<<

Translational and Rotational ! Robert Stengel! Robotics and Intelligent Systems MAE 345, Princeton University, 2017

Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html 1

Reference Frame

•! Newtonian (Inertial) –! Unaccelerated Cartesian frame •! Origin referenced to inertial (non-moving) frame –! Right-hand rule –! Origin can translate at constant linear –! Frame cannot rotate with respect to inertial origin ! x $ # & •! : 3 r = # y & –! What is a non-moving frame? "# z %&

•! = Linear 2 Velocity and of a •! Velocity of a particle ! $ ! x! $ vx dr # & # & v = = r! = y! = # vy & dt # & # ! & # & " z % vz "# %& •! Linear momentum of a particle

! v $ # x & p = mv = m # vy & # & "# vz %& 3

Newtons Laws of Motion: ! Dynamics of a Particle

First Law . If no acts on a particle, it remains at rest or continues to move in straight line at constant velocity, . Inertial reference frame . Momentum is conserved d ()mv = 0 ; mv = mv dt t1 t2

4 Newtons Laws of Motion: ! Dynamics of a Particle Law •! Particle acted upon by force •! proportional to and in direction of force •! Inertial reference frame •! Ratio of force to acceleration is particle d dv dv 1 1 ()mv = m = ma = Force ! = Force = I Force dt dt dt m m 3 ! $ " % fx " % fx # & 1/ m 0 0 $ ' = $ ' f Force = # fy & = force vector $ 0 1/ m 0 '$ y ' $ ' # & #$ 0 0 1/ m &' f fz $ z ' "# %& # & 5

Newtons Laws of Motion: ! Dynamics of a Particle Third Law For every , there is an equal and opposite reaction

Force on rocket motor = –Force on exhaust gas

FR = !FE

6 One-Degree-of-Freedom Example of Newtons Second Law 2nd-order, linear, -invariant ordinary differential equation d 2 x(t) f (t) x ! "Defined as" 2 ! ""x(t) = v"x (t) = dt m Corresponding of 1st-order equations (State- Model) dx ()t 1 ! x" (t) ! x (t) ! v (t) x (t) ! x(t), dt 1 2 x 1 dx()t dx2 ()t fx (t) x2 (t) ! , Rate ! ""x1(t) = x"2 (t) = v"x (t) = dt dt m 7

State-Space Model is a Set of 1st- Order Ordinary Differential Equations State, control, and output vectors for the example

! $ ! $ x1(t) x1(t) x(t) = # & ; u(t) = u() t = fx (t); y(t) = # & "# x2 (t) %& "# x2 (t) %& Stability and control-effect matrices

! 0 1 $ ! 0 $ F= # & ; G= # & " 0 0 % " 1 / m % Dynamic equation x!(t) = Fx(t) + Gu(t) 8 State-Space Model of the 1-DOF Example Output equation

y(t) = Hxx(t) + Huu(t) Output coefficient matrices

! 1 0 $ ! 0 $ Hx = # & ; Hu = # & " 0 1 % " 0 %

9

Dynamic System

Dynamic Process: Current state Process: may depend on prior state may contain error or be incomplete x : state dim = (n x 1) y : output (error-free) u : input dim = (m x 1) dim = (r x 1) w : disturbance dim = (s x 1) n : measurement error p : parameter dim = (l x 1) dim = (r x 1) z : measurement t : time (independent variable, 1 x 1) dim = (r x 1) 10 State-Space Model of Three- Degree-of-Freedom Dynamics ! $ ! x! $ vx # & # & ! x $ ! # & # y & # vy & y # & # & ! $ # z! & ! $ # & r!(t) # vz & r(t) z x! ()t " # & = # & = = Fx()t + Gu()t x()t ! # & = # & v!x # & vx # v!(t) & # & fx / m "# v(t) %& # & " % # & # & # ! & vy vy f m # & # y / & # & "# vz %& # v!z & # & " % fz / m " %

! x $ ! 0 0 0 1 0 0 $# & ! 0 0 0 $ # & y # & 0 0 0 0 1 0 # & 0 0 0 ! $ # &# & # & fx # 0 0 0 0 0 1 & z # 0 0 0 &# & = # & + # fy & # 0 0 0 0 0 0 &# vx & # 1/ m 0 0 & # & # &# & # & fz 0 0 0 0 0 0 vy 0 1/ m 0 "# %& # &# & # & "# 0 0 0 0 0 0 %&# & "# 0 0 1/ m %& " vz % 11

What Use are the Dynamic Equations? Compute time response Compute

Determine stability Identify modes of motion

12 !

