Rapid Sequence Intubation: Medications, Dosages, and Recommendations

Total Page:16

File Type:pdf, Size:1020Kb

Rapid Sequence Intubation: Medications, Dosages, and Recommendations Rapid Sequence Intubation: Medications, dosages, and recommendations Timeline of Rapid Sequence Intubation S Zero Minus Zero Minus Zero Minus Zero Zero plus 20- Zero plus 10 Minutes 5 Minutes 3 Minutes 30 seconds 45 seconds 7. Post- intubation management 1. Preparation 2. Preoxygenation 3. 4. Paralysis/ 5. Positioning 6. Placement Pretreatment Induction with proof 1. Preparation – Assemble all necessary equipment, drug, etc. 2. Preoxygenation – Replace the nitrogen in the patient’s functional reserve with oxygen – “nitrogen wash out – oxygen wash in” 3. Pretreatment – Ancillary medications are administered to mitigate the adverse physiologic consequences of intubation 4. Paralysis with induction – Administer sedative induction agent via IV push, followed immediately by administration of paralytic via IV push 5. Positioning – Position patient for optimal laryngoscopy; Sellick’s maneuver, if desired, is applied now 6. Placement with proof – Assess mandible for flaccidity; perform intubation, confirm placement 7. Post-intubation management – Long-term sedation/analgesia/paralysis as indicated Pre-treatment – agents should be given 3 minutes prior to intubation (can be given in any order) Drug Dose Indication Other notes Lidocaine 100 mg Head injury, traumatic Lidocaine will help brain injury, unknown protect the patient mechanism of injury, from increases in elevated ICP intracranial pressure caused by intubation Fentanyl 2-3 mcg/kg Elevated ICP, Fentanyl helps decrease cardiovascular disease catecholamine (ischemic coronary discharge secondary to disease, aneurismal intubation, thus disease, great vessel decreasing the risks rupture or dissection, associated from BP intracranial increases in pts with CV hemorrhage) disease, aortic dissections, etc. Be careful if the patient is already hypotensive Rocuronium 0.1 mg/kg Head injury, traumatic Defasciculation no (defasciculation) (e.g., 7 mg in a 70 kg pt) brain injury, unknown longer routinely mechanism of injury, recommended. May elevated ICP consider if pt. w/head injury to be paralyzed with succinylcholine (SCh). SCh causes transient muscle fasciculation (twitch) which theoretically may increase intracranial pressure. Summary of Induction Agents Agent Usual Onset Duration Indications Adverse Comment Emergency (sec) of Action Effects Induction (min) Dose Thiopental 3 mg/kg IV <30 5-10 Patients with Histamine Not routinely elevated ICP or release used status epilepticus Myocardial who are depression Avoid intra- hemodynamically Venodilation arterial stable Hypotension injection (may cause gangrene) Pregnancy category C Midazolam 0.2-0.3 60-90 15-30 Not routinely Respiratory Not mg/kg IV recommended for depression recommended RSI. Apnea for RSI. May use for post- Paradoxical Patient intubation agitation response may management be extremely variable Etomidate 0.3 mg/kg 10-15 4-10 Used in almost all -Adrenal Communicate IV patients for insufficiency to subsequent emergency RSI. -Pain on providers that May consider injection patient alternative agent if -Myoclonic received patient is septic or activity etomidate if in status epilepticus patient septic Ketamine 1.5 mg/kg 45-60 10-20 Good option for Increased: Not IV patients with BP recommended reactive airway HR in hypertensive disease or who are or hypovolemic, Intraocular normotensive hemorrhaging, or in pressure patients. shock Use caution in patients with cardiovascular disease Propofol 1.5 mg/kg 15-45 5-10 Hemodynamically Hypotension Ultra-short IV stable patients with Myocardial acting reactive airway depression disease or in status Reduced Negative CV epilepticus cerebral effects limits perfusion use for pressure induction in RSI Pain on injection Paralytic Summary – Depolarizing Agent Usual Onset Duration Indications Adverse Comments Emergency (sec) (min) Effects Induction Dose Succinylcholine 1.5 mg/kg IV 45 6-10 Essentially all Hyperkalemia Bradycardia Increase to 2 patients except may occur mg/kg IV in those with: Muscle after repeated myasthenia Malignant fasciculations doses, have gravis hyperthermia atropine ready 4 mg/kg IM Hyperkalemia Elevated IOP in the event it (only in life ->5d after occurs threatening burn, crush, situations) denervation, severe infection Paralytic Summary – Nondepolarizing Agent Usual Onset Duration Indications Adverse Comments Emergency (sec) (min) Effects Induction Dose Rocuronium 1 mg/kg 60-75 40-60 RSI when No, Ensure succinylcholine clinically contingency contraindicated significant plan in place in ADEs the event of failed airway Vecuronium 0.01 mg/kg 120- 45-65 Not recommended No Ensure priming dose 180 for RSI unless a clinically contingency followed 3 nondepolarizing significant plan in place in minutes later agent is indicated ADEs the event of with 0.15 and rocuronium is failed airway mg/kg not available .
