Christiaan Huygens' Planetarium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classical Mechanics
Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation . -
Pioneers in Optics: Christiaan Huygens
Downloaded from Microscopy Pioneers https://www.cambridge.org/core Pioneers in Optics: Christiaan Huygens Eric Clark From the website Molecular Expressions created by the late Michael Davidson and now maintained by Eric Clark, National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 . IP address: [email protected] 170.106.33.22 Christiaan Huygens reliability and accuracy. The first watch using this principle (1629–1695) was finished in 1675, whereupon it was promptly presented , on Christiaan Huygens was a to his sponsor, King Louis XIV. 29 Sep 2021 at 16:11:10 brilliant Dutch mathematician, In 1681, Huygens returned to Holland where he began physicist, and astronomer who lived to construct optical lenses with extremely large focal lengths, during the seventeenth century, a which were eventually presented to the Royal Society of period sometimes referred to as the London, where they remain today. Continuing along this line Scientific Revolution. Huygens, a of work, Huygens perfected his skills in lens grinding and highly gifted theoretical and experi- subsequently invented the achromatic eyepiece that bears his , subject to the Cambridge Core terms of use, available at mental scientist, is best known name and is still in widespread use today. for his work on the theories of Huygens left Holland in 1689, and ventured to London centrifugal force, the wave theory of where he became acquainted with Sir Isaac Newton and began light, and the pendulum clock. to study Newton’s theories on classical physics. Although it At an early age, Huygens began seems Huygens was duly impressed with Newton’s work, he work in advanced mathematics was still very skeptical about any theory that did not explain by attempting to disprove several theories established by gravitation by mechanical means. -
Newton.Indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag
omslag Newton.indd | Sander Pinkse Boekproductie | 16-11-12 / 14:45 | Pag. 1 e Dutch Republic proved ‘A new light on several to be extremely receptive to major gures involved in the groundbreaking ideas of Newton Isaac Newton (–). the reception of Newton’s Dutch scholars such as Willem work.’ and the Netherlands Jacob ’s Gravesande and Petrus Prof. Bert Theunissen, Newton the Netherlands and van Musschenbroek played a Utrecht University crucial role in the adaption and How Isaac Newton was Fashioned dissemination of Newton’s work, ‘is book provides an in the Dutch Republic not only in the Netherlands important contribution to but also in the rest of Europe. EDITED BY ERIC JORINK In the course of the eighteenth the study of the European AND AD MAAS century, Newton’s ideas (in Enlightenment with new dierent guises and interpre- insights in the circulation tations) became a veritable hype in Dutch society. In Newton of knowledge.’ and the Netherlands Newton’s Prof. Frans van Lunteren, sudden success is analyzed in Leiden University great depth and put into a new perspective. Ad Maas is curator at the Museum Boerhaave, Leiden, the Netherlands. Eric Jorink is researcher at the Huygens Institute for Netherlands History (Royal Dutch Academy of Arts and Sciences). / www.lup.nl LUP Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 1 Newton and the Netherlands Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. 2 Newton and the Netherlands.indd | Sander Pinkse Boekproductie | 16-11-12 / 16:47 | Pag. -
Chapter 5 ANGULAR MOMENTUM and ROTATIONS
Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another. -
A Guide to Space Law Terms: Spi, Gwu, & Swf
A GUIDE TO SPACE LAW TERMS: SPI, GWU, & SWF A Guide to Space Law Terms Space Policy Institute (SPI), George Washington University and Secure World Foundation (SWF) Editor: Professor Henry R. Hertzfeld, Esq. Research: Liana X. Yung, Esq. Daniel V. Osborne, Esq. December 2012 Page i I. INTRODUCTION This document is a step to developing an accurate and usable guide to space law words, terms, and phrases. The project developed from misunderstandings and difficulties that graduate students in our classes encountered listening to lectures and reading technical articles on topics related to space law. The difficulties are compounded when students are not native English speakers. Because there is no standard definition for many of the terms and because some terms are used in many different ways, we have created seven categories of definitions. They are: I. A simple definition written in easy to understand English II. Definitions found in treaties, statutes, and formal regulations III. Definitions from legal dictionaries IV. Definitions from standard English dictionaries V. Definitions found in government publications (mostly technical glossaries and dictionaries) VI. Definitions found in journal articles, books, and other unofficial sources VII. Definitions that may have different interpretations in languages other than English The source of each definition that is used is provided so that the reader can understand the context in which it is used. The Simple Definitions are meant to capture the essence of how the term is used in space law. Where possible we have used a definition from one of our sources for this purpose. When we found no concise definition, we have drafted the definition based on the more complex definitions from other sources. -
Maty's Biography of Abraham De Moivre, Translated
