Butterflies of North Carolina - Twenty-Eighth Approximation 115

Total Page:16

File Type:pdf, Size:1020Kb

Butterflies of North Carolina - Twenty-Eighth Approximation 115 Grizzled Skipper Pyrgus centaureae 10 9 n=15 8 • • 7 M 6 N 5 u 4 3 m 2 b 1 x e 0 r 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec o 10 f 9 n=0 = Sighting or Collection 8 • 7 P x = Not seen nor collected F 6 since 1980 l 5 4 i 3 Records reported for 2020 = 0 g 2 1 h 0 t 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 NC counties: 3 or 3% High counts of: 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 SC counties: 0 or 0% 8 - Ashe - 2007-04-21 D Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec a 10 6 - Ashe - 2007-04-22 9 4 - Ashe - 2005-04-14 t 8 n=0 e 7 C s 6 5 4 3 2 Status and Rank 1 Earliest date: Ashe 31 Mar 2007 State Global 0 Latest date: Ashe 10 May 2005 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 SR - S1 G5 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Synonym: Pyrgus centaureae wyandot, Pyrgus wyandot Three periods to each month: 1-10 / 11-20 / 21-31 Other Name: Southern Grizzled Skipper, Wyandot Skipper, Appalachian Checkered-Skipper DISTRIBUTION: Until 2005, this species had been known in NC from decades-old records only at the White Oak Mountain area of Polk County and at "Montvale". This last site was apparently also in Polk County, and not from Transylvania County as previously indicated in this document. However, this very rare species was found in Ashe and Alleghany counties in April 2005, remarkable discoveries for a very rare taxon (Pyrgus centaureae wyandot). Leroy Koehn stated in a text message in 2015 that he has collected this taxon in Cherokee, Haywood, Jackson, Surry, Wilkes, and Yancey counties, in addition to 18 counties in western VA, apparently all prior to the early 1980's. However, as we have not yet received data (location, date, etc.) for these collections, the county records are not included on the range map. ABUNDANCE: Very rare in mountain counties bordering VA; based on Koehn's records noted above, it could still be present nowadays in a few places south of Ashe and Alleghany counties (and perhaps throughout most mountain counties). FLIGHT PERIOD: A rather short brood in early spring (only), with the timing of the flight quite variable, depending on the severity of the season. In a warm early spring, the flight occurs from the end of March to about late April. In a cool spring, the flight begins around April 10-15 and extends into early May. HABITAT: Somewhat restricted, though not at all in pristine habitats. Most individuals (known from several locales) have been found near summits of hills or mountains at middle elevations (3000-3500 feet), where a dirt track or road has wide, sunny margins containing considerable amounts of the foodplants and low-growing nectar species. Interestingly, and probably coincidentally, Christmas tree farms are present adjacent to most known sites. Because of the early flight season, areas of gravel or bare dirt/sand for basking are likely important habitat components. Koehn stated that he has never collected it near civilization, but always in remote and wild places. FOOD AND NECTAR PLANTS: The main foodplants are several herbs in the rose family (Rosaceae), mainly cinquefoil (Potentilla spp.) and Wild Strawberry (Fragaria virginiana). At the above sites, Dwarf Cinquefoil (P. canadensis) is likely the sole foodplant. The species nectars on low-growing flowers of the foodplants and other herbs, but also spends much time basking. COMMENTS: Hardly any butterfly discovery in NC in the past 20 years rivals that produced by Ted Wilcox when he found an individual of this species on his sister's property in southern Ashe County on April 11, 2005. To confirm this record, he provided outstanding photographs on his website. The following weekend, Will Cook and I attempted to find the species in Ashe County, but we searched in vain along roadsides on April 16. The following day, we hit paydirt, finding one on public property in neighboring Alleghany County; Cook got several photos (visible on his website) before it took flight. Wilcox has found additional individuals at a few other sites in Ashe County in 2006-2007, and he and several other biologists had some decent one- day totals (up to eight individuals) in 2007. Most references, including Pelham (2020), treat "wyandot" as a subspecies of P. centaureae -- the Grizzled Skipper, which ranges across Canada and south into the mountains of CO and northern NM. However, NatureServe considers the Appalachian taxon to be distinct at the species level, though with some hesitation (a "Q" rank, which indicates questionable taxonomic assignment). Recently, we have adopted the taxonomic treatment used by Pelham (2020) for all species and subspecies in the state. This taxon (wyandot) is now included within the wide-ranging Grizzled Skipper, and this is a central and southern Appalachian subspecies. However, "wyandot" is very rare and is under considerable threats, such as from gypsy moth spraying. March 2021 Butterflies of North Carolina - Twenty-eighth Approximation 115.
