(12) Patent Application Publication (10) Pub. No.: US 2011/0044954 A1 Stice Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2011/0044954 A1 Stice Et Al US 20110044954A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0044954 A1 Stice et al. (43) Pub. Date: Feb. 24, 2011 (54) METHODS OF PRODUCING GERM-LIKE Publication Classification CELLS AND RELATED THERAPES (51) Int. Cl. A6II 35/12 (2006.01) CI2N 5/071 (2010.01) (76) Inventors: Steven Stice, Athens, GA (US); CI2N 5/07 (2010.01) Franklin West, Athens, GA (US) CI2N 5/00 (2006.01) A6IP 5/00 (2006.01) (52) U.S. Cl. ........ 424/93.7:435/377; 435/366; 435/354; Correspondence Address: 435/325 Henry D. Coleman (57) ABSTRACT 714 Colorado Avenue The present invention relates to methods of producing germ Bridgeport, CT 06605-1601 (US) like cells (GLCs) from embryonic stem cells and induced pluripotent stem cells, GLCs produced by such methods, gametes derived from Such GLCs, pharmaceutical composi (21) Appl. No.: 12/583,402 tions and kits containing Such GLCs, screens that use GLCs to identify agents useful in enhancing mammalian reproductive health, and methods of treatment that use GLCs to enhance (22) Filed: Aug. 20, 2009 mammalian reproductive health. Patent Application Publication Feb. 24, 2011 Sheet 1 of 15 US 2011/0044954 A1 Patent Application Publication Feb. 24, 2011 Sheet 2 of 15 US 2011/0044954 A1 A 1000 to a post. : : Patent Application Publication Feb. 24, 2011 Sheet 3 of 15 US 2011/0044954 A1 xxx x missism &r-o-o-o-o-o-o-o-o-o: aaraaaaaaaaaaaaaaaaaaaaaaaaaaaaaa to reexier : & Patent Application Publication Feb. 24, 2011 Sheet 4 of 15 US 2011/0044954 A1 xix. Erie Patent Application Publication Feb. 24, 2011 Sheet 5 of 15 US 2011/0044954 A1 ad Feeders Patent Application Publication Feb. 24, 2011 Sheet 6 of 15 US 2011/0044954 A1 rix is --as-a-----> is is & is Patent Application Publication Feb. 24, 2011 Sheet 7 of 15 US 2011/0044954 A1 8 & is is st 38: 8.8 3xx: 8888 Patent Application Publication Feb. 24, 2011 Sheet 8 of 15 US 2011/0044954 A1 vxoaueauea Patent Application Publication Feb. 24, 2011 Sheet 9 of 15 US 2011/0044954 A1 s s s s s s s s r s s s s s '' s s s Patent Application Publication Feb. 24, 2011 Sheet 10 of 15 US 2011/0044954 A1 B i8. : Patent Application Publication Feb. 24, 2011 Sheet 11 of 15 US 2011/0044954 A1 8::::::::: : x : 8 : x 88: 888 &888x8:8: * 8.3: x w8xxx &-------------------. 500 s k • . ...&&...... Patent Application Publication Feb. 24, 2011 Sheet 12 of 15 US 2011/0044954 A1 ay 16 with bfGr a treeties Patent Application Publication Feb. 24, 2011 Sheet 13 of 15 US 2011/0044954 A1 3 : Patent Application Publication Feb. 24, 2011 Sheet 14 of 15 US 2011/0044954 A1 rix . GLC Clone Secondary Only Control Clone Test Sample Patent Application Publication Feb. 24, 2011 Sheet 15 of 15 US 2011/0044954 A1 US 2011/0044954 A1 Feb. 24, 2011 METHODS OF PRODUCING GERM-LIKE state of mitotic arrest at 13.5 days post coitum. This quiescent CELLS AND RELATED THERAPES state is not reversed until puberty is reached; the mitotic process is then continued, and meiosis first takes place 15. RELATED APPLICATIONS Synaptonemal complexes formed during homologous chro mosome pairing in meiosis involve numerous proteins. Such 0001. Not applicable. as SYCP3 16, 17. SYCP3 expression is specific to meiotic germ cells, and knockout of this gene results in meiotic dis FIELD OF THE INVENTION ruption and sterility 15, 18. After the pairing of homologous 0002 The present invention relates to methods of produc chromosomes, crossing over occurs, which is controlled by ing germ-like cells (GLCs) from embryonic stem cells and proteins such as MLH1 19, 20 and is associated with the induced pluripotent stem cells, GLCs produced by such meth formation of chiasmata during a crossing-over event 19. ods, gametes derived from Such GLCs, pharmaceutical com MLH1 positions and kits containing such GLCs, Screens that use knockout mice exhibit disrupted meiosis, which results in GLCs to identify agents useful in enhancing mammalian sterility in both female and male mice 20. The expression of reproductive health, and methods of treatment that use GLCs these genes in human germ cells has been noted, but their to enhance mammalian reproductive health. study has been limited. Further understanding of these genes and others through in vitro human germ cell models is there BACKGROUND OF THE INVENTION fore warranted. 