The Tip of the Iceberg: RNA-Binding Proteins with Prion-Like Domains in Neurodegenerative Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Large-Scale Analysis of Genome and Transcriptome Alterations in Multiple Tumors Unveils Novel Cancer-Relevant Splicing Networks
Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Research Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks Endre Sebestyén,1,5 Babita Singh,1,5 Belén Miñana,1,2 Amadís Pagès,1 Francesca Mateo,3 Miguel Angel Pujana,3 Juan Valcárcel,1,2,4 and Eduardo Eyras1,4 1Universitat Pompeu Fabra, E08003 Barcelona, Spain; 2Centre for Genomic Regulation, E08003 Barcelona, Spain; 3Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), E08908 L’Hospitalet del Llobregat, Spain; 4Catalan Institution for Research and Advanced Studies, E08010 Barcelona, Spain Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled. We system- atically analyzed mutation, copy number, and gene expression patterns of 1348 RNA-binding protein (RBP) genes in 11 solid tumor types, together with alternative splicing changes in these tumors and the enrichment of binding motifs in the alter- natively spliced sequences. Our comprehensive study reveals widespread alterations in the expression of RBP genes, as well as novel mutations and copy number variations in association with multiple alternative splicing changes in cancer drivers and oncogenic pathways. Remarkably, the altered splicing patterns in several tumor types recapitulate those of undifferen- tiated cells. These patterns are predicted to be mainly controlled by MBNL1 and involve multiple cancer drivers, including the mitotic gene NUMA1. We show that NUMA1 alternative splicing induces enhanced cell proliferation and centrosome am- plification in nontumorigenic mammary epithelial cells. -
Overlap of Quantitative Trait Loci for Early Growth Rate, and for Body
REPRODUCTIONRESEARCH Functional reconstruction of NANOS3 expression in the germ cell lineage by a novel transgenic reporter reveals distinct subcellular localizations of NANOS3 Masashi Yamaji1, Takashi Tanaka2, Mayo Shigeta1, Shinichiro Chuma2, Yumiko Saga3 and Mitinori Saitou1,4,5 1Laboratory for Mammalian Germ Cell Biology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima- Minamimachi, Chuo-ku, Kobe 650-0047, Japan, 2Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan, 3Department of Genetics and Division of Mammalian Development, National Institute of Genetics, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan, 4Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida- Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan and 5JST, CREST, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Correspondence should be addressed to M Saitou at Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University; Email: [email protected] Abstract Mutations of RNA-binding proteins such as NANOS3, TIAL1, and DND1 in mice have been known to result in the failure of survival and/or proliferation of primordial germ cells (PGCs) soon after their fate is specified (around embryonic day (E) 8.0), leading to the infertility of these animals. However, the mechanisms of actions of these RNA-binding proteins remain largely unresolved. As a foundation to explore the role of these RNA-binding proteins in germ cells, we established a novel transgenic reporter strain that expresses NANOS3 fused with EGFP under the control of Nanos3 regulatory elements. NANOS3–EGFP exhibited exclusive expression in PGCs as early as E7.25, and continued to be expressed in female germ cells until around E14.5 and in male germ cells throughout the fetal period with declining expression levels after E16.5. -
Epigenome-Wide Exploratory Study of Monozygotic Twins Suggests Differentially Methylated Regions to Associate with Hand Grip Strength
Biogerontology (2019) 20:627–647 https://doi.org/10.1007/s10522-019-09818-1 (0123456789().,-volV)( 0123456789().,-volV) RESEARCH ARTICLE Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength Mette Soerensen . Weilong Li . Birgit Debrabant . Marianne Nygaard . Jonas Mengel-From . Morten Frost . Kaare Christensen . Lene Christiansen . Qihua Tan Received: 15 April 2019 / Accepted: 24 June 2019 / Published online: 28 June 2019 Ó The Author(s) 2019 Abstract Hand grip strength is a measure of mus- significant CpG sites or pathways were found, how- cular strength and is used to study age-related loss of ever two of the suggestive top CpG sites were mapped physical capacity. In order to explore the biological to the COL6A1 and CACNA1B genes, known to be mechanisms that influence hand grip strength varia- related to muscular dysfunction. By investigating tion, an epigenome-wide association study (EWAS) of genomic regions using the comb-p algorithm, several hand grip strength in 672 middle-aged and elderly differentially methylated regions in regulatory monozygotic twins (age 55–90 years) was performed, domains were identified as significantly associated to using both individual and twin pair level analyses, the hand grip strength, and pathway analyses of these latter controlling the influence of genetic variation. regions revealed significant pathways related to the Moreover, as measurements of hand grip strength immune system, autoimmune disorders, including performed over 8 years were available in the elderly diabetes type 1 and viral myocarditis, as well as twins (age 73–90 at intake), a longitudinal EWAS was negative regulation of cell differentiation. -