Recommended publications
  • Self-Repair and Self-Cleaning of the Lepidopteran Proboscis
    Clemson University TigerPrints All Dissertations Dissertations 8-2019 Self-Repair and Self-Cleaning of the Lepidopteran Proboscis Suellen Floyd Pometto Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Pometto, Suellen Floyd, "Self-Repair and Self-Cleaning of the Lepidopteran Proboscis" (2019). All Dissertations. 2452. https://tigerprints.clemson.edu/all_dissertations/2452 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SELF-REPAIR AND SELF-CLEANING OF THE LEPIDOPTERAN PROBOSCIS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ENTOMOLOGY by Suellen Floyd Pometto August 2019 Accepted by: Dr. Peter H. Adler, Major Advisor and Committee Co-Chair Dr. Eric Benson, Committee Co-Chair Dr. Richard Blob Dr. Patrick Gerard i ABSTRACT The proboscis of butterflies and moths is a key innovation contributing to the high diversity of the order Lepidoptera. In addition to taking nectar from angiosperm sources, many species take up fluids from overripe or sound fruit, plant sap, animal dung, and moist soil. The proboscis is assembled after eclosion of the adult from the pupa by linking together two elongate galeae to form one tube with a single food canal. How do lepidopterans maintain the integrity and function of the proboscis while foraging from various substrates? The research questions included whether lepidopteran species are capable of total self- repair, how widespread the capability of self-repair is within the order, and whether the repaired proboscis is functional.
    [Show full text]
  • Mardon Skipper Site Management Plans
    Mardon Skipper (Polites mardon) Site Management Plans Gifford Pinchot National Forest Service Cowlitz Valley Ranger District Prepared by John Jakubowski North Zone Wildlife Biologist Reviewed by Rich Hatfield, The Xerces Society for Invertebrate Conservation October 2, 2015 Cowlitz Valley Ranger District Mardon Skipper Sites Group Meadow Longitude Latitude Area (acres) Elevation (ft.) Midway Midway 121 32.0 46 21.2 8 4,313 Midway PCT 121 31.1 46 21.1 2 4,530 Midway 115 Spur 121 30.9 46 21.0 3 4,494 Midway Grapefern 121 30.9 46 21.5 3 4,722 Midway 7A North 121 31.4 46 21.5 2 4,657 Midway 7A South 121 31.5 46 21.4 2 4,625 Midway 7A 121 31.1 46 21.4 7 4,676 Muddy Muddy 121 32.2 46.18.5 4 4,450 Muddy Lupine 121 31.8 46 18.7 3 4,398 Spring Cr Spring Cr. 121 33.5 46 20.4 unknown 3,900 Goal of the Management Plans Maintain and improve grassland/forb habitat at known occupancy meadow sites to ensure continued occupancy by mardon skipper butterfly as well as other important pollinator species such as western bumble bee. 1 Introduction On the Gifford Pinchot National Forest (GPNF), mardon skippers were first detected on the Mt. Adams Ranger District (MTA) in 2000 and on Cowlitz Valley Ranger District (CVRD) in 2002. Mardon skippers are known to inhabit ten, upland dry grassy meadows on the CVRD. Portions of the meadows are mesic and are unsuitable mardon skipper habitat.