0007. In an attempt to address the need for an in vitro 0003 Citations for all references are found after the model to better understand these developmental processes, experimental section. Numerical citations (designated by "I several groups have reported the differentiation of mouse I”) are listed in “Reference Collection 1 except for the embryonic stem cells (mESCs) and hESCs into germ-like numerical citations in Part 3 of the Experimental Section, cells. mESCs have produced both male and female germ-like which are listed in “Reference Collection 3”. Name citations cells with protein profiles consistent with germ cell develop for the Experimental Section, Part 2, are listed in “Reference ment 4, 5. Cells in advanced differentiation cultures have Collection 2. even proven to undergo meiosis and erasure of methylation in 0004 Throughout this application, various publications imprinting genes, two hallmarks of normal germ cell devel are referenced. The disclosures of all of these publications opment 21. Nayernia et al. successfully showed that mESC and those references cited within those publications in their derived germ cells can produce offspring 22. Differentiated entireties are hereby incorporated by reference into this appli hESCs have also proven to have protein profiles consistent cation in order to more fully describe the state of the art to with normal germ cell development (i.e., DDX4+) and which this invention pertains. undergo early stages of meiosis 3, 14. Unfortunately, both 0005 Infertility is a major problem in the United States, mESC and hESC germ cell differentiation culture systems with 7.4% of married couples considered to be clinically have produced relatively mixed populations, with less than infertile 1. To aid these couples, assisted reproductive tech 35% DDX4-positive cells derived from hESCs, and coex nologies have been developed, but they are ineffective in pression of other germ cell markers, such as POU5F1, was not treating the most severe cases, where there is an absence of determined 3, 14. Traditionally, isolation of stem cell popu germ cell production 2. Human embryonic stem cells lations based on only a single marker is not as robust as that (hESCs) offer the means to further understand intrinsic and based on two or more markers. Previous work has established extrinsic factors involved in early and late germ cell develop that mouse embryonic fibroblasts feeders and basic fibroblast ment and survival 3-5. New developments and discoveries growth factor are essential for culturing primary germ cells using hESCs should ultimately lead to novel fertility treat 23-25; however, their role has not been examined in the mentS. derivation of germ-like cells from hESCs. 0006. Several genes and their products are expressed dur 0008. Therefore, the need exists for methods which will ing germ cell development and are used to follow germ cell reliably produce adequately-sized and relatively genetically differentiation. POU5F1 (also known as Oct4), a transcrip homogeneous populations of germ-like cells from which tion factor involved in stem cell pluripotency, is also expressed in primordial germ cells (PGCs) and is highly functioning gametes can be derived. conserved among species 6. As PGCs become linage-re SUMMARY OF THE INVENTION stricted during germ cell development, POU5F1 becomes exclusively expressed in germ cells and is not expressed in 0009. The present invention relates to novel methods of somatic cells 7. In the mouse, Ifitm3 and DPPA3 are spe producing homogeneous populations of germ-like cells cifically expressed in PGCs 8, 9). Unrestricted germ cells (GLCs), including methods of cloning a pure population of first express Ifitm3 during pregastrulation, followed by embryonic stem cells (ESC)-derived GLCs. In preferred DPPA3 expression at the late primitive streak stage of devel embodiments, methods of the present invention combine opment. In addition, DDX4 (also known as VASA) is a highly adherent clonal cell culture propagation with selection for a conserved, functionally important germ cell gene that is GLC population that expresses both germ cell specific and expressed exclusively in germ cells in numerous species, pluripotency proteins, DDX4 and POU5F1 respectively. including Drosophila, Xenopus, mice, and humans 10-13. 