13

External Forces: Aerodynamic/Hydrodynamic

! $ ! C $ X # X & # & 1 2 faero = Y = # CY & 'V A # & 2 # Z & # & " % " CZ % ! = air density, functionof height ! C $ "#h # X & = !sealevele dimensionless # CY & = V = airspeed # & aerodynamic coefficients CZ 1/2 1/2 " % $ 2 2 2 & $ T & =%vx + vy + vz ' = %v v' Inertial frame or body frame? A = referencearea 14 External Forces:

15

External Forces:

•! Flat- approximation –! g is gravitational acceleration –! mg is gravitational force –! Independent of position –! z measured up

! 0 $ # & = = 2 mg flat m # 0 &; go 9.807 m / s "# –go %&

16 External Forces: 1/2 Gravity r = ()x2 + y2 + z2 L = Latitude ! =

•! Spherical earth, inertial ! g $ # x & frame ground = # gy & = ggravity  # & –! ”Inverse-square gravitation "# gz %& –! Non-linear function of position ! x $ ! x / r $ ! cos L cos( $ µ # & µ # & µ 14 # & µ = ' 3 y = ' 2 y / r = ' 2 cos Lsin( –! = 3.986 x 10 m/s r # & r # & r # & "# z %& "# z / r %& "# sin L %& •! Spherical earth, rotating

frame gr = ggravity + grotation  –! ”Inverse-square gravitation " x % " x % µ $ ' $ ' –! Centripetal acceleration = ! + (2 3 $ y ' $ y '  –5 r ! ! = 7.29 x 10 rad/s #$ z &' #$ 0 &'

17

State-Space Model with Round-Earth Gravity Model (Non-Rotating Frame) ! x! $ ! x $ ! 0 0 0 $ # & ! 0 0 0 1 0 0 $# & # & y! # & y 0 0 0 # & 0 0 0 0 1 0 # & # &! $ # ! & # &# & # 0 0 0 & x z # 0 0 0 0 0 1 & z # & # & = # & ' 3 ! # µ / r 0 0 &# y & # vx & # 0 0 0 0 0 0 &# vx & # & # & 3 "# z %& # v!y & 0 0 0 0 0 0 # vy & # 0 µ / r 0 & # & # &# & # & # 0 0 0 0 0 0 & 3 # v!z & " %# vz & # 0 0 µ / r & " % " % " %

" 0 0 0 1 0 0 %" x % $ '$ ' $ 0 0 0 0 1 0 '$ y ' $ 0 0 0 0 0 1 '$ z ' = 3 $ ' $ !µ / r 0 0 0 0 0 ' $ '$ vx ' 3 $ 0 !µ / r 0 0 0 0 '$ vy ' $ '$ ' !µ 3 #$ 0 0 / r 0 0 0 &'#$ vz &' Inverse-square gravity model introduces nonlinearity 18 Vector- Form of Round-Earth Dynamic Model ! $ 0 I3 ! r! $ # & ! r $ # & = # 'µ & # & v! v " % # 3 I3 0 & " % " r %

What other forces might be considered, and where would they appear in the model?

19

Point-Mass of Spacecraft

•! For short and low , flat-Earth frame of reference and gravity are sufficient •! For long distance and high speed, round-Earth frame and inverse-square gravity are needed 20 Mass of an Object

xmax ymax zmax m = ! dm = ! ! ! "(x, y,z)dx dydz Body xmin ymin zmin "(x, y,z) = density of the body

Density of object may vary with (x,y,z) 21

More Forces!

22 External Forces: Linear Springs

Scalar, linear spring

f = !k() x ! xo = !k"x; k = springconstant

Uncoupled, linear vector spring " % " % kx ()x ! xo " % $ ' kx 0 0 (x $ ' $ ' $ ' $ ' fS = ! ky ()y ! yo = ! 0 ky 0 $ (y ' $ ' $ ' $ ( ' $ k z ! z ' $ 0 0 kz ' # z & # z ()o & # &

()xo, yo,zo : Equilibrium (reference) position 23

External Forces: Viscous Dampers

Scalar, linear damper f = !d() v ! vo = !d"v; d = dampingconstant Uncoupled, linear vector damper " % dx vx ! vx " % " % $ ()o ' dx 0 0 vx $ ' $ ' $ ' = ! ! (! $ 0 dy 0 ' $ vy ' fD $ dy ()vy vyo ' $ ' $ ' $ ' 0 0 dz vz $ dz vz ! vz ' #$ &' #$ &' # ()o &