    [Show full text]
  • Two New Records for the Appalachian Grizzled Skipper (Pyrgus Wyandot)
    Banisteria, Number 24, 2004 © 2004 by the Virginia Natural History Society Status of the Appalachian Grizzled Skipper (Pyrgus centaureae wyandot) in Virginia Anne C. Chazal, Steven M. Roble, Christopher S. Hobson, and Katharine L. Derge1 Virginia Department of Conservation and Recreation Division of Natural Heritage 217 Governor Street Richmond, Virginia 23219 ABSTRACT The Appalachian grizzled skipper (Pyrgus centaureae wyandot) was documented historically (primarily from shale barren habitats) in 11 counties in Virginia. Between 1992 and 2002, staff of the Virginia Department of Conservation and Recreation, Division of Natural Heritage, conducted 175 surveys for P. c. wyandot at 75 sites in 12 counties. The species was observed at only six sites during these surveys, representing two new county records. All observations since 1992 combined account for <80 individuals. Due to forest succession and threats from gypsy moth control measures, all recent sites for P. c. wyandot in Virginia may be degrading in overall habitat quality. Key words: Lepidoptera, Pyrgus centaureae wyandot, conservation, shale barrens, Virginia. INTRODUCTION wyandot) in Virginia. Parshall (2002) provides a comprehensive review of the nomenclature and The Appalachian grizzled skipper (Pyrgus taxonomy of P. c. wyandot. Most authors classify this centaureae wyandot) has a rather fragmented range, skipper as a subspecies of the Holarctic Pyrgus occurring in northern Michigan as well as portions of centaureae (e.g., Opler & Krizek, 1984; Iftner et al., Ohio, Pennsylvania, Maryland, West Virginia, and 1992; Shuey, 1994; Allen, 1997; Opler, 1998; Virginia; isolated historical records are known from Glassberg, 1999; Parshall, 2002), although some Kentucky, New York, New Jersey, North Carolina, and lepidopterists treat it as a full species (Shapiro, 1974; the District of Columbia (Opler, 1998; NatureServe, Schweitzer, 1989; Gochfeld & Burger, 1997).
    [Show full text]
  • Grizzled Skipper
    Species: Grizzled Skipper (Pyrgus wyandot) Global Rank: G1G2Q State Rank: S1 State Wildlife Action Plan: Immediate Concern Responsibility Species Climate Change Vulnerability: Highly Vulnerable Confidence: Very High Note: This assessment is expected to be similar for other butterflies of specialized or moderately specialized forest clearing habitats, with specific food plants, habitats exposed to gypsy moth spray; and lacking a fire resistant dormant stage (larval and/or pupal). Some examples: - Frosted Elfin (Callophrys irus); Global Rank G3, State Rank S2; Caterpillar hostplant Wild Indigo (Baptisia tinctoria); Habitat typically grassy (Andropogon spp.) openings in oak habitats on sandy rocky soils; sometimes found in disturbed areas with hostplant such as powerline right-of-ways. - Persius Duskywing (Erynnis persius); Global Rank G5T1T3, State Rank S1; Caterpillar hostplant Wild Indigo (Baptisia tinctoria); Habitats include pitch pine- scrub oak barrens, scrubby ridgetops, or powerline right-of-ways within such settings with sandy-gravelly soils. - Northern Metalmark (Calephelis borealis), Global Rank G3G4, State Rank S2; Caterpillar hostplant Round-leaved Ragwort (Senecio obovatus); Habitats are openings within forested or wooded areas such as natural outcrops, shale or limestone barrens, glades or powerline right-of-ways. Habitat (adapted from NatureServe 2008 and Schweitzer 1989): The Grizzled Skipper butterfly is an Appalachian Mountain habitat specialist that requires shale barren habitats with abundant exposed crumbly rock or soil. Shale barrens are semi-open shale slopes with sparse herbaceous vegetation and tend to be surrounded by scrubby oak or oak-hickory woodlands, often with a component of Virginia Pine (Pinus virginiana). A natural area which meets the habitat requirements should maintain itself as a shale barren.