0010. In certain embodiments, the invention provides a DDX4 is an RNA helicase that in Drosophila has been shown novel adherent hESC to GLC differentiation culture system to be important for germ cell plasm formation, but its role has that is capable of producing a highly enriched GLC popula not yet been fully elucidated in the mammalian system 11. tion wherein greater than about 69% of cells co-express the However, male DDX4 homozygous knockout mice are sterile germ cell markers DDX4 and POU5F1 and wherein greater 12, and previous studies have used DDX4 in human ESC to than about 90% of GLCs express the meiotic markers SYCP3 PGC differentiation 3, 14. Male mouse germ cells enter a and MLH. US 2011/0044954 A1 Feb. 24, 2011 0011. The adherent differentiation system of the present (a) the embryonic stem cells are human embryonic stem cells invention offers at least the following advantages over embry (hESCs) and the adherent differentiation culture system com oid body (EB) systems: prises mouse embryonic fibroblast feeder cells; 0012 1. Feeder cells have proven to be important in (b) prior to differentiation, the hESCs are cultured in a culture differentiating hESCs into GLCs as cultures lacking medium comprising an effective amount of basic fibroblast feeders demonstrate reduced GLC numbers.
Recommended publications
  • Evidence for Differential Alternative Splicing in Blood of Young Boys With
    Stamova et al. Molecular Autism 2013, 4:30 http://www.molecularautism.com/content/4/1/30 RESEARCH Open Access Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders Boryana S Stamova1,2,5*, Yingfang Tian1,2,4, Christine W Nordahl1,3, Mark D Shen1,3, Sally Rogers1,3, David G Amaral1,3 and Frank R Sharp1,2 Abstract Background: Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods: RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results: A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling.
    [Show full text]
  • A Role for Dazl in Commitment to Gametogenic Fate in Embryonic Germ Cells of C57BL/6 Mice
    A Role for Dazl in Commitment to Gametogenic Fate in Embryonic Germ Cells of C57BL/6 Mice by Yanfeng Lin (Yen-Hong Lim) B.S. Biochemistry and Molecular and Cell Biology University of Wisconsin-Madison, 1998 SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPT 2005 C 2005 Yanfeng Lin. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of Author __ _ __ Department of Biology August, 2005 V /-' ~J-2 Certified by David C. Page Professor of Biology Howard Hughes Medical Institute Thesis Supervisor Accepted b) Stephen P. Bell Co-chair, Biology Graduate Student Committee 'MACHUS ETT S NS1 I OF TECHNOLOGY ARCHIVES' OCT 0 2005 . ,. -~ I LIBRARIES .i. __ A Role for Dazl in Commitment to Gametogenic Fate in Embryonic Germ Cells of C57BL/6 Mice by Yanfeng Lin (Yen-Hong Lim) Submitted to the Department of Biology on June, 2005 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology Abstract Germ cells can be defined as the cells that undergo the terminal differentiating process of meiosis. In mice, as XX germ cells enter meiosis around Embryonic days 13.5-14.5 (E13.5-E14.5), they form meiotic figures and down-regulate pluripotency markers. XY germ cells enter proliferation arrest between E13.5 and E16.5, which is accompanied by a distinct morphological change as well.
    [Show full text]
  • Binding Specificities of Human RNA Binding Proteins Towards Structured
    bioRxiv preprint doi: https://doi.org/10.1101/317909; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Binding specificities of human RNA binding proteins towards structured and linear 2 RNA sequences 3 4 Arttu Jolma1,#, Jilin Zhang1,#, Estefania Mondragón4,#, Teemu Kivioja2, Yimeng Yin1, 5 Fangjie Zhu1, Quaid Morris5,6,7,8, Timothy R. Hughes5,6, Louis James Maher III4 and Jussi 6 Taipale1,2,3,* 7 8 9 AUTHOR AFFILIATIONS 10 11 1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden 12 2Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland 13 3Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 14 4Department of Biochemistry and Molecular Biology and Mayo Clinic Graduate School of 15 Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, USA 16 5Department of Molecular Genetics, University of Toronto, Toronto, Canada 17 6Donnelly Centre, University of Toronto, Toronto, Canada 18 7Edward S Rogers Sr Department of Electrical and Computer Engineering, University of 19 Toronto, Toronto, Canada 20 8Department of Computer Science, University of Toronto, Toronto, Canada 21 #Authors contributed equally 22 *Correspondence: [email protected] 23 24 25 SUMMARY 26 27 Sequence specific RNA-binding proteins (RBPs) control many important 28 processes affecting gene expression. They regulate RNA metabolism at multiple 29 levels, by affecting splicing of nascent transcripts, RNA folding, base modification, 30 transport, localization, translation and stability. Despite their central role in most 31 aspects of RNA metabolism and function, most RBP binding specificities remain 32 unknown or incompletely defined.