Dissecting the Genomic Complexity Underlying Medulloblastoma
LETTER doi:10.1038/nature11284 Dissecting the genomic complexity underlying medulloblastoma A list of authors and their affiliations appears at the end of the paper Medulloblastoma is an aggressively growing tumour, arising in Some cases probably went through even higher polyploidy states the cerebellum or medulla/brain stem. It is the most common before reaching an approximately 4n baseline (for example malignant brain tumour in children, and shows tremendous bio- ICGC_MB45, displaying 4n chromosomes with 4:0 or 3:1 allele ratios; logical and clinical heterogeneity1. Despite recent treatment Supplementary Fig. 2). Across the discovery set, tetraploidy was most advances, approximately 40% of children experience tumour commonly observed in Group 3 (7 out of 13, 54%) and Group 4 recurrence, and 30% will die from their disease. Those who survive tumours (8 out of 20, 40%), followed by SHH (4 out of 14, 29%) and often have a significantly reduced quality of life. Four tumour WNT tumours (1 out of 7, 14%). Interestingly, the four tetraploid SHH subgroups with distinct clinical, biological and genetic profiles tumours all harboured TP53 mutations and also displayed chromo- are currently identified2,3. WNT tumours, showing activated thripsis6. Tetraploid Group 3 and 4 tumours showed significantly wingless pathway signalling, carry a favourable prognosis under more large-scale copy number alterations compared with diploid cases current treatment regimens4. SHH tumours show hedgehog (median 10 changes per tumour in tetraploid versus 4 per tumour in pathway activation, and have an intermediate prognosis2. Group 3 diploid cases, P 5 0.008, two-tailed Mann–Whitney U-test; Supplemen- and 4 tumours are molecularly less well characterized, and also tary Fig. -
A Comprehensive Analysis of 3' End Sequencing Data Sets Reveals Novel
bioRxiv preprint doi: https://doi.org/10.1101/033001; this version posted November 26, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A comprehensive analysis of 3’ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogenous ribonucleoprotein C on cleavage and polyadenylation 1 1 1 1 1 Andreas J. Gruber , Ralf Schmidt , Andreas R. Gruber , Georges Martin , Souvik Ghosh , 1,2 1 1,§ Manuel Belmadani , Walter Keller , Mihaela Zavolan 1 Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 5070, 4056 Basel, Switzerland 2 Current address: University of British Columbia, 177 Michael Smith Laboratories, 2185 East Mall Vancouver BC V6T 1Z4 § To whom correspondence should be addressed ([email protected]) Abstract Alternative polyadenylation (APA) is a general mechanism of transcript diversification in mammals, which has been recently linked to proliferative states and cancer. Different 3’ untranslated region (3’ UTR) isoforms interact with different RNA binding proteins (RBPs), which modify the stability, translation, and subcellular localization of the corresponding transcripts. Although the heterogeneity of premRNA 3’ end processing has been established with highthroughput approaches, the mechanisms that underlie systematic changes in 3’ UTR lengths remain to be characterized. Through a uniform analysis of a large number of 3’ end sequencing data sets we have uncovered 18 signals, 6 of which novel, whose positioning with respect to premRNA cleavage sites indicates a role in premRNA 3’ end processing in both mouse and human. -
CD29 Identifies IFN-Γ–Producing Human CD8+ T Cells With
