most favorable therapeutic index for single-bolus ceuticals, Titusville, NJ). Initially developed as antifungal administration. It also produces a unique toxicity among agents, the potent hypnotic activity of several compounds anesthetic drugs: inhibition of adrenal steroid synthesis that was observed during animal testing; and several com- far outlasts its hypnotic action and that may reduce survival pounds, including etomidate, appeared significantly safer of critically ill patients. The major molecular targets mediat- than barbiturates. ing anesthetic effects of etomidate in the central nervous Etomidate contains a chiral carbon (fig. 1). Initial studies ␥ system are specific -aminobutyric acid type A receptor sub- of racemic etomidate in rats demonstrated lethality at ap- types. Amino acids forming etomidate binding sites have proximately 12 times its effective hypnotic dose (median been identified in transmembrane domains of these proteins. lethal dose/ED50, approximately 12) compared with barbi- Etomidate binding site structure models for the main en- turates with median lethal dose/ED50 ratios (therapeutic in- zyme mediating etomidate adrenotoxicity have also been de- dexes) of 3–5.1 Subsequent studies2,3 found that the isolated veloped. Based on this deepening understanding of molecu- R(ϩ)-enantiomer of etomidate has 10- to 20-fold greater lar targets and actions, new etomidate derivatives are being hypnotic potency than S(Ϫ)-etomidate. The median lethal investigated as potentially improved sedative–hypnotics ϩ 4 dose/ED50 ratio for R( )-etomidate is 26 in rats, signifi- or for use as highly selective inhibitors of adrenal steroid cantly higher than therapeutic indexes for other general an- synthesis. esthetics (table 1). Preclinical experiments in mammals also demonstrated that etomidate injection was associated with minimal hemodynamic changes or respiratory depression, * Associate Professor of Anaesthesia, Harvard Medical School, Boston, Massachusetts, and Associate Anesthetist, Department of features that were presumed to result in its unusually favor- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General able safety profile.5 Hospital, Boston, Massachusetts. Etomidate was introduced into clinical practice in 1972, Received from Massachusetts General Hospital, Boston, Massa- chusetts. Submitted for publication July 6, 2010. Accepted for pub- and initial reports of its use in humans emerged in the clinical 6,7 lication September 17, 2010. Supported by grant P01GM58448 from literature soon afterward. Academic publications focusing the National Institutes of Health (Bethesda, Maryland); and the on etomidate increased steadily until 1983, when the num- Department of Anesthesia, Critical Care, and Pain Medicine, Massa- chusetts General Hospital, Boston, Massachusetts. Massachusetts ber of reports rapidly doubled after discovery of its adrenal General Hospital has submitted patent applications for MOC etomi- toxicity (fig. 2). Subsequently, the number of yearly pub- date, carboetomidate, and related analogs. The author and his lished articles focusing on etomidate diminished (apparently laboratory, department, and institution could receive royalties relat- ing to the development or sale of these drugs. in parallel with its use in operating rooms), but this rate Address correspondence to Dr. Forman: Department of Anes- has resurged in the past decade. Renewed interest in eto- thesia, Critical Care, and Pain Medicine, Jackson 444, Massachusetts midate parallels its widening use during intubations in General Hospital, 55 Fruit Street, Boston, Massachusetts 02114. [email protected]. Information on purchasing reprints may be emergency departments and intensive care units, and new found at www.anesthesiology.org or on the masthead page at the concerns exist about the impact of etomidate-induced ad- beginning of this issue. ANESTHESIOLOGY’s articles are made freely renal toxicity in critically ill patients. The recent increase accessible to all readers, for personal use only, 6 months from the cover date of the issue. in publications on etomidate also reflects scientific Copyright © 2011, the American Society of Anesthesiologists, Inc. Lippincott progress in understanding this drug’s molecular pharma- Williams & Wilkins. Anesthesiology 2011; 114: 695–707 cologic features. Anesthesiology, V 114 • No 3 695 March 2011 Downloaded From: http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/Journals/JASA/931111/ on 10/05/2016 Clinical and Molecular Pharmacology of Etomidate Fig. 2. Etomidate publications in PubMed. The graph dis- plays numbers of publications within a calendar year, based Fig. 1. Chemical structure of etomidate. Critical structural on PubMed searches with etomidate as a Medical Subject features for anesthetic activity include a single methylene Headings term (sum of red plus blue bars) or the subset of ϩ group between the imidazole and phenyl group and the R( ) these publications with humans as the subjects (blue bars configuration at the chiral center (labeled with an asterisk). only). Data are inclusive through December 2009. Clinical Pharmacology Systemic Effects Formulation and Dosing Etomidate does not inhibit sympathetic tone or myocardial 16,17 Etomidate formulations for clinical use contain the purified function, and typical anesthetic induction doses pro- duce minimal blood pressure and heart rate changes in pa- R(ϩ)-enantiomer. Etomidate has a pK of 4.2 and is hydro- a tients, including those with valvular or ischemic heart dis- phobic at physiologic pH. To increase solubility, it is formu- ease.12,18-20 For the same reason, etomidate does not block lated as a 0.2% solution either in 35% propylene glycol sympathetic responses to laryngoscopy and intubation; these (Amidate; Hospira, Inc, Lake Forest, IL) or lipid emulsion 8 responses are often blunted by premedication with opi- (Etomidate-Lipuro; B. Braun, Melsungen, Germany). For- 21,22 9,10 oids. Etomidate produces less apnea than barbiturates or mulations in cyclodextrins have also been developed. propofol, no histamine release, and rare allergic reactions. Early clinical studies determined that intravenous bolus Because of its remarkably benign hemodynamic effects, eto- doses of 0.2–0.4 mg/kg provided hypnosis for 5–10 min. midate has proved useful for general anesthetic induction in After a bolus, maintenance of general anesthesia can be patients undergoing cardiac surgery and in those with poor achieved by continuous infusion of etomidate at 30–100 cardiac function.23 Ϫ1 Ϫ1 11-13 ␮g ⅐ kg ⅐ min . Oral transmucosal etomidate has Etomidate also provides advantages for induction of an- been used to induce sedation,14 and rectal administration esthesia in the setting of hemorrhagic shock. In a pig model has been used to induce general anesthesia in pediatric of hemorrhagic shock, the pharmacodynamics and pharma- patients.15 cokinetics of etomidate are minimally altered,24 in contrast to other anesthetic drugs.25,26 As a result of its favorable profile for anesthetic induction in a variety of critically ill patients, etomidate has been adopted by many emergency Table 1. Acute Toxicity Ratios of Intravenous Anesthetic Induction Drugs medicine physicians as the hypnotic drug of choice for rapid- sequence induction and intubation.27-29 Acute Toxicity Ratio, Hepatic blood flow is modestly reduced after induction of Anesthetic Induction Drug LD50/ED50* general anesthesia with etomidate, but this has minimal im- ϩ 5 pact on pharmacokinetics and metabolism of anesthetic R( )-etomidate 26 30,31 Althesin (alphaxalone/alphadolone) 17.3158 agents. Cerebral blood flow is reduced, along with cere- Ketamine (racemic)† 6.3159 bral metabolic rate and intracranial pressure, whereas cere- Methohexital 4.8-9.55,158 bral perfusion pressure is maintained or increased during Thiopental 3.6-4.65,158,160 32-34 160 etomidate-induced anesthesia. Electroencephalographic Pentobarbital 3.4 changes during hypnosis with etomidate are similar to those Propofol 3.4158 seen with barbiturates.35 Bispectral index monitor values de- * Data are from therapeutic index studies in mice and rats using crease after etomidate bolus administration and return to intravenous injection. † The therapeutic index of (ϩ)-ketamine is baseline during recovery of consciousness.36 During brief 10, whereas that of the (Ϫ) enantiomer is 4.0. ϭ etomidate infusions, bispectral index values correlate well ED50 dose that is pharmacologically effective to 50% of the 37 experimental population; LD50 ϭ the dose resulting in 50% with sedation scores. Etomidate increases latency and de- mortality within 24 h. creases amplitude of auditory evoked potentials.38 The du- Anesthesiology 2011; 114:695–707 696 Stuart A. Forman Downloaded From: http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/Journals/JASA/931111/ on 10/05/2016 EDUCATION