    [Show full text]
  • Dynamic Changes in RNA–Protein Interactions and RNA Secondary Structure in Mammalian Erythropoiesis
    Published Online: 27 July, 2021 | Supp Info: http://doi.org/10.26508/lsa.202000659 Downloaded from life-science-alliance.org on 30 September, 2021 Resource Dynamic changes in RNA–protein interactions and RNA secondary structure in mammalian erythropoiesis Mengge Shan1,2 , Xinjun Ji3, Kevin Janssen5 , Ian M Silverman3 , Jesse Humenik3, Ben A Garcia5, Stephen A Liebhaber3,4, Brian D Gregory1,2 Two features of eukaryotic RNA molecules that regulate their and RNA secondary structure. These techniques generally either post-transcriptional fates are RNA secondary structure and RNA- use chemical probing agents or structure-specific RNases (single- binding protein (RBP) interaction sites. However, a comprehen- stranded RNases (ssRNases) and double-stranded RNases [dsRNa- sive global overview of the dynamic nature of these sequence ses]) to provide site-specific evidence for a region being in single- or features during erythropoiesis has never been obtained. Here, we double-stranded configurations (4, 5). use our ribonuclease-mediated structure and RBP-binding site To date, the known repertoire of RBP–RNA interaction sites has mapping approach to reveal the global landscape of RNA sec- been built on a protein-by-protein basis, with studies identifying ondary structure and RBP–RNA interaction sites and the dynamics the targets of a single protein of interest, often through the use of of these features during this important developmental process. techniques such as crosslinking and immunoprecipitation se- We identify dynamic patterns of RNA secondary structure and RBP quencing (CLIP-seq) (6). In CLIP-seq, samples are irradiated with UV binding throughout the process and determine a set of corre- to induce the cross-linking of proteins to their RNA targets.
    [Show full text]
  • Genomic and Expression Profiling of Human Spermatocytic Seminomas: Primary Spermatocyte As Tumorigenic Precursor and DMRT1 As Candidate Chromosome 9 Gene
    Research Article Genomic and Expression Profiling of Human Spermatocytic Seminomas: Primary Spermatocyte as Tumorigenic Precursor and DMRT1 as Candidate Chromosome 9 Gene Leendert H.J. Looijenga,1 Remko Hersmus,1 Ad J.M. Gillis,1 Rolph Pfundt,4 Hans J. Stoop,1 Ruud J.H.L.M. van Gurp,1 Joris Veltman,1 H. Berna Beverloo,2 Ellen van Drunen,2 Ad Geurts van Kessel,4 Renee Reijo Pera,5 Dominik T. Schneider,6 Brenda Summersgill,7 Janet Shipley,7 Alan McIntyre,7 Peter van der Spek,3 Eric Schoenmakers,4 and J. Wolter Oosterhuis1 1Department of Pathology, Josephine Nefkens Institute; Departments of 2Clinical Genetics and 3Bioinformatics, Erasmus Medical Center/ University Medical Center, Rotterdam, the Netherlands; 4Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; 5Howard Hughes Medical Institute, Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; 6Clinic of Paediatric Oncology, Haematology and Immunology, Heinrich-Heine University, Du¨sseldorf, Germany; 7Molecular Cytogenetics, Section of Molecular Carcinogenesis, The Institute of Cancer Research, Sutton, Surrey, United Kingdom Abstract histochemistry, DMRT1 (a male-specific transcriptional regulator) was identified as a likely candidate gene for Spermatocytic seminomas are solid tumors found solely in the involvement in the development of spermatocytic seminomas. testis of predominantly elderly individuals. We investigated these tumors using a genome-wide analysis for structural and (Cancer Res 2006; 66(1): 290-302) numerical chromosomal changes through conventional kar- yotyping, spectral karyotyping, and array comparative Introduction genomic hybridization using a 32 K genomic tiling-path Spermatocytic seminomas are benign testicular tumors that resolution BAC platform (confirmed by in situ hybridization).