+ CD29 identifies IFN-γ–producing human CD8 T cells with an increased cytotoxic potential Benoît P. Nicoleta,b, Aurélie Guislaina,b, Floris P. J. van Alphenc, Raquel Gomez-Eerlandd, Ton N. M. Schumacherd, Maartje van den Biggelaarc,e, and Monika C. Wolkersa,b,1 aDepartment of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; bLandsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cDepartment of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands; dDivision of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and eDepartment of Molecular and Cellular Haemostasis, Sanquin Research, 1066 CX Amsterdam, The Netherlands Edited by Anjana Rao, La Jolla Institute for Allergy and Immunology, La Jolla, CA, and approved February 12, 2020 (received for review August 12, 2019) Cytotoxic CD8+ T cells can effectively kill target cells by producing therefore developed a protocol that allowed for efficient iso- cytokines, chemokines, and granzymes. Expression of these effector lation of RNA and protein from fluorescence-activated cell molecules is however highly divergent, and tools that identify and sorting (FACS)-sorted fixed T cells after intracellular cytokine + preselect CD8 T cells with a cytotoxic expression profile are lacking. staining. With this top-down approach, we performed an un- + Human CD8 T cells can be divided into IFN-γ– and IL-2–producing biased RNA-sequencing (RNA-seq) and mass spectrometry cells. Unbiased transcriptomics and proteomics analysis on cytokine- γ– – + + (MS) analyses on IFN- and IL-2 producing primary human producing fixed CD8 T cells revealed that IL-2 cells produce helper + + + CD8 Tcells. -
Profilin-1 Is Required for Survival of Adult Hematopoietic Stem Cells
Extended methods Immunohistochemistry HepG-2, SMMC-7721, and 293T cells were obtained from Cell Resource Center of Shanghai Institute for Biological Science, Chinese Academy Science, Shanghai, China. HUVEC cells were kindly provided by Prof. Ping-Jin Gao at Institute of Health Sciences (Shanghai, China). All these cell lines were cultured in DMEM with 10% FBS. MDA- MB-231 cell line was kindly provided by Prof. Ming-Yao Liu (East China Normal University, Shanghai, China) and was cultured in Leibovitz L-15 medium with 10% FBS. All these cell lines were originally purchased from ATCC. MDA-MB-231, SMMC-7721 or HepG2 cells were grown on coverslips in 24-well plates and fixed in either 4% paraformaldehyde or pre-chilled methanol (-20°C) for 10 min. In some cases, WT or VPS33B-null Lin-Sca-1+c-Kit+Flk2-CD34- LT-HSCs were collected by flow cytometry and fixed for immunofluorescence staining. Cells were then blocked with 3% BSA in PBS for 60 min followed by incubation with primary antibodies overnight. The antibodies used were anti-HA (Sigma), anti-Flag (Sigma), anti-VPS33B (Sigma), anti- VPS16B (Abcam), anti-GDI2 (Proteintech), anti-LAMP1 (Proteintech), anti-FLOT1 (Abways), anti-CD63 (Proteintech), anti-ANGPTL2 (R&D system), anti-ANGPTL3 (R&D system), anti-TPO (Abways), anti-GLUT1 (Proteintech), anti-LDHA (Proteintech), anti-PKM2 (CST), anti-RAB11A (Abways), anti-RAB27A (Abways) and anti-V5 (Biodragon). Fluorescent-conjugated secondary antibodies (Alexa Fluor® 488 or Alexa Fluor® 555) against mouse, rabbit, or goat were obtained from the Thermo Scientific Inc. The details for all the antibodies are listed in Table S3. -
Differential Requirements for Tousled-Like Kinases 1 and 2 in Mammalian Development
Cell Death and Differentiation (2017) 24, 1872–1885 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1350-9047/17 www.nature.com/cdd Differential requirements for Tousled-like kinases 1 and 2 in mammalian development Sandra Segura-Bayona1,8, Philip A Knobel1,8, Helena González-Burón1,8, Sameh A Youssef2,3, Aida Peña-Blanco1, Étienne Coyaud4,5, Teresa López-Rovira1, Katrin Rein1, Lluís Palenzuela1, Julien Colombelli1, Stephen Forrow1, Brian Raught4,5, Anja Groth6, Alain de Bruin2,7 and Travis H Stracker*,1 The regulation of chromatin structure is critical for a wide range of essential cellular processes. The Tousled-like kinases, TLK1 and TLK2, regulate ASF1, a histone H3/H4 chaperone, and likely other substrates, and their activity has been implicated in transcription, DNA replication, DNA repair, RNA interference, cell cycle progression, viral latency, chromosome segregation and mitosis. However, little is known about the functions of TLK activity in vivo or the relative functions of the highly similar TLK1 and TLK2 in any cell type. To begin to address this, we have generated Tlk1- and Tlk2-deficient mice. We found that while TLK1 was dispensable for murine viability, TLK2 loss led to late embryonic lethality because of placental failure. TLK2 was required for normal trophoblast differentiation and the phosphorylation of ASF1 was reduced in placentas lacking TLK2. Conditional bypass of the placental phenotype allowed the generation of apparently healthy Tlk2-deficient mice, while only the depletion of both TLK1 and TLK2 led to extensive genomic instability, indicating that both activities contribute to genome maintenance. Our data identifies a specific role for TLK2 in placental function during mammalian development and suggests that TLK1 and TLK2 have largely redundant roles in genome maintenance. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Binding Specificities of Human RNA Binding Proteins Towards Structured