Statistical Science 2007, Vol. 22, No. 1, 109–136 DOI: 10.1214/088342306000000268 c Institute of Mathematical Statistics, 2007 Maty’s Biography of Abraham De Moivre, Translated, Annotated and Augmented David R. Bellhouse and Christian Genest Abstract. November 27, 2004, marked the 250th anniversary of the death of Abraham De Moivre, best known in statistical circles for his famous large-sample approximation to the binomial distribution, whose generalization is now referred to as the Central Limit Theorem. De Moivre was one of the great pioneers of classical probability the- ory. He also made seminal contributions in analytic geometry, complex analysis and the theory of annuities. The first biography of De Moivre, on which almost all subsequent ones have since relied, was written in French by Matthew Maty. It was published in 1755 in the Journal britannique. The authors provide here, for the first time, a complete translation into English of Maty’s biography of De Moivre. New mate- rial, much of it taken from modern sources, is given in footnotes, along with numerous annotations designed to provide additional clarity to Maty’s biography for contemporary readers. INTRODUCTION ´emigr´es that both of them are known to have fre- Matthew Maty (1718–1776) was born of Huguenot quented. In the weeks prior to De Moivre’s death, parentage in the city of Utrecht, in Holland. He stud- Maty began to interview him in order to write his ied medicine and philosophy at the University of biography. De Moivre died shortly after giving his Leiden before immigrating to England in 1740. Af- reminiscences up to the late 1680s and Maty com- ter a decade in London, he edited for six years the pleted the task using only his own knowledge of the Journal britannique, a French-language publication man and De Moivre’s published work. -
Energy Harvesters for Space Applications 1
Energy harvesters for space applications 1 Energy harvesters for space R. Graczyk limited, especially that they are likely to operate in charge Abstract—Energy harvesting is the fundamental activity in (energy build-up in span of minutes or tens of minutes) and almost all forms of space exploration known to humans. So far, act (perform the measurement and processing quickly and in most cases, it is not feasible to bring, along with probe, effectively). spacecraft or rover suitable supply of fuel to cover all mission’s State-of-the-art research facilitated by growing industrial energy needs. Some concepts of mining or other form of interest in energy harvesting as well as innovative products manufacturing of fuel on exploration site have been made, but they still base either on some facility that needs one mean of introduced into market recently show that described energy to generate fuel, perhaps of better quality, or needs some techniques are viable source of energy for sensors, sensor initial energy to be harvested to start a self sustaining cycle. networks and personal devices. Research and development Following paper summarizes key factors that determine satellite activities include technological advances for automotive energy needs, and explains some either most widespread or most industry (tire pressure monitors, using piezoelectric effect ), interesting examples of energy harvesting devices, present in Earth orbit as well as exploring Solar System and, very recently, aerospace industry (fuselage sensor network in aircraft, using beyond. Some of presented energy harvester are suitable for thermoelectric effect), manufacturing automation industry very large (in terms of size and functionality) probes, other fit (various sensors networks, using thermoelectric, piezoelectric, and scale easily on satellites ranging from dozens of tons to few electrostatic, photovoltaic effects), personal devices (wrist grams. -
Definitions Matter – Anything That Has Mass and Takes up Space. Property – a Characteristic of Matter That Can Be Observed Or Measured
Matter – Definitions matter – Anything that has mass and takes up space. property – A characteristic of matter that can be observed or measured. mass – The amount of matter making up an object. volume – A measure of how much space the matter of an object takes up. buoyancy – The upward force of a liquid or gas on an object. solid – A state of matter that has a definite shape and volume. liquid – A state of matter that has a definite volume but no definite shape. It takes the shape of its container. gas – A state of matter that has no definite shape or volume. metric system – A system of measurement based on units of ten. It is used in most countries and in all scientific work. length – The number of units that fit along one edge of an object. area – The number of unit squares that fit inside a surface. density – The amount of matter in a given space. In scientific terms, density is the amount of mass in a unit of volume. weight – The measure of the pull of gravity between an object and Earth. gravity – A force of attraction, or pull, between objects. physical change – A change that begins and ends with the same type of matter. change of state – A physical change of matter from one state – solid, liquid, or gas – to another state because of a change in the energy of the matter. evaporation – The process of a liquid changing to a gas. rust – A solid brown compound formed when iron combines chemically with oxygen. chemical change – A change that produces new matter with different properties from the original matter. -
Does Methane Flow on Titan?