    [Show full text]
  • Pumilio Proteins Regulate Translation in Embryonic Stem Cells and Are Essential for Early Embryonic Development Katherine Elizabeth Uyhazi Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 12-2012 Pumilio Proteins Regulate Translation in Embryonic Stem Cells and are Essential for Early Embryonic Development Katherine Elizabeth Uyhazi Yale University. Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Part of the Medicine and Health Sciences Commons Recommended Citation Uyhazi, Katherine Elizabeth, "Pumilio Proteins Regulate Translation in Embryonic Stem Cells and are Essential for Early Embryonic Development" (2012). Yale Medicine Thesis Digital Library. 2189. http://elischolar.library.yale.edu/ymtdl/2189 This Open Access Dissertation is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. ABSTRACT Pumilio Proteins Regulate Translation in Embryonic Stem Cells and are Essential for Early Embryonic Development Katherine E. Uyhazi 2012 Embryonic stem (ES) cells are defined by their dual abilities to self-renew and to differentiate into any cell type in the body. This vast potential is precisely controlled by spatial and temporal gene regulation at transcriptional, post-transcriptional, and epigenetic levels. Recent studies have revealed several transcription factors that are essential for stem cell self-renewal and pluripotency, but the role of translational control in ES cells is poorly understood. Translational control is a fundamental mechanism of gene regulation during early development, and likely explains the discrepancies between the transcriptome and proteome profiles of stem cells and their differentiated progeny.
    [Show full text]
  • Intermolecular Interactions of Homologs of Germ Plasm Components in Mammalian Germ Cells Mark S
    Dominican Scholar Collected Faculty and Staff Scholarship Faculty and Staff Scholarship 2007 Intermolecular Interactions of Homologs of Germ Plasm Components in Mammalian Germ Cells Mark S. Fox Center for Reproductive Sciences; Human Embryonic Stem Cell Research Center; Department of Obstetrics, Gynecology and Reproductive Sciences; Institute for Stem Cell and Tissue Biology; Departments of Physiology and Urology; University of California at San Francisco Amander T. Clark Center for Reproductive Sciences; Human Embryonic Stem Cell Research Center; Department of Obstetrics, Gynecology and Reproductive Sciences; Institute for Stem Cell and Tissue Biology; Departments of Physiology and Urology; University of California at San Francisco Mohammed El Majdoubi Center for Reproductive Sciences; Human Embryonic Stem Cell Research Center; Department of Obstetrics, Gynecology and Reproductive Sciences; Institute for Stem Cell and Tissue Biology; Departments of Physiology and Urology; University of California at San Francisco, [email protected] Recommended Citation Fox, Mark S.; Clark, Amander T.; El Majdoubi, Mohammed; Vigne, Jean-Louis; Urano, Jun; Hostetler, Chris E.; Griswold, Michael D.; Weiner, Richard I.; and Reijo Pera, Renee A., "Intermolecular Interactions of Homologs of Germ Plasm Components in Mammalian Germ Cells" (2007). Collected Faculty and Staff Scholarship. 308. https://scholar.dominican.edu/all-faculty/308 DOI http://dx.doi.org/https://doi.org/10.1016/j.ydbio.2006.08.047 This Article is brought to you for free and open access by the Faculty and Staff Scholarship at Dominican Scholar. It has been accepted for inclusion in Collected Faculty and Staff Scholarship by an authorized administrator of Dominican Scholar. For more information, please contact [email protected].