()vxo ,vyo ,vzo : Equilibrium (reference) velocity [usually = 0] 24 State-Space Model with Linear Spring and

! 0 0 0 0 0 0 $ # &! x ' x $ ! x! $ ! x $ # 0 0 0 0 0 0 &# ()o & # & ! 0 0 0 1 0 0 $# & ! # 0 0 0 0 0 0 &# ' & # y & # &# y & ()y yo # 0 0 0 0 1 0 & # 'k 'd &# & # z! & # z & # x 0 0 x 0 0 &# ' & # & # 0 0 0 0 0 1 &# & ()z zo ! = + # m m &# & # vx & # 0 0 0 0 0 0 &# vx & # & # 'k 'd &# vx & # ! & # & y y vy # 0 0 0 0 0 0 & vy # 0 0 0 0 &# & # & # & m m vy # 0 0 0 0 0 0 & # &# & # v!z & " %# vz & " % " % # 'kz 'dz &# v & # 0 0 0 0 &" z % " m m %

Spring Damping Effects Effects

25

State-Space Model with Linear Spring and Damping

Stability Effects Reference Effects

! 0 0 0 1 0 0 $ ! 0 0 0 1 0 0 $ # & # & ! x! $ # 0 0 0 0 1 0 &! x $ # 0 0 0 0 1 0 &! $ # & # & xo y! # 0 0 0 0 0 1 & y # 0 0 0 0 0 1 &# & # & # & # y & # 'k 'd & # k d & o # z! & # x 0 0 x 0 0 &# z & # x 0 0 x 0 0 &# & # & # & zo ! = # m m & + # m m &# & # vx & # vx & # 'k 'd & # k d &# 0 & # ! & y y # & y y # & vy # 0 0 0 0 & vy # 0 0 0 0 & 0 # & # m m &# & # m m &# & # v!z & # vz & # 0 & " % # 'kz 'dz &" % # kz dz &" % # 0 0 0 0 & # 0 0 0 0 & " m m % " m m %

26 Vector-Matrix Form

! $ ! $ ! $ r! 0 I3 ()r ' ro # & = # & # & " v! % # 'K / m 'D / m & # v & " % " %

! $ ! $ ! $ ! $ ! r! $ 0 I3 r 0 'I3 ro # & = # & # & + # & # & v! # 'K / m 'D / m & v # K / m D / m & # 0 & " % " % " % " % " %

27

Rotational Motion!

28 Assignment # 2

Document the physical characteristics and flight behavior of a Syma X11 quadcopter!

https://www.youtube.com/watch?v=EwO6U7DbqSo

https://www.youtube.com/watch?v=kyiuy2CHzj0 29

Center of Mass

! $ xcm # & 1 ! = rcm # ycm & ' r dm # & m Body " zcm %

x y z ! x $ max max max # & = ' ' ' # y & ((x, y,z)dx dydz x y z min min min "# z %&

Reference point for rotational motion 30 Particle in Inverse- Square

Angular Momentum of a Particle

•! of linear momentum of differential that make up the body –! Differential mass of a particle –! Component of velocity perpendicular to moment arm from center of to particle dh = ()r ! dmv = ()r ! v dm 31

Cross Product of Two Vectors

i j k r ! v = x y z = ()yvz " zvy i + ()zvx " xvz j + ()xvy " yvx k

vx vy vz ()i, j, k : Unit vectors along ()x, y,z

This is equivalent to " % yv ! zv " % $ ()z y ' " 0 !z y % vx $ ' $ ' = $ ! ' = ! v = ! $ ()zvx xvz ' $ z 0 x ' $ y ' rv $ ! ' $ ' $ ' y x 0 vz xvy ! yvx # & #$ &' #$ () &' 32 Cross-Product-Equivalent Matrix

r ! v = rv!

Cross-product equivalent of radius vector Velocity vector # & ! $ 0 "z y vx % ( # & r ! ! r" = % z 0 "x ( v = # vy & # & % "y x 0 ( v $ ' "# z %& 33

Angular Momentum of an Object

Integrate moment of linear momentum of differential particles over the body

xmax ymax zmax h ! " ()r ! v dm = " " " ()r ! v #(x, y,z)dx dydz Body xmin ymin zmin # & hx xmax ymax zmax % ( = ! ! " " " ()rv (x, y,z)dx dydz " % hy ( xmin ymin zmin % ( % hz ( $ ' 34 and Corresponding Velocity Increment " % Angular velocity of object ! x with respect to inertial $ ' frame of reference ! = $ ! y ' $ ' ! z #$ &'I