    [Show full text]
  • A Revision of the New World Plant-Mining Moths of the Family
    Smithsonian Institution Scholarly Press SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 625 A Revision of the New World Plant-Mining Moths of the Family (Lepidoptera: Nepticuloidea) Donald R. Davis and Jonas R. Stonis SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions in History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions from the United States National Herbarium Smithsonian Contributions in Visual and Material Culture Smithsonian Contributions to Zoology In these series, the Institution pubHshes small papers and full-scale monographs that report the research and collections of its various museums and bureaus. The Contributions Series are distributed by mailing lists to Ubraries, universities, and similar institutions through- out the world. Manuscripts submitted for series publication are received by the Smith- sonian Institution Scholarly Press from authors with direct affiliation with the various Smithsonian museums or bureaus and are subject to peer review and review for compliance with manuscript preparation guidelines.
    [Show full text]
  • Introduction
    BULGARIA Nick Greatorex-Davies. European Butterflies Group Contact ([email protected]) Local Contact Prof. Stoyan Beshkov. ([email protected]) National Museum of Natural History (NMNH), Sofia, Butterfly Conservation Europe Partner Bulgarian Academy of Sciences Stanislav Abadjiev compiled and collated butterfly records for the whole of Bulgaria and published a Local Recording Scheme distribution atlas in 2001 (see below). Records are still being gathered and can be sent to Stoyan Beshkov at NMNH, Sofia. Butterfly List See Butterflies of Bulgaria website (Details below) Introduction Bulgaria is situated in eastern Europe with its eastern border running along the Black Sea coast. It is separated from Romania for much of its northern border by the River Danube. It shares its western border with Serbia and Macedonia, and its southern border with Greece and Turkey. Bulgaria has a land area of almost 111,000 sq km (smaller than England but bigger than Scotland) and a declining human population of 7.15 million (as of 2015), 1.5 million of which live in the capital city, Sofia. It is very varied in both climate, topography and habitats. Substantial parts of the country are mountainous, particularly in the west, south-west and central ‘spine’ of the country and has the highest mountain in the Balkan Mountains (Musala peak in the Rila Mountains, 2925m) (Map 1). Almost 70% of the land area is above 200m and over 27% above 600m. About 40% of the country is forested and this is likely to increase through natural regeneration due to the abandonment of agricultural land. Following nearly 500 years under the rule of the Ottoman Empire, Bulgaria was independent for just a few years from 1908 before coming under the domination of the soviet communist regime in 1946.
    [Show full text]
  • Native Grasses Benefit Butterflies and Moths Diane M
    AFNR HORTICULTURAL SCIENCE Native Grasses Benefit Butterflies and Moths Diane M. Narem and Mary H. Meyer more than three plant families (Bernays & NATIVE GRASSES AND LEPIDOPTERA Graham 1988). Native grasses are low maintenance, drought Studies in agricultural and urban landscapes tolerant plants that provide benefits to the have shown that patches with greater landscape, including minimizing soil erosion richness of native species had higher and increasing organic matter. Native grasses richness and abundance of butterflies (Ries also provide food and shelter for numerous et al. 2001; Collinge et al. 2003) and butterfly species of butterfly and moth larvae. These and moth larvae (Burghardt et al. 2008). caterpillars use the grasses in a variety of ways. Some species feed on them by boring into the stem, mining the inside of a leaf, or IMPORTANCE OF LEPIDOPTERA building a shelter using grass leaves and silk. Lepidoptera are an important part of the ecosystem: They are an important food source for rodents, bats, birds (particularly young birds), spiders and other insects They are pollinators of wild ecosystems. Terms: Lepidoptera - Order of insects that includes moths and butterflies Dakota skipper shelter in prairie dropseed plant literature review – a scholarly paper that IMPORTANT OF NATIVE PLANTS summarizes the current knowledge of a particular topic. Native plant species support more native graminoid – herbaceous plant with a grass-like Lepidoptera species as host and food plants morphology, includes grasses, sedges, and rushes than exotic plant species. This is partially due to the host-specificity of many species richness - the number of different species Lepidoptera that have evolved to feed on represented in an ecological community, certain species, genus, or families of plants.