Recommended publications
  • Analgesia and Sedation in Hospitalized Children
    Analgesia and Sedation in Hospitalized Children By Elizabeth J. Beckman, Pharm.D., BCPS, BCCCP, BCPPS Reviewed by Julie Pingel, Pharm.D., BCPPS; and Brent A. Hall, Pharm.D., BCPPS LEARNING OBJECTIVES 1. Evaluate analgesics and sedative agents on the basis of drug mechanism of action, pharmacokinetic principles, adverse drug reactions, and administration considerations. 2. Design an evidence-based analgesic and/or sedative treatment and monitoring plan for the hospitalized child who is postoperative, acutely ill, or in need of prolonged sedation. 3. Design an analgesic and sedation treatment and monitoring plan to minimize hyperalgesia and delirium and optimize neurodevelopmental outcomes in children. INTRODUCTION ABBREVIATIONS IN THIS CHAPTER Pain, anxiety, fear, distress, and agitation are often experienced by GABA γ-Aminobutyric acid children undergoing medical treatment. Contributory factors may ICP Intracranial pressure include separation from parents, unfamiliar surroundings, sleep dis- PAD Pain, agitation, and delirium turbance, and invasive procedures. Children receive analgesia and PCA Patient-controlled analgesia sedatives to promote comfort, create a safe environment for patient PICU Pediatric ICU and caregiver, and increase patient tolerance to medical interven- PRIS Propofol-related infusion tions such as intravenous access placement or synchrony with syndrome mechanical ventilation. However, using these agents is not without Table of other common abbreviations. risk. Many of the agents used for analgesia and sedation are con- sidered high alert by the Institute for Safe Medication Practices because of their potential to cause significant patient harm, given their adverse effects and the development of tolerance, dependence, and withdrawal symptoms. Added layers of complexity include the ontogeny of the pediatric patient, ongoing disease processes, and presence of organ failure, which may alter the pharmacokinetics and pharmacodynamics of these medications.
    [Show full text]
  • Euthanasia of Experimental Animals
    EUTHANASIA OF EXPERIMENTAL ANIMALS • *• • • • • • • *•* EUROPEAN 1COMMISSIO N This document has been prepared for use within the Commission. It does not necessarily represent the Commission's official position. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int) Cataloguing data can be found at the end of this publication Luxembourg: Office for Official Publications of the European Communities, 1997 ISBN 92-827-9694-9 © European Communities, 1997 Reproduction is authorized, except for commercial purposes, provided the source is acknowledged Printed in Belgium European Commission EUTHANASIA OF EXPERIMENTAL ANIMALS Document EUTHANASIA OF EXPERIMENTAL ANIMALS Report prepared for the European Commission by Mrs Bryony Close Dr Keith Banister Dr Vera Baumans Dr Eva-Maria Bernoth Dr Niall Bromage Dr John Bunyan Professor Dr Wolff Erhardt Professor Paul Flecknell Dr Neville Gregory Professor Dr Hansjoachim Hackbarth Professor David Morton Mr Clifford Warwick EUTHANASIA OF EXPERIMENTAL ANIMALS CONTENTS Page Preface 1 Acknowledgements 2 1. Introduction 3 1.1 Objectives of euthanasia 3 1.2 Definition of terms 3 1.3 Signs of pain and distress 4 1.4 Recognition and confirmation of death 5 1.5 Personnel and training 5 1.6 Handling and restraint 6 1.7 Equipment 6 1.8 Carcass and waste disposal 6 2. General comments on methods of euthanasia 7 2.1 Acceptable methods of euthanasia 7 2.2 Methods acceptable for unconscious animals 15 2.3 Methods that are not acceptable for euthanasia 16 3. Methods of euthanasia for each species group 21 3.1 Fish 21 3.2 Amphibians 27 3.3 Reptiles 31 3.4 Birds 35 3.5 Rodents 41 3.6 Rabbits 47 3.7 Carnivores - dogs, cats, ferrets 53 3.8 Large mammals - pigs, sheep, goats, cattle, horses 57 3.9 Non-human primates 61 3.10 Other animals not commonly used for experiments 62 4.