Recommended publications
  • Analgesia and Sedation in Hospitalized Children
    Analgesia and Sedation in Hospitalized Children By Elizabeth J. Beckman, Pharm.D., BCPS, BCCCP, BCPPS Reviewed by Julie Pingel, Pharm.D., BCPPS; and Brent A. Hall, Pharm.D., BCPPS LEARNING OBJECTIVES 1. Evaluate analgesics and sedative agents on the basis of drug mechanism of action, pharmacokinetic principles, adverse drug reactions, and administration considerations. 2. Design an evidence-based analgesic and/or sedative treatment and monitoring plan for the hospitalized child who is postoperative, acutely ill, or in need of prolonged sedation. 3. Design an analgesic and sedation treatment and monitoring plan to minimize hyperalgesia and delirium and optimize neurodevelopmental outcomes in children. INTRODUCTION ABBREVIATIONS IN THIS CHAPTER Pain, anxiety, fear, distress, and agitation are often experienced by GABA γ-Aminobutyric acid children undergoing medical treatment. Contributory factors may ICP Intracranial pressure include separation from parents, unfamiliar surroundings, sleep dis- PAD Pain, agitation, and delirium turbance, and invasive procedures. Children receive analgesia and PCA Patient-controlled analgesia sedatives to promote comfort, create a safe environment for patient PICU Pediatric ICU and caregiver, and increase patient tolerance to medical interven- PRIS Propofol-related infusion tions such as intravenous access placement or synchrony with syndrome mechanical ventilation. However, using these agents is not without Table of other common abbreviations. risk. Many of the agents used for analgesia and sedation are con- sidered high alert by the Institute for Safe Medication Practices because of their potential to cause significant patient harm, given their adverse effects and the development of tolerance, dependence, and withdrawal symptoms. Added layers of complexity include the ontogeny of the pediatric patient, ongoing disease processes, and presence of organ failure, which may alter the pharmacokinetics and pharmacodynamics of these medications.
    [Show full text]
  • Statement on Safe Use of Propofol 2019
    Statement on Safe Use of Propofol Committee of Origin: Ambulatory Surgical Care (Approved by the ASA House of Delegates on October 27, 2004, and amended on October 23, 2019) Because sedation is a continuum, it is not always possible to predict how an individual patient will respond. Due to the potential for rapid, profound changes in sedative/anesthetic depth and the lack of antagonist medications, agents such as propofol require special attention. Even if moderate sedation is intended, patients receiving propofol should receive care consistent with that required for deep sedation. The Society believes that the involvement of an anesthesiologist in the care of every patient undergoing anesthesia is optimal. However, when this is not possible, non-anesthesia personnel who administer propofol should be qualified to rescue* patients whose level of sedation becomes deeper than initially intended and who enter, if briefly, a state of general anesthesia.** • The physician responsible for the use of sedation/anesthesia should have the education and training to manage the potential medical complications of sedation/anesthesia. The physician should be proficient in airway management, have advanced life support skills appropriate for the patient population, and understand the pharmacology of the drugs used. The physician should be physically present throughout the sedation and remain immediately available until the patient is medically discharged from the post procedure recovery area. • The practitioner administering propofol for sedation/anesthesia should, at a minimum, have the education and training to identify and manage the airway and cardiovascular changes which occur in a patient who enters a state of general anesthesia, as well as the ability to assist in the management of complications.