    [Show full text]
  • Investigating Suburban Micromoth Diversity Using DNA Barcoding of Malaise Trap Samples
    Urban Ecosyst DOI 10.1007/s11252-016-0597-2 Investigating suburban micromoth diversity using DNA barcoding of malaise trap samples Kaare Aagaard1 & Kai Berggren2 & Paul DN Hebert3 & Jayme Sones3 & Beverly McClenaghan3 & Torbjørn Ekrem1 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Micromoths can be challenging to identify based Introduction on morphology and are frequently omitted in assessments of moth diversity. However, their species richness and biology Urban ecology is a field in constant growth (Cressey 2015). make them important components of terrestrial ecosystems. In Traditionally, birds, mammals and flowering plants have been this study we identified 1227 micromoths from a suburban considered in urban ecology studies, but butterflies and moths garden at 63° north using DNA barcoding of Malaise trap are now often also investigated (Goode 2014). The larger samples. We recorded 78 different species with the 11 most moth species are reasonably well known and easy to identify abundant taxa accounting for 82 % of the catch. The remaining in temperate regions, but micromoths require more taxonomic 67 species were represented by fewer than 14 specimens, but expertise and are therefore rarely considered in urban ecology the number was often sufficient to provide a good idea of studies. However, extensive investigations of urban moth phenology. The larvae of these 78 species all feed on plants communities were recently undertaken in Scotland (Lintott common in suburban environments. We show that when et al. 2014) and Michigan, USA (Rice and White 2015). facilitated by identifications through DNA barcoding, Malaise Urbanization is generally supposed to contribute to biodi- traps provide interesting insights into the micromoth commu- versity loss (McKinney 2002), but only a few large cities in nities of suburban environments that might otherwise be Norway have an extreme urban structure.
    [Show full text]
  • France - Butterflies of the Pyrenees
    France - Butterflies of the Pyrenees Naturetrek Tour Report 6 - 13 July 2018 Large Ringlet Meadow Fritillaries Mazarine Blue Stag Beetles Report and images by Jason Mitchell Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report France - Butterflies of the Pyrenees Tour participants: Jason Mitchell (Leader) with seven Naturetrek clients Summary Based in the charming Pyrenean village of Gèdre, our excellent family-run hotel was perfectly placed to explore the valley of Gavarnie-Gèdre which encompasses a wide range of landscapes, from impressive glacial cirques, to pastoral plateaux, the spectacular Brèche de Roland and the legendary Vignemale. Although our main focus was butterflies, we were keen to explore the cirques for which the region is so well known. We started with the smaller, more discreet Cirque d’Estaubé with its beautiful Lac des Gloriettes. We then progressed to the impressively wide Cirque de Troumouse, with an 11 km circumference. Finally we made a gentle day-walk into the Cirque de Gavarnie, the best known of the three glacial cirques in the valley with its high walls towering to 1500 m and at its heart, one of the largest waterfalls of Europe (427m), and the source of the Gave de Pau. The weather was a little unsettled at times – a trait of the high mountains – however, it was mostly dry and sunny with one day an unseasonably chilly 18°C and on the hottest day the mercury hit 27°C. The scenery was spectacular and the wildlife too.