    [Show full text]
  • The Cardiorespiratory and Anesthetic Effects of Clinical and Supraclinical
    THE CARDIORESPIRATORY AND ANESTHETIC EFFECTS OF CLINICAL AND SUPRA CLINICAL DOSES OF ALF AXALONE IN CYCLODEXTRAN IN CATS AND DOGS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Laura L. Nelson, B.S., D.V.M. * * * * * The Ohio State University 2007 Dissertation Committee: Professor Jonathan Dyce, Adviser Professor William W. Muir III Professor Shane Bateman If I have seen further, it is by standing on the shoulders of giants. lmac Ne1vton (1642-1727) Copyright by Laura L. Nelson 2007 11 ABSTRACT The anesthetic properties of steroid hormones were first identified in 1941, leading to the development of neurosteroids as clinical anesthetics. CT-1341 was developed in the early 1970’s, featuring a combination of two neurosteroids (alfaxalone and alphadolone) solubilized in Cremophor EL®, a polyethylated castor oil derivative that allows hydrophobic compounds to be carried in aqueous solution as micelles. Though also possessing anesthetic properties, alphadolone was included principally to improve the solubility of alfaxalone. CT-1341, marketed as Althesin® and Saffan®, was characterized by smooth anesthetic induction and recovery in many species, a wide therapeutic range, and no cumulative effects with repeated administration. Its cardiorespiratory effects in humans and cats were generally mild. However, it induced severe hypersensitivity reactions in dogs, with similar reactions occasionally occurring in cats and humans. The hypersensitivity reactions associated with this formulation were linked to Cremophor EL®, leading to the discontinuation of Althesin® and some other Cremophor®-containing anesthetics. More recently, alternate vehicles for hydrophobic drugs have been developed, including cyclodextrins.
    [Show full text]
  • Pharmacology/Therapeutics II Block III Lectures 2013-14
    Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine
    [Show full text]
  • IV Induction Agents
    Intravenous drugs used for the induction of anaesthesia Dr Tom Lupton, Specialist Registrar in Anaesthesia Dr Oliver Pratt, Consultant Anaesthetist Salford Royal Hospitals NHS Foundation Trust, Salford, UK Key questions This tutorial reviews the basic pharmacology of common intravenous (IV) anaesthetic drugs. By the end of the tutorial, you should be able to decide on the most appropriate drug to use in the situations below and for what reason: 1. A patient with intestinal obstruction requires an emergency laparotomy. 2. A patient with a history of throat cancer, showing marked stridor and signs of respiratory distress, requires a tracheostomy. 3. A patient requiring a burn dressing change. 4. A patient with a history of heart failure requires a general anaesthetic. 5. A dehydrated hypovolaemic patient requires an emergency general anaesthetic. 6. A patient with porphyria comes for an inguinal hernia repair and is requesting a general anaesthetic. 7. A patient requires sedation on the intensive care unit. 8. Anaesthesia in the prehospital environment. What are IV induction drugs? These are drugs that, when given intravenously in an appropriate dose, cause a rapid loss of consciousness. This is often described as occurring within “one arm-brain circulation time” that is simply the time taken for the drug to travel from the site of injection (usually the arm) to the brain, where they have their effect. They are used: • To induce anaesthesia prior to other drugs being given to maintain anaesthesia. • As the sole drug for short procedures. • To maintain anaesthesia for longer procedures by intravenous infusion. • To provide sedation. The concept of intravenous anaesthesia was born in 1932, when Wesse and Schrapff published their report into the use of hexobarbitone, the first rapidly acting intravenous drug.