    [Show full text]
  • Euthanasia of Experimental Animals
    EUTHANASIA OF EXPERIMENTAL ANIMALS • *• • • • • • • *•* EUROPEAN 1COMMISSIO N This document has been prepared for use within the Commission. It does not necessarily represent the Commission's official position. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu.int) Cataloguing data can be found at the end of this publication Luxembourg: Office for Official Publications of the European Communities, 1997 ISBN 92-827-9694-9 © European Communities, 1997 Reproduction is authorized, except for commercial purposes, provided the source is acknowledged Printed in Belgium European Commission EUTHANASIA OF EXPERIMENTAL ANIMALS Document EUTHANASIA OF EXPERIMENTAL ANIMALS Report prepared for the European Commission by Mrs Bryony Close Dr Keith Banister Dr Vera Baumans Dr Eva-Maria Bernoth Dr Niall Bromage Dr John Bunyan Professor Dr Wolff Erhardt Professor Paul Flecknell Dr Neville Gregory Professor Dr Hansjoachim Hackbarth Professor David Morton Mr Clifford Warwick EUTHANASIA OF EXPERIMENTAL ANIMALS CONTENTS Page Preface 1 Acknowledgements 2 1. Introduction 3 1.1 Objectives of euthanasia 3 1.2 Definition of terms 3 1.3 Signs of pain and distress 4 1.4 Recognition and confirmation of death 5 1.5 Personnel and training 5 1.6 Handling and restraint 6 1.7 Equipment 6 1.8 Carcass and waste disposal 6 2. General comments on methods of euthanasia 7 2.1 Acceptable methods of euthanasia 7 2.2 Methods acceptable for unconscious animals 15 2.3 Methods that are not acceptable for euthanasia 16 3. Methods of euthanasia for each species group 21 3.1 Fish 21 3.2 Amphibians 27 3.3 Reptiles 31 3.4 Birds 35 3.5 Rodents 41 3.6 Rabbits 47 3.7 Carnivores - dogs, cats, ferrets 53 3.8 Large mammals - pigs, sheep, goats, cattle, horses 57 3.9 Non-human primates 61 3.10 Other animals not commonly used for experiments 62 4.
    [Show full text]
  • Intravenous Sedation and Preparing for Your Procedure
    Oral and Maxillofacial Surgery Intravenous sedation and preparing for your procedure Information for patients Please ensure that you read this leaflet before you come to hospital for your operation What is sedation? Sedation is a way of using drugs (sedatives) to make you feel relaxed and sleepy during your procedure. We will give you your sedatives through an injection into a vein. Sedation is not a general anaesthetic and you will not be unconscious. You may not remember much of what happens during the procedure and directly afterwards. This is quite normal. Local anaesthetic will be given once you have been sedated. Do not drive, operate machinery or sign important documents for at least 24 hours after your procedure. You must make sure that you have a responsible adult with you who can stay in the department for a couple of hours and take you home by car or taxi. Someone must also stay with you for at least 24 hours after your procedure. Your procedure will be cancelled if you do not bring someone with you who can do this. Preparation for your procedure and what to bring with you • Patients having a procedure under sedation must follow the current fasting guidelines for general anaesthesia. You must not eat or drink for 6 hours before your procedure but you may have water up to 2 hours before. If you do eat or drink after these times your surgery will be cancelled. • Avoid alcohol for 24 hours before your procedure. • Bring with you a list of any medication or drugs you are taking.