    [Show full text]
  • Rosy Grizzled Skipper Pyrgus Onopordi (Rambur, 1839)
    11. D ESCRIPTIVE CATALOGUE: HESPERIIDAE FAMILY Rosy Grizzled Skipper Pyrgus onopordi (Rambur, 1839) DESCRIPTION Wingspan: From 2 to 2.8 cm. Open wings: There are four spots close to the apex on the forewings. The last one is close to the margin. As for the hindwings, they have vague spots in the centre. Closed wings: They are reddish or chestnut coloured. There are some small white spots on hindwings. The one on the margins is bigger and the one in the centre has an angle that points inside. Four spots close to the apex on the forewings, and the last one close to the margin Vague light spots Checked margins Reddish or chestnut background One big and other small white spots on the margin White spots with the angle that points inside. 58 DIURNAL BUTTERFLIES • GR-249 Great Malaga Path Red-underwing Skipper: There are four spots close to the front apex on their open wings. Closed wings are reddish or chestnut and a spot with an outer angle can be found in the centre.Sloperia proto: There are three spots close to the apex on their open wings. Their closed wings are light brown or creamy white, without big spots on the hindwings margins. Grizzled Skippers (Pyrgus genus) can be diffi cult to distinguish among them, above all between the Rosy Grizzled Skipper and the Oberthür’s Grizzled Skipper (Pyrgus armoricanus, Oberthür, 1910), when it becomes necessary to examine masculine genitals. The Rosy Grizzled Skipper is the only one to be found in the Province of Málaga. Red-underwing Skipper Sloperia proto It has two generations a year: one in spring and begin- ning of summer, and the second one at the end of the summer and beginning of autumn.
    [Show full text]
  • Getting to Grips with Skippers Jonathan Wallace Dingy Skipper Erynnis Tages
    Getting to Grips with Skippers Jonathan Wallace Skippers (Hesperidae) are a family of small moth-like butterflies with thick-set bodies and a characteristic busy, darting flight, often close to the ground. Eight species of skipper occur in the United Kingdom and three of these are found in the North East: the Large Skipper, the Small Skipper and the Dingy Skipper. Although with a little practice these charming butterflies are quite easily identified there are some potential identification pitfalls and the purpose of this note is to highlight the main distinguishing features. Dingy Skipper Erynnis tages This is the first of the Skippers to emerge each year usually appearing towards the end of April and flying until the end of June/early July (a small number of individuals emerge as a second generation in August in some years but this is exceptional). It occurs in grasslands where there is bare ground where its food plant, Bird’s-foot Trefoil occurs and is strongly associated with brownfield sites. The Dingy Skipper is quite different in appearance to the other two skippers present in our region, being (as the name perhaps implies) a predominantly grey-brown colour in contrast to the golden-orange colour of the other two. However, the species does sometimes get confused with two day-flying moth species that can occur within the same habitats: the Mother Shipton, Callistege mi, and the Burnet Companion, Euclidia glyphica. The photos below highlight the main differences. Wingspan approx. 28mm. Note widely spaced antennae with slightly hooked ends. Forewing greyish with darker brown markings forming loosely defined bands.
    [Show full text]
  • A FINAL with Revise
    Identification Guide to the Pyrgus Group of Grizzled Skippers in Europe European Butterflies Group Identification Guide to the Pyrgus Group of Grizzled Skippers in Europe Bill Raymond and Roger Gibbons For more information on all aspects of European butterflies please go to european-butterflies.org.uk The other free to download guides in this series are available at EBG Identification Guides How to use this Guide I Introduction Please read the Introduction on page I which gives some background to the difficulties of Pyrgus identification. II List of Species The sixteen species of Pyrgus found in Europe and covered by this guide are listed on page II. If you wish to go direct to a Species Description click here to go to the list. III Is it Pyrgus? Use the guide on page III to ensure that your butterfly is a Pyrgus and not one of the similar looking species. Explanation of An explanation of the terms used in this guide to describe wing markings is given on page IV. Links back to this IV Terms used page Terms are included on each Species Description page. For simplicity we have used the scientific species name in the text to avoid unwieldy repetition of the common English names, and in some instances we have not strictly followed the scientific conventions on the use of italics in the interests of readability. Quick Upperside For a definitive identification of many Pyrgus it is usually necessary to have a view of both upper and underside. V Identification Key To help narrow down the possibilities start with the Quick Upperside Identification Key on page V.
    [Show full text]