    [Show full text]
  • Safety and Efficacy of Etomidate And
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2016 Safety and efficacy of etomidate and propofol anesthesia in elderly patients undergoing gastroscopy: A double-blind randomized clinical study Qing-Tao Meng Wuhan University Chen Cao The Third Hospital of Wuhan Hui-Min Liu Wuhan University Zhong-Yuan Xia Wuhan University Wei Li Wuhan University See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Meng, Qing-Tao; Cao, Chen; Liu, Hui-Min; Xia, Zhong-Yuan; Li, Wei; Tang, Ling-Hua; Chen, Rong; Jiang, Meng; Wu, Yang; Leng, Yan; and Lee, Chris C., ,"Safety and efficacy of etomidate and propofol anesthesia in elderly patients undergoing gastroscopy: A double-blind randomized clinical study." Experimental and Therapeutic Medicine.12,3. 1515-1524. (2016). https://digitalcommons.wustl.edu/open_access_pubs/5193 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Qing-Tao Meng, Chen Cao, Hui-Min Liu, Zhong-Yuan Xia, Wei Li, Ling-Hua Tang, Rong Chen, Meng Jiang, Yang Wu, Yan Leng, and Chris C. Lee This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/5193 EXPERIMENTAL AND THERAPEUTIC MEDICINE 12: 1515-1524, 2016 Safety and efficacy of etomidate and propofol anesthesia in elderly patients undergoing gastroscopy: A double‑blind randomized clinical study QING-TAO MENG1*, CHEN CAO2*, HUI-MIN LIU1*, ZHONG-YUAN XIA1, WEI LI1, LING-HUA TANG1, RONG CHEN1, MENG JIANG1, YANG WU1, YAN LENG1 and CHRIS C.
    [Show full text]
  • Anaesthetic Modulation of Ion Channel Kinetics in Bovine Chromaffin Cells
    280740062X ANAESTHETIC MODULATION OF ION CHANNEL KINETICS IN BOVINE CHROMAFFIN CELLS BY PAUL CHARLESWORTH Thesis submitted for the degree of Doctor of Philosophy to the Faculty of Science of the University of London Department of Physiology Royal Free Hospital School of Medicine Rowland Hill Street Hampstead London NW3 2PF ProQuest Number: U063786 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U063786 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT The thesis describes a patch clamp study of the action of anaesthetics on the ion channels primarily responsible for initiating secretion in bovine chromaffin cells. The adrenal chromaffin cell is homologous with sympathetic post-ganglionic neurones and was chosen as a model for studying excitatory neuronal synapses. Pre- and post- synaptic events are modelled by effects on the voltage-gated calcium channels and nicotinic acetylcholine receptor channel respectively. The overall aim has been to describe anaesthetic depression of excitatory synaptic transmission at the ion channel level. Results of experiments with a representative range of anaesthetic agents are shown.
    [Show full text]
  • United States Patent 19 11 Patent Number: 5,446,070 Mantelle (45) Date of Patent: "Aug
    USOO544607OA United States Patent 19 11 Patent Number: 5,446,070 Mantelle (45) Date of Patent: "Aug. 29, 1995 54 COMPOST ONS AND METHODS FOR 4,659,714 4/1987 Watt-Smith ......................... 514/260 TOPCAL ADMNSTRATION OF 4,675,009 6/1987 Hymes .......... ... 604/304 PHARMACEUTICALLY ACTIVE AGENTS 4,695,465 9/1987 Kigasawa .............................. 424/19 4,748,022 5/1988 Busciglio. ... 424/195 75 Inventor: Juan A. Mantelle, Miami, Fla. 4,765,983 8/1988 Takayanagi. ... 424/434 4,789,667 12/1988 Makino ............ ... 514/16 73) Assignee: Nover Pharmaceuticals, Inc., Miami, 4,867,970 9/1989 Newsham et al. ... 424/435 Fla. 4,888,354 12/1989 Chang .............. ... 514/424 4,894,232 1/1990 Reul ............. ... 424/439 * Notice: The portion of the term of this patent 4,900,552 2/1990 Sanvordeker .... ... 424/422 subsequent to Aug. 10, 2010 has been 4,900,554 2/1990 Yanagibashi. ... 424/448 disclaimed. 4,937,078 6/1990 Mezei........... ... 424/450 Appl. No.: 112,330 4,940,587 7/1990 Jenkins ..... ... 424/480 21 4,981,875 l/1991 Leusner ... ... 514/774 22 Filed: Aug. 27, 1993 5,023,082 6/1991 Friedman . ... 424/426 5,234,957 8/1993 Mantelle ........................... 514/772.6 Related U.S. Application Data FOREIGN PATENT DOCUMENTS 63 Continuation-in-part of PCT/US92/01730, Feb. 27, 0002425 6/1979 European Pat. Off. 1992, which is a continuation-in-part of Ser. No. 0139127 5/1985 European Pat. Off. 813,196, Dec. 23, 1991, Pat. No. 5,234,957, which is a 0159168 10/1985 European Pat.