    [Show full text]
  • Moderate Sedation Study Guide 11-17-10
    PROCEDURE RELATED SEDATION Outline I Introduction II Definitions: The 5 Levels of Sedation and Anesthesia III Emergency Procedures, Critical Care Areas and Policy Exclusions IV The Pre-Sedation Assessment V NPO: The Timing of Eating and Drinking before Sedation VI Review of Some Agents Used for Sedation VII Orders for Procedure Related Sedation VIII Environmental Requirements and Monitoring During Sedation IX Post-Procedure Monitoring and the PAR Score X Discharge Criteria and Concluding Post-Procedure Monitoring 1 PROCEDURE RELATED SEDATION Lance Brown, MD, MPH I. Introduction The purpose of this tutorial is to familiarize the reader with the Loma Linda University Medical Center Policy M-86 for Procedure Related Sedation. Procedure related sedation is used to make necessary medical procedures as comfortable as possible for patients and to facilitate the performance of necessary medical procedures by health care providers (typically physicians). It is important for health care providers performing procedure related sedation to be familiar with the pharmacologic characteristics of the agents being used, to understand the risk factors for complications related to procedure related sedation, and to individually plan the sedation for each patient. Each health care practitioner privileged to provide procedure related sedation takes responsibility for both the comfort and safety of the patients in their care. II. Definitions At Loma Linda University Medical Center, we have defined five distinct levels of sedation and anesthesia. Familiarity with the definitions of these levels of sedation is important for safely providing procedure related sedation and for complying with the policy of the Medical Center. It must be recognized, however, that sedation occurs along a continuum and that individual patients may have different degrees of sedation for a given dose and route of medication.
    [Show full text]
  • The Cardiorespiratory and Anesthetic Effects of Clinical and Supraclinical
    THE CARDIORESPIRATORY AND ANESTHETIC EFFECTS OF CLINICAL AND SUPRA CLINICAL DOSES OF ALF AXALONE IN CYCLODEXTRAN IN CATS AND DOGS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Laura L. Nelson, B.S., D.V.M. * * * * * The Ohio State University 2007 Dissertation Committee: Professor Jonathan Dyce, Adviser Professor William W. Muir III Professor Shane Bateman If I have seen further, it is by standing on the shoulders of giants. lmac Ne1vton (1642-1727) Copyright by Laura L. Nelson 2007 11 ABSTRACT The anesthetic properties of steroid hormones were first identified in 1941, leading to the development of neurosteroids as clinical anesthetics. CT-1341 was developed in the early 1970’s, featuring a combination of two neurosteroids (alfaxalone and alphadolone) solubilized in Cremophor EL®, a polyethylated castor oil derivative that allows hydrophobic compounds to be carried in aqueous solution as micelles. Though also possessing anesthetic properties, alphadolone was included principally to improve the solubility of alfaxalone. CT-1341, marketed as Althesin® and Saffan®, was characterized by smooth anesthetic induction and recovery in many species, a wide therapeutic range, and no cumulative effects with repeated administration. Its cardiorespiratory effects in humans and cats were generally mild. However, it induced severe hypersensitivity reactions in dogs, with similar reactions occasionally occurring in cats and humans. The hypersensitivity reactions associated with this formulation were linked to Cremophor EL®, leading to the discontinuation of Althesin® and some other Cremophor®-containing anesthetics. More recently, alternate vehicles for hydrophobic drugs have been developed, including cyclodextrins.
    [Show full text]
  • Post-Intubation Analgesia and Sedation