    [Show full text]
  • Binding Specificities of Human RNA Binding Proteins Towards Structured and Linear RNA Sequences
    bioRxiv preprint doi: https://doi.org/10.1101/317909; this version posted May 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Binding specificities of human RNA binding proteins towards structured and linear 2 RNA sequences 3 4 Arttu Jolma1,#, Jilin Zhang1,#, Estefania Mondragón4,#, Teemu Kivioja2, Yimeng Yin1, 5 Fangjie Zhu1, Quaid Morris5,6,7,8, Timothy R. Hughes5,6, Louis James Maher III4 and Jussi 6 Taipale1,2,3,* 7 8 9 AUTHOR AFFILIATIONS 10 11 1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden 12 2Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland 13 3Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 14 4Department of Biochemistry and Molecular Biology and Mayo Clinic Graduate School of 15 Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, USA 16 5Department of Molecular Genetics, University of Toronto, Toronto, Canada 17 6Donnelly Centre, University of Toronto, Toronto, Canada 18 7Edward S Rogers Sr Department of Electrical and Computer Engineering, University of 19 Toronto, Toronto, Canada 20 8Department of Computer Science, University of Toronto, Toronto, Canada 21 22 #Authors contributed equally 23 *Correspondence: [email protected] 24 25 26 ABSTRACT 27 28 Sequence specific RNA-binding proteins (RBPs) control many important 29 processes affecting gene expression. They regulate RNA metabolism at multiple 30 levels, by affecting splicing of nascent transcripts, RNA folding, base modification, 31 transport, localization, translation and stability. Despite their central role in most 32 aspects of RNA metabolism and function, most RBP binding specificities remain 33 unknown or incompletely defined.
    [Show full text]
  • Molecular Characterization of Some Genetic Factors Controlling Spermatogenesis in Egyptian Patients with Male Infertility
    IJIFM 10.5005/jp-journals-10016-1045 RESEARCHMolecular ARTICLECharacterization of Some Genetic Factors Controlling Spermatogenesis in Egyptian Patients with Male Infertility Molecular Characterization of Some Genetic Factors Controlling Spermatogenesis in Egyptian Patients with Male Infertility Alaaeldin Gamal Fayez, Amr Saad El-Sayed, Mohamed Ali El-Desouky, Waheba Ahmed Zarouk, Alaa Khalil Kamel, Ibrahim Mohamed Fahmi, Mona Omar El-Ruby ABSTRACT frequencies of Y chromosome microdeletion, definitely in Men with severe infertility suffer a high risk of Y chromosome azoospermia factor (AZF), in Egyptian nonobstructive deletion, hence screening for these cases is recommended prior azoospermic (NOA) infertile men. Furthermore, the present to treatment with assisted reproduction. Our study aimed to study was designed to determine the frequency of copy investigate and detect the azoospermia factor (AZF) region number variations of one of testis specific genes named deletion, rearrangement and deleted azoospermia (DAZ) gene deleted azoospermia (DAZ) gene that is confirmed by AZFc copy number variations in Egyptian azoospermic infertile men. This was tested on 54 Egyptian nonobstructive azoospermic rearrangement. (NOA) infertile men, with age ranged from 21 to 45 years (mean: 31.4 ± 6.1 years), by STS ± multiplex PCR using a set of MATERIALS AND METHODS 14 sequence tagged sites (STSs) from three different regions of the Y chromosome: AZFa, AZFb, AZFc and sY587/DraI PCR- Male subjects with primary infertility attending the clinical RFLP assay to determine DAZ copy number variations. The genetics clinic at the National Research Centre (NRC) and results revealed a significant prevalence of AZFc subtypes andrology clinic at the Kasr Al Ainy Hospital, Cairo deletion and reduced DAZ gene dosage in Egyptian University (Egypt), were enrolled in the present study after azoospermic cases affecting Y chromosome deletions.