" !v % Linear velocity $ x ' increment at a point, ! = ! = ( ) = * )(( (x,y,z), due to v()x, y,z $ vy ' r ()r $ ' angular rotation ! #$ vz &'

35

Angular Momentum of an Object with Respect to Its Center of Mass •! Choose center of mass as origin about which angular momentum is calculated (= center of rotation) –! i.e., r is measured from the center of mass = # ! + " % = ! + !" h ' $r ()vcm v &dm ' []r vcm dm ' []r v dm Body Body Body

By , = []rdm ! vcm # &%r ! ()r ! $ ('dm " " ! = ! = Body Body " []rdm vcm rcm vcm 0 Body $ ' = ! # r! r! " dm = &! # r! r! dm) " " I" Body & Body ) I ! Matrix % ( 36 Angular Momentum

h = I!

Three components of angular momentum ! $ ! $ ! $ h I xx 'I xy 'I xz ) # x & ! $ # & # x & = ' ! ! ) # ' ' & ) # hy & # ( r r dm& " I xy I yy I yz # y & # & # Body & # & # & " % ' ' ) # hz & # I xz I yz Izz & # z & " % " % " %

37

Inertia Matrix, I! Angular rate has equal effect on all particles

# 0 !z y & # 0 !z y & % ( % ( I = ! " r! r! dm = ! " % z 0 !x ( % z 0 !x ( dm Body Body % !y x 0 ( % !y x 0 ( $ ' $ '

" (y2 + z2 ) !xy !xz % $ ' = $ !xy (x2 + z2 ) !yz 'dm ( $ ' Body ! ! 2 + 2 #$ xz yz (x y ) &'

38 Inertia Matrix

2 2 " % " (y + z ) !xy !xz % I !I !I $ ' $ xx xy xz ' I = $ !xy (x2 + z2 ) !yz 'dm = $ !I I !I ' ( $ xy yy yz ' Body $ 2 2 ' $ !xz !yz (x + y ) ' $ !I xz !I yz Izz ' # & # & –! Moments of inertia on the diagonal –! Products of inertia off the diagonal –! If products of inertia are zero, (x, y, z) are principal axes, and

! I 0 0 $ # xx & I = # 0 I yy 0 & # & "# 0 0 Izz %& 39

Angular Momentum and Rate are Vectors

•! Can be expressed in either an inertial or a body frame •! Vectors are transformed by the rotation matrix and its inverse

B B I I hB = IB! B = HI hI = HI II ! I hI = II ! I = HBhB = HBIB! B ! = HB! ! = HI ! B I I I B B

40 Similarity Transformations for Matrices Alternative expressions for angular momentum

B B hB = IB! B = HI hI = HI II ! I = HB HI ! I II B B Inertia matrices are transformed from one frame to the other by similarity transformations = B I = I B IB HI II HB II HBIBHI 41

Newtons 2nd Law Applied to Rotational Motion in Inertial Frame Rate of change of angular momentum = applied moment (or ), m Inertia Matrix Expressed in Inertial Frame is Not Constant if Body is Rotating

dhI d()II ! I dII d! I = = ! I + II = mI [moment vector]I dt dt dt dt In a body reference frame, inertia matrix is constant

dh d()IB! B dI d! d! B = = B ! + I B = ()0 ! + I B dt dt dt B B dt B B dt

d! B = IB = mB [moment vector]B dt 42 How do We get Rid of d(II )/dt in the Angular Momentum Rate Equation?

•! Write the dynamic equation in body- referenced frame • ! With constant mass, I inertial are unchanging in body reference frame •! ... but the frame is non-Newtonian or non-inertial

43

Vector Derivative Expressed in a Rotating Frame Chain Rule

I dhI I dhB dHB I dhB I I dhB I = H + h = HB + ()! I " HB hB = HB + ! I " ()HBhB dt B dt dt B dt dt

dhI I dhB I dhB = HB + ! I " hI = HB + !! I hI dt dt dt

Cross-product-equivalent Similarity matrix of angular rate: transformation

# 0 "! ! & % z y ( ! I B ! = % ! z 0 "! x ( !! = H !! H % ( I B B I "! ! % y x 0 ( $ ' 44 Rate of Change of Body-Axis Angular Momentum Substitute

dhI I dhB I B I = HB + HB!! BHI hI = mI = HBmB dt dt Eliminate

I dhB I B I HB + HB!! BHI hI = HBmB dt Rearrange and Substitute

dhB = mB ! "! BhB dt 45

Rate of Change of Body-Axis Angular Velocity

d! I B = m " !! I ! B dt B B B B

d! B "1 = IB (mB " !! BIB! B ) dt

46 Rate of Change of Body-Axis Translational Velocity

I Inertial Velocity v I = HBv B

I dv dv d()HB dv I = HI B + v = HI B + !! v dt B dt dt B B dt I I dv dv Rate of change = HI B + HI !! HBv = HI B + HI !! v B dt B B I I B dt B B B