    POST-INTUBATION ANALGESIA AND SEDATION August 2012 J Pelletier Intubated patients experience pain and anxiety Mechanical ventilation, endotracheal tube Blood draws, positioning, suctioning Surgical procedures, dressing changes Awareness during neuromuscular blockade Invasive catheters Loss of control Unrelieved pain and anxiety cause adverse effects Self-injury and removal of life-sustaining devices Increased endogenous catecholamines Sleep deprivation, anxiety, and delirium Impaired post-ICU psychological recovery Emotional and posttraumatic effects Ventilator dysynchrony Immunosuppression Treating pain and anxiety improves outcomes Use of pain and sedation scales in critically ill patients allows: precise dosing reduced medication side effects reduced ICU and hospital length of stay shorter duration of mechanical ventilation Analgesics should be provided first, then anxiolysis If you were intubated, how much lorazepam or midazolam, and fentanyl would you want per hour? Intubated ED patients receive inadequate analgesia and sedation Retrospective study, tertiary ED 50% received no analgesia, 30% received no anxiolytic Of patients receiving postintubation vecuronium, 96% received either no or inadequate anxiolysis or analgesia Overall, 3 of 4 patients received no or inadequate analgesia and an equivalent number received no or inadequate anxiolysis Bonomo 2007 Analgesia: opioids Bind CNS and peripheral tissue receptors Mu-1 receptors: analgesia Mu-2 receptors: respiratory depression, vomiting, constipation, and
    [Show full text]
  • Pharmacology/Therapeutics II Block III Lectures 2013-14
    Pharmacology/Therapeutics II Block III Lectures 2013‐14 66. Hypothalamic/pituitary Hormones ‐ Rana 67. Estrogens and Progesterone I ‐ Rana 68. Estrogens and Progesterone II ‐ Rana 69. Androgens ‐ Rana 70. Thyroid/Anti‐Thyroid Drugs – Patel 71. Calcium Metabolism – Patel 72. Adrenocorticosterioids and Antagonists – Clipstone 73. Diabetes Drugs I – Clipstone 74. Diabetes Drugs II ‐ Clipstone Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones Date: Thursday, March 20, 2014-8:30 AM Reading Assignment: Katzung, Chapter 37 Key Concepts and Learning Objectives To review the physiology of neuroendocrine regulation To discuss the use neuroendocrine agents for the treatment of representative neuroendocrine disorders: growth hormone deficiency/excess, infertility, hyperprolactinemia Drugs discussed Growth Hormone Deficiency: . Recombinant hGH . Synthetic GHRH, Recombinant IGF-1 Growth Hormone Excess: . Somatostatin analogue . GH receptor antagonist . Dopamine receptor agonist Infertility and other endocrine related disorders: . Human menopausal and recombinant gonadotropins . GnRH agonists as activators . GnRH agonists as inhibitors . GnRH receptor antagonists Hyperprolactinemia: . Dopamine receptor agonists 1 Pharmacology & Therapeutics Neuroendocrine Pharmacology: Hypothalamic and Pituitary Hormones, March 20, 2014 Lecture Ajay Rana, Ph.D. 1. Overview of Neuroendocrine Systems The neuroendocrine
    [Show full text]
  • IV Induction Agents
    Intravenous drugs used for the induction of anaesthesia Dr Tom Lupton, Specialist Registrar in Anaesthesia Dr Oliver Pratt, Consultant Anaesthetist Salford Royal Hospitals NHS Foundation Trust, Salford, UK Key questions This tutorial reviews the basic pharmacology of common intravenous (IV) anaesthetic drugs. By the end of the tutorial, you should be able to decide on the most appropriate drug to use in the situations below and for what reason: 1. A patient with intestinal obstruction requires an emergency laparotomy. 2. A patient with a history of throat cancer, showing marked stridor and signs of respiratory distress, requires a tracheostomy. 3. A patient requiring a burn dressing change. 4. A patient with a history of heart failure requires a general anaesthetic. 5. A dehydrated hypovolaemic patient requires an emergency general anaesthetic. 6. A patient with porphyria comes for an inguinal hernia repair and is requesting a general anaesthetic. 7. A patient requires sedation on the intensive care unit. 8. Anaesthesia in the prehospital environment. What are IV induction drugs? These are drugs that, when given intravenously in an appropriate dose, cause a rapid loss of consciousness. This is often described as occurring within “one arm-brain circulation time” that is simply the time taken for the drug to travel from the site of injection (usually the arm) to the brain, where they have their effect. They are used: • To induce anaesthesia prior to other drugs being given to maintain anaesthesia. • As the sole drug for short procedures. • To maintain anaesthesia for longer procedures by intravenous infusion. • To provide sedation. The concept of intravenous anaesthesia was born in 1932, when Wesse and Schrapff published their report into the use of hexobarbitone, the first rapidly acting intravenous drug.