bioRxiv preprint doi: https://doi.org/10.1101/317909; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Binding specificities of human RNA binding proteins towards structured and linear 2 RNA sequences 3 4 Arttu Jolma1,#, Jilin Zhang1,#, Estefania Mondragón4,#, Teemu Kivioja2, Yimeng Yin1, 5 Fangjie Zhu1, Quaid Morris5,6,7,8, Timothy R. Hughes5,6, Louis James Maher III4 and Jussi 6 Taipale1,2,3,* 7 8 9 AUTHOR AFFILIATIONS 10 11 1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden 12 2Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland 13 3Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 14 4Department of Biochemistry and Molecular Biology and Mayo Clinic Graduate School of 15 Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, USA 16 5Department of Molecular Genetics, University of Toronto, Toronto, Canada 17 6Donnelly Centre, University of Toronto, Toronto, Canada 18 7Edward S Rogers Sr Department of Electrical and Computer Engineering, University of 19 Toronto, Toronto, Canada 20 8Department of Computer Science, University of Toronto, Toronto, Canada 21 #Authors contributed equally 22 *Correspondence: [email protected] 23 24 25 SUMMARY 26 27 Sequence specific RNA-binding proteins (RBPs) control many important 28 processes affecting gene expression. They regulate RNA metabolism at multiple 29 levels, by affecting splicing of nascent transcripts, RNA folding, base modification, 30 transport, localization, translation and stability. Despite their central role in most 31 aspects of RNA metabolism and function, most RBP binding specificities remain 32 unknown or incompletely defined. -
DAZ (Z6Q): Sc-100705
SANTA CRUZ BIOTECHNOLOGY, INC. DAZ (Z6Q): sc-100705 BACKGROUND RECOMMENDED SUPPORT REAGENTS Spermatogenesis is the process by which male spermatogonia develop into To ensure optimal results, the following support reagents are recommended: mature spermatozoa. DAZ (deleted in azoospermia) are RNA-binding proteins 1) Western Blotting: use m-IgGk BP-HRP: sc-516102 or m-IgGk BP-HRP (Cruz that play an essential role in spermatogenesis. DAZ proteins influence the Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker™ first stages of spermatogenesis and the maintenance of germ cell populations. Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: DAZ proteins (DAZ1, DAZ2, DAZ3, DAZ4 and DAZ5) are encoded by separate sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunopre- genes on chromosome Y, each of which contain an AZFc domain in their cod- cipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). ing region. DAZ proteins are localized to the nucleus of spermatogonia, but 3) Immunofluorescence: use m-IgGk BP-FITC: sc-516140 or m-IgGk BP-PE: relocate to the cytoplasm during meiosis. DAZ proteins contain an RRM (RNA sc-516141 (dilution range: 1:50-1:200) with UltraCruz® Mounting Medium: recognition motif) domain that may regulate mRNA translation by binding sc-24941 or UltraCruz® Hard-set Mounting Medium: sc-359850. 4) Immuno- to the 3' UTR. Deletions in the genes encoding DAZ proteins may cause histochemistry: use m-IgGk BP-HRP: sc-516102 with DAB, 50X: sc-24982 azoospermia or oligospermia which can lead to male infertility. -
Partial Azfc Deletions and Duplications: Clinical Correlates in the Italian Population
FLORE Repository istituzionale dell'Università degli Studi di Firenze Partial AZFc deletions and duplications: clinical correlates in the Italian population. Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione: Original Citation: Partial AZFc deletions and duplications: clinical correlates in the Italian population / Giachini C; Laface I; Guarducci E; Balercia G; Forti G; Krausz C.. - In: HUMAN GENETICS. - ISSN 0340-6717. - STAMPA. - 124(2008), pp. 399-410. Availability: This version is available at: 2158/333113 since: 2019-11-07T18:24:55Z Terms of use: Open Access La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf) Publisher copyright claim: (Article begins on next page) 28 September 2021 Hum Genet (2008) 124:399–410 DOI 10.1007/s00439-008-0561-1 ORIGINAL INVESTIGATION Partial AZFc deletions and duplications: clinical correlates in the Italian population Claudia Giachini · Ilaria Laface · Elena Guarducci · Giancarlo Balercia · Gianni Forti · Csilla Krausz Received: 7 August 2008 / Accepted: 9 September 2008 / Published online: 21 September 2008 © Springer-Verlag 2008 Abstract The role of partial AZFc deletions of the Y potential methodological and selection biases were care- chromosome in spermatogenic impairment is currently fully avoided to detect the clinical signiWcance of partial debated. Recently, it was also reported that duplications of AZFc deletions and duplications. Our study provides strong the same region are associated with oligozoospermia in evidence that gr/gr deletion is a risk factor for impaired Han-Chinese men.