1 1 I = fI = HBfB m m

I dv B I 1 I Substitution HB + HB!! Bv B = HBfB dt m

dv B 1 Result = fB ! "! Bv B dt m 47

Rate of Change of Translational Position

Express derivative in inertial frame ! = = I rI v I HBv B

48 Rate of Change of Angular ()

" % ! " p % •! Body-axis angular rate $ x ' $ ' vector components ! B = $ ! y ' ! $ q ' $ ' are orthogonal $ r ' $ ! z ' # & # &B % " ( •! Euler angles form a ' * non-orthogonal ! ! ' # * vector ' $ * & ) % ( % "! ( , x •! Therefore, Euler- d! ' * ' * = ! + , + , angle rate vector is ' # * ' y * I dt ' * ' $! * , not orthogonal & ) ' z * & )I 49

Transformation From Euler-Angle Rates to Body-Axis Rates

!˙ is measured in the Inertial Frame !˙ is measured in Intermediate Frame #1 !˙ is measured in Intermediate Frame #2

50 Sequential Transformations from Euler-Angle Rates to Body-Axis Rates !˙ is measured in the Inertial Frame !˙ is measured in Intermediate Frame #1 ! ˙ is measured in Intermediate Frame #2 ! $ ! ! $ p ' ! 0 $ ! 0 $ # & # & # & B ! B 2 # & # q & = I3 # 0 & + H2 ( + H2 H1 0 # & # & # & # & # & # )! & r 0 " 0 % " % " % "# %& ... which is ! $ ! ! $ p ! 1 0 'sin( $ ) # & # & # & = ) ) ( # (! & B+! # q & # 0 cos sin cos & " LI # & # *! & " r % # 0 'sin) cos) cos( & " % " % 51

Inversion to Transform Body-Axis Rates to Euler-Angle Rates Transformation is not orthonormal $ 1 0 !sin" ' & ) B # # " LI = & 0 cos sin cos ) & ! # # " ) % 0 sin cos cos ( Inverse transformation is not the !1 T B ! I " B ()LI LB ()LI !1 $ ' 1 0 !sin" B !1 & ) Adj()LI B = # # " = ()LI & 0 cos sin cos ) B det L & 0 !sin# cos# cos" ) ()I % ( 52 Euler-Angle Rates !1 $ ' $ ! " ! " ' B 1 0 !sin" 1 sin tan cos tan !1 Adj()LI & ) & ) B = = # # " = 0 cos! #sin! ()LI B & 0 cos sin cos ) & ) L det()I & ! # # " ) & ! " ! " ) % 0 sin cos cos ( % 0 sin sec cos sec (

Euler-angle rates from body-axis rates $ ' !! $ 1 sin! tan" cos! tan" ' $ p ' & ) & ) & ) ! I & " ) = & 0 cos! *sin! ) & q ) = LB+ B & #! ) & ) & ) % ( 0 sin! sec" cos! sec" % r ( % (

Can the inversion become singular? What does this mean?

53

Summary of Six-Degree-of-Freedom () Rigid-body dynamic equations are nonlinear Translational position I and velocity r!I = HBv B ! x $ ! u $ # & # & = = 1 rI # y &; v B # v & v! = f ! "" v # z & "# w %& B m B B B " % Rotational position ! I # = LB" B and velocity !1 % " ( % p ( ! " ' * ' * " B = IB (mB ! " BIB" B ) ! = # + = ' *; B ' q * ' $ * ' * & ) & r ) 54 Next Time:! Flying and Swimming Robots!

55

!"##$%&%'()$** +)(%,-)$*

56 Moments and Products of Inertia for Common Constant-Density Objects are Tabulated

57

Moments and Products of Inertia (Bedford & Fowler)

58 " ! ! % $ I xx I xy I xz ' I = $ !I I !I ' Construction of $ xy yy yz ' $ !I xz !I yz Izz ' Inertia Matrix # & Build up moments and products of inertia from components using -axis theorem, e.g., = + + + + Ixxairplane Ixxwings Ixx fuselage Ixxhorizontal tail Ixxvertical tail ...

… or use software, e.g., Autodesk, Creo Parametric, SimMechanics, …

59