    [Show full text]
  • The Waterloo Wellington Palliative Sedation Protocol
    The Waterloo Wellington Palliative Sedation Protocol Waterloo Wellington Interdisciplinary HPC Education Committee; PST Task Force Chair: Dr. Deborah Robinson MD CCFP(F), Focused practice in Oncology and Palliative Care Co-chairs: Cathy Joy, Palliative Care Consultant, Waterloo Region Chris Bigelow, Palliative Care Consultant, Wellington County Revision due: November 2016 Last revised and activated: November 13, 2013 Committee responsible for revisions: WW Interdisciplinary HPC Education Committee Table of Contents Purpose and Definitions .................................................................................................................... 2 Indications for the use of PST .............................................................................................................. 3 Criteria for Initiation of PST ............................................................................................................... 4 Process ............................................................................................................................................. 4 Documentation for Initiation of PST .................................................................................................. 5 Medications ......................................................................................................................................... 6 1st Line (Initiating PST) ...................................................................................................................... 6 2nd Line (When 1st
    [Show full text]
  • Safety and Efficacy of Etomidate And
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2016 Safety and efficacy of etomidate and propofol anesthesia in elderly patients undergoing gastroscopy: A double-blind randomized clinical study Qing-Tao Meng Wuhan University Chen Cao The Third Hospital of Wuhan Hui-Min Liu Wuhan University Zhong-Yuan Xia Wuhan University Wei Li Wuhan University See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Meng, Qing-Tao; Cao, Chen; Liu, Hui-Min; Xia, Zhong-Yuan; Li, Wei; Tang, Ling-Hua; Chen, Rong; Jiang, Meng; Wu, Yang; Leng, Yan; and Lee, Chris C., ,"Safety and efficacy of etomidate and propofol anesthesia in elderly patients undergoing gastroscopy: A double-blind randomized clinical study." Experimental and Therapeutic Medicine.12,3. 1515-1524. (2016). https://digitalcommons.wustl.edu/open_access_pubs/5193 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Qing-Tao Meng, Chen Cao, Hui-Min Liu, Zhong-Yuan Xia, Wei Li, Ling-Hua Tang, Rong Chen, Meng Jiang, Yang Wu, Yan Leng, and Chris C. Lee This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/5193 EXPERIMENTAL AND THERAPEUTIC MEDICINE 12: 1515-1524, 2016 Safety and efficacy of etomidate and propofol anesthesia in elderly patients undergoing gastroscopy: A double‑blind randomized clinical study QING-TAO MENG1*, CHEN CAO2*, HUI-MIN LIU1*, ZHONG-YUAN XIA1, WEI LI1, LING-HUA TANG1, RONG CHEN1, MENG JIANG1, YANG WU1, YAN LENG1 and CHRIS C.
    [Show full text]
  • Tracheal Intubation Intubação Traqueal
    0021-7557/07/83-02-Suppl/S83 Jornal de Pediatria Copyright © 2007 by Sociedade Brasileira de Pediatria ARTIGO DE REVISÃO Tracheal intubation Intubação traqueal Toshio Matsumoto1, Werther Brunow de Carvalho2 Resumo Abstract Objetivo: Revisar os conceitos atuais relacionados ao procedimento Objective: To review current concepts related to the procedure of de intubação traqueal na criança. tracheal intubation in children. Fontes dos dados: Seleção dos principais artigos nas bases de Sources: Relevant articles published from 1968 to 2006 were dados MEDLINE, LILACS e SciELO, utilizando as palavras-chave selected from the MEDLINE, LILACS and SciELO databases, using the intubation, tracheal intubation, child, rapid sequence intubation, keywords intubation, tracheal intubation, child, rapid sequence pediatric airway, durante o período de 1968 a 2006. intubation and pediatric airway. Síntese dos dados: O manuseio da via aérea na criança está Summary of the findings: Airway management in children is relacionado à sua fisiologia e anatomia, além de fatores específicos related to their physiology and anatomy, in addition to specific factors (condições patológicas inerentes, como malformações e condições (inherent pathological conditions, such as malformations or acquired adquiridas) que influenciam decisivamente no seu sucesso. As principais conditions) which have a decisive influence on success. Principal indicações são manter permeável a aérea e controlar a ventilação. A indications are in order to maintain the airway patent and to control laringoscopia e intubação traqueal determinam alterações ventilation. Laryngoscopy and tracheal intubation cause cardiovascular cardiovasculares e reatividade de vias aéreas. O uso de tubos com alterations and affect airway reactivity. The use of tubes with cuffs is not balonete não é proibitivo, desde que respeitado o tamanho adequado prohibited, as long as the correct size for the child is chosen.
    [Show full text]