    [Show full text]
  • DMRTC2, PAX7, BRACHYURY/T and TERT Are Implicated in Male Germ Cell Development Following Curative Hormone Treatment for Cryptorchidism-Induced Infertility
    G C A T T A C G G C A T genes Article DMRTC2, PAX7, BRACHYURY/T and TERT Are Implicated in Male Germ Cell Development Following Curative Hormone Treatment for Cryptorchidism-Induced Infertility Katharina Gegenschatz-Schmid 1, Gilvydas Verkauskas 2, Philippe Demougin 3, Vytautas Bilius 2, Darius Dasevicius 4, Michael B. Stadler 5,6 and Faruk Hadziselimovic 1,* 1 Cryptorchidism Research Institute, Kindermedizinisches Zentrum Liestal, 4410 Liestal, Switzerland; [email protected] 2 Children’s Surgery Centre, Faculty of Medicine, Vilnius of University, 01513 Vilnius, Lithuania; [email protected] (G.V.); [email protected] (V.B.) 3 Biozentrum, Life Sciences Training Facility, University of Basel, 4001 Basel, Switzerland; [email protected] 4 Institute for Pathology, National Centre of Pathology, Affiliate of Vilnius University Hospital Santariskiu Klinikos, 08406 Vilnius, Lithuania; [email protected] 5 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 6 Swiss Institute of Bioinformatics, Basel, Switzerland * Correspondence: [email protected]; Tel.: +41-61-927-9090; Fax: +41-61-927-9099 Academic Editor: Paolo Cinelli Received: 18 August 2017; Accepted: 5 October 2017; Published: 11 October 2017 Abstract: Defective mini-puberty results in insufficient testosterone secretion that impairs the differentiation of gonocytes into dark-type (Ad) spermatogonia. The differentiation of gonocytes into Ad spermatogonia can be induced by administration of the gonadotropin-releasing hormone agonist, GnRHa (Buserelin, INN)). Nothing is known about the mechanism that underlies successful GnRHa treatment in the germ cells. Using RNA-sequencing of testicular biopsies, we recently examined RNA profiles of testes with and without GnRHa treatment.
    [Show full text]
  • The Y Chromosome: a Blueprint for Men’S Health?
    European Journal of Human Genetics (2017) 25, 1181–1188 Official journal of The European Society of Human Genetics www.nature.com/ejhg REVIEW The Y chromosome: a blueprint for men’s health? Akhlaq A Maan1, James Eales1, Artur Akbarov1, Joshua Rowland1, Xiaoguang Xu1, Mark A Jobling2, Fadi J Charchar3 and Maciej Tomaszewski*,1,4 The Y chromosome has long been considered a ‘genetic wasteland’ on a trajectory to completely disappear from the human genome. The perception of its physiological function was restricted to sex determination and spermatogenesis. These views have been challenged in recent times with the identification of multiple ubiquitously expressed Y-chromosome genes and the discovery of several unexpected associations between the Y chromosome, immune system and complex polygenic traits. The collected evidence suggests that the Y chromosome influences immune and inflammatory responses in men, translating into genetically programmed susceptibility to diseases with a strong immune component. Phylogenetic studies reveal that carriers of a common European lineage of the Y chromosome (haplogroup I) possess increased risk of coronary artery disease. This occurs amidst upregulation of inflammation and suppression of adaptive immunity in this Y lineage, as well as inferior outcomes in human immunodeficiency virus infection. From structural analysis and experimental data, the UTY (Ubiquitously Transcribed Tetratricopeptide Repeat Containing, Y-Linked) gene is emerging as a promising candidate underlying the associations between Y-chromosome variants and the immunity-driven susceptibility to complex disease. This review synthesises the recent structural, experimental and clinical insights into the human Y chromosome in the context of men’s susceptibility to disease (with a particular emphasis on cardiovascular disease) and provides an overview of the paradigm shift in the perception of the Y chromosome.
    [Show full text]
  • The Tip of the Iceberg: RNA-Binding Proteins with Prion-Like Domains in Neurodegenerative Disease
    BRES-42024; No. of pages: 20; 4C: 7, 8, 10, 12, 13 BRAIN RESEARCH XX (2012) XXX– XXX Available online at www.sciencedirect.com www.elsevier.com/locate/brainres Review The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease Oliver D. Kinga,⁎, Aaron D. Gitlerb,⁎⁎, James Shorterc,⁎⁎⁎ aBoston Biomedical Research Institute, 64 Grove St., Watertown, MA 02472, USA bDepartment of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, M322 Alway Building, Stanford, CA 94305-5120, USA cDepartment of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 805b Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA ARTICLE INFO ABSTRACT Article history: Prions are self-templating protein conformers that are naturally transmitted between individ- Accepted 7 January 2012 uals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A dis- Keywords: tinctive and portable ‘prion domain’ enriched in asparagine, glutamine, tyrosine and glycine res- Prion idues unifies the majority of yeast prion proteins. Deletion of this domain precludes RNA-binding protein prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An al- TDP-43 gorithm designed to detect prion domains has successfully identified 19 domains that can confer FUS prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA- TAF15 binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion do- EWSR1 main. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of Amyotrophic lateral sclerosis these are in the top 60 prion candidates in the entire genome.
    [Show full text]