Planetary science Does methane Scientists are eager to prove that the meandering river valleys and braided streambeds seen on Saturn’s largest moon carry liquid methane to its vast lakes. by Robert Zimmerman flow onTITAN? The Huygens probe captured ine years ago, Europe’s Huy- new world,” raved Jean-Jacques Dordain, theorized that methane might be able to Now, nearly a decade later, planetary Before the two probes this 360° panorama of Titan’s surface from an altitude of 6 gens probe dropped through ESA’s director general. flow on Titan like water does on Earth. scientists remain as excited and baffled Dutch astronomer Christiaan Huygens miles (10 kilometers) as it de- the atmosphere of Saturn’s “I’m shocked! It’s remarkable!” Once they got close enough to get a good by Titan as they did before Huygens discovered Titan in 1655. For centuries, scended through the saturnian moon Titan and landed on enthused Carolyn Porco, leader of the look, the thinking went, probes might arrived. In the years since, the Cassini scientists thought this moon was the moon’s atmosphere January the surface. Planetary scien- imaging team for NASA’s Cassini space- detect methane rainstorms feeding riv- spacecraft repeatedly has flown past solar system’s largest. In the mid-20th 14, 2005. Dark drainage chan- nels in the brighter highland Ntists reacted with unbridled joy to the craft, which delivered Huygens to Titan ers, lakes, and even oceans on that cold this giant moon, detecting what look century, however, observations revealed terrain appear to feed into a mission’s success. -
On Space-Time, Reference Frames and the Structure of Relativity Groups Annales De L’I
ANNALES DE L’I. H. P., SECTION A VITTORIO BERZI VITTORIO GORINI On space-time, reference frames and the structure of relativity groups Annales de l’I. H. P., section A, tome 16, no 1 (1972), p. 1-22 <http://www.numdam.org/item?id=AIHPA_1972__16_1_1_0> © Gauthier-Villars, 1972, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincaré, Section A : Vol. XVI, no 1, 1972, 1 Physique théorique. On space-time, reference frames and the structure of relativity groups Vittorio BERZI Istituto di Scienze Fisiche dell’ Universita, Milano, Italy, Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Italy Vittorio GORINI (*) Institut fur Theoretische Physik (I) der Universitat Marburg, Germany ABSTRACT. - A general formulation of the notions of space-time, reference frame and relativistic invariance is given in essentially topo- logical terms. Reference frames are axiomatized as C° mutually equi- valent real four-dimensional C°-atlases of the set M denoting space- time, and M is given the C°-manifold structure which is defined by these atlases. We attempt ti give an axiomatic characterization of the concept of equivalent frames by introducing the new structure of equiframe. In this way we can give a precise definition of space-time invariance group 2 of a physical theory formulated in terms of experi- ments of the yes-no type. -
An Artificial Gravity Space Station at the Earth-Moon L1 Point
Clarke Station: An Artificial Gravity Space Station at the Earth-Moon L1 Point University of Maryland, College Park Department of Aerospace Engineering Undergraduate Program Matthew Ashmore, Daniel Barkmeyer, Laurie Daddino, Sarah Delorme, Dominic DePasquale, Joshua Ellithorpe, Jessica Garzon, Jacob Haddon, Emmie Helms, Raquel Jarabek, Jeffrey Jensen, Steve Keyton, Aurora Labador, Joshua Lyons, Bruce Macomber Jr., Aaron Nguyen, Larry O'Dell, Brian Ross, Cristin Sawin, Matthew Scully, Eric Simon, Kevin Stefanik, Daniel Sutermeister, Bruce Wang Advisors: Dr. David Akin, Dr. Mary Bowden Abstract In order to perform deep space life sciences and artificial gravity research, a 315 metric ton space station has been designed for the L1 libration point between the Earth and the Moon. The station provides research facilities for a total of eight crew in two habitats connected to their center of rotation by 68 m trusses. A third mass is offset for stability. Solar arrays and docking facilities are contained on the axis perpendicular to rotation. A total of 320 m2 of floor space at gravity levels from microgravity to 1.2g’s are available for research and experimentation. Specific research capabilities include radiation measurement and testing, human physiological adaptation measurement, and deep space manned mission simulation. Introduction Space is a harsh and unforgiving environment. In addition to basic life support requirements, radiation exposure, cardiovascular deconditioning, muscle atrophy, and skeletal demineralization represent major hazards associated with human travel and habitation in deep space. All of these hazards require special attention and prevention for a successful mission to Mars or a long duration return to the Moon. Greater knowledge of human physical response to the deep space environment and reduced gravity is required to develop safe prevention methods. -
The Search for Longitude: Preliminary Insights from a 17Th Century Dutch Perspective
The search for longitude: Preliminary insights from a 17th Century Dutch perspective Richard de Grijs Kavli Institute for Astronomy & Astrophysics, Peking University, China Abstract. In the 17th Century, the Dutch Republic played an important role in the scientific revolution. Much of the correspondence among contemporary scientists and their associates is now digitally available through the ePistolarium webtool, allowing current scientists and historians unfettered access to transcriptions of some 20,000 letters from the Dutch Golden Age. This wealth of information offers unprece- dented insights in the involvement of 17th Century thinkers in the scientific issues of the day, including descriptions of their efforts in developing methods to accurately determine longitude at sea. Un- surprisingly, the body of correspondence referring to this latter aspect is largely dominated by letters involving Christiaan Huygens. However, in addition to the scientific achievements reported on, we also get an unparalleled and fascinating view of the personalities involved. 1. Scientific dissemination during the Dutch ‘Golden Age’ The 17th Century is regarded as the ‘Golden Age’ in the history of the Netherlands. The open, tolerant and transparent conditions in the 17th Century Dutch Republic – at the time known as the Republic of the Seven United Netherlands – allowed the nation to play a pivotal role in the international network of humanists and scholars before and during the ‘scientific revolution’. The country had just declared its independence from