    [Show full text]
  • Abstract/Summary Development Targets in Anaesthetic
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Health: Medicine, Dentistry and Human Sciences Peninsula Medical School 2017-12-01 Thiopental to desflurane - an anaesthetic journey. Where are we going next? Sneyd, J http://hdl.handle.net/10026.1/9849 10.1093/bja/aex328 British Journal of Anaesthesia Oxford University Press (OUP) All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Thiopental to desflurane - an anaesthetic journey. Where are we going next? Abstract/summary Development targets in anaesthetic pharmacology have evolved from minimising harm caused by unwanted effects through an era in which rapid onset and offset of drug effect were prioritised. Today’s anaesthetists have access to a library of effective drugs whose characteristics offer controllable hypnosis, analgesia and paralysis with manageable off-target effects. The availability of these agents at generic prices inhibits commercial interest and this is reflected in the limited number of current anaesthetic drug development projects. Recently, questions around neonatal neurotoxicity, delirium and post-operative cognitive dysfunction have stimulated research to characterise these phenomena and explain them in mechanistic terms. Emergent basic science from these enquiries together with exploration of possible effects of anaesthetic drug choice on patient outcomes from cancer surgery may yield new targets for drug discovery. The past 40 years have seen extraordinary developments in anaesthetic pharmacology culminating in a limited but versatile set of hypnotics, analgesics and muscle relaxants adaptable to every clinical situation.
    [Show full text]
  • A Water-Soluble Intravenous Anesthetic Preparation in Sulfobutyl
    International Society for Anaesthetic Pharmacology Preclinical Pharmacology Section Editor: Markus W. Hollmann Anesthetic Clinical Pharmacology Section Editor: Ken B. Johnson Alphaxalone Reformulated: A Water-Soluble Intravenous Anesthetic Preparation in Sulfobutyl-Ether-β-Cyclodextrin Colin S. Goodchild, MA, MB, BChir, PhD, FRCA, FANZCA, FFPMANZCA, Juliet M. Serrao, MB, BS, PhD, FRCA, Anton Kolosov, MSc, PhD, and Ben J. Boyd, PhD * 07/29/2020 on BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3bhnalqTQiPv0Qe2oObD6Borpr8ynxk/m7SI60vZRsDj7xUAQhxAE7Q== by https://journals.lww.com/anesthesia-analgesia from Downloaded † * ‡ BACKGROUND: Alphaxalone is a neuroactive steroid anesthetic that is poorly water soluble. Downloaded It was formulated in 1972 as Althesin® using Cremophor® EL, a nonionic surfactant additive. The product was a versatile short-acting IV anesthetic used in clinical practice in many coun- from tries from 1972 to 1984. It was withdrawn from clinical practice because of hypersensitivity https://journals.lww.com/anesthesia-analgesia to Cremophor EL. In the investigations reported here, we compared the properties of 3 anes- thetics: a new aqueous solution of alphaxalone dissolved in 7-sulfobutyl-ether-β-cyclodextrin (SBECD, a water-soluble molecule with a lipophilic cavity that enables drug solubilization in water); a Cremophor EL preparation of alphaxalone; and propofol. METHODS: Two solutions of alphaxalone (10 mg/mL) were prepared: one using 13% w/v solu- tion of SBECD in 0.9% saline (PHAX) and the other a solution of alphaxalone prepared as described in the literature using 20% Cremophor EL (ALTH). A solution of propofol (10 mg/mL; PROP) in 10% v/v soya bean oil emulsion was used as a comparator anesthetic. Jugular IV cath- by eters were implanted in male Wistar rats (180–220 g) under halothane anesthesia.
    [Show full text]
  • Etomidate Injection, USP Approximately Double That Seen in Healthy Subjects
    2585 suggest that the volume of distribution and elimination half-life of etomidate are Etomidate Injection, USP approximately double that seen in healthy subjects. 2 mg/mL (Reference: H. Van Beem, et. al., Anaesthesia 38 (Supp 38:61-62, July 1983). Rx only In clinical studies, elderly patients demonstrated decreased initial distribution DESCRIPTION volumes and total clearance of etomidate. Protein binding of etomidate to serum Etomidate Injection, USP is a sterile, nonpyrogenic solution. Each milliliter contains albumin was also significantly decreased in these individuals. etomidate, 2 mg, propylene glycol 35% v/v. The pH is 6.0 (4.0 to 7.0). Reduced plasma cortisol and aldosterone levels have been reported following It is intended for the induction of general anesthesia by intravenous injection. induction doses of etomidate. These results persist for approximately 6 to 8 hours The drug etomidate is chemically identified as (R)-(+)-ethyl-1-(1-phenylethyl)-1H- and appear to be unresponsive to ACTH stimulation. This probably represents imidazole -5-carboxylate and has the following structural formula: blockage of 11 beta-hydroxylation within the adrenal cortex. O N (References: 1. R.J. Fragen, et. al., Anesthesiology 61:652-656, 1984. 2. R.L. Wagner & P.F. White, Anesthesiology 61:647-651, 1984. 3. F.H. DeJong, et. al., CH3 CH2 O C N Clin. Endocrinology and Metabolism 59:(6):1143-1147, 1984, and three additional drafts of Metabolic Studies, all submitted to NDA 18-228 on April 1, 1985). H C CH INDICATIONS AND USAGE 3 Etomidate injection, USP is indicated by intravenous injection for the induction of general anesthesia.
    [Show full text]
  • Anesthetic Agents: General and Local Anesthetics T IMOTHY J
    Chapter 16 Anesthetic Agents: General and Local Anesthetics T IMOTHY J. MAHER Drugs Covered in This Chapter Inhaled general anesthetics • Propofol • Levobupivacaine • Ether • Fospropofol • Lidocaine • Halothane • Thiopental • Prilocaine • Desflurane Local anesthetics • Procaine • Ropivacaine • Enflurane • Articaine • Tetracaine • Isoflurane • Benzocaine • Methoxyflurane • Bupivacaine • Sevoflurane • Chloroprocaine • Nitrous oxide • Cocaine Intravenous general anesthetics • Dibucaine • Etomidate • Dyclonine • Ketamine • Mepivacaine Abbreviations BTX, batrachotoxin GABA, g-aminobutyric acid NO, nitric oxide CNS, central nervous system HBr, hydrobromic acid NMDA, N-methyl-D-aspartate COCl2, phosgene HCl, hydrochloric acid PABA, p-aminobenzoic acid EEG, electroencephalograph MAC, minimum alveolar concentration PCP, phencyclidine EMLA, Eutectic Mixture of a Local Na/K-ATPase, sodium-potassium STX, saxitoxin Anesthetic adenosine triphosphatase TTX, tetrodotoxin 508 LLemke_Chap16.inddemke_Chap16.indd 550808 112/9/20112/9/2011 44:14:08:14:08 AAMM CHAPTER 16 / ANESTHETIC AGENTS: GENERAL AND LOCAL ANESTHETICS 509 SCENARIO Paul Arpino, R.Ph. CDL is a 70-year-old obese man scheduled for carpal tunnel sur- During the preoperative assessment before the scheduled day of gery. A review of his medical file indicates a history of obstruc- surgery, the team discovers that CDL has an undefined allergy tive sleep apnea and benign prostatic hypertrophy (BPH). CDL to procaine (Novocain) and that he experienced severe blistering sleeps with a continuous positive pressure airway device and his after a dental procedure many years ago and was told he cannot BPH is treated with tamsulosin, 0.4 mg daily. Given that patients receive “drugs like Novocain again.” with sleep apnea are at high risk for respiratory depression, the clinical team decides that a peripheral nerve block would be a (The reader is directed to the clinical solution and chemical analy- better alternative to both neuraxial and general anesthesia.
    [Show full text]