Rotation Averaging
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture Notes: Qubit Representations and Rotations
Phys 711 Topics in Particles & Fields | Spring 2013 | Lecture 1 | v0.3 Lecture notes: Qubit representations and rotations Jeffrey Yepez Department of Physics and Astronomy University of Hawai`i at Manoa Watanabe Hall, 2505 Correa Road Honolulu, Hawai`i 96822 E-mail: [email protected] www.phys.hawaii.edu/∼yepez (Dated: January 9, 2013) Contents mathematical object (an abstraction of a two-state quan- tum object) with a \one" state and a \zero" state: I. What is a qubit? 1 1 0 II. Time-dependent qubits states 2 jqi = αj0i + βj1i = α + β ; (1) 0 1 III. Qubit representations 2 A. Hilbert space representation 2 where α and β are complex numbers. These complex B. SU(2) and O(3) representations 2 numbers are called amplitudes. The basis states are or- IV. Rotation by similarity transformation 3 thonormal V. Rotation transformation in exponential form 5 h0j0i = h1j1i = 1 (2a) VI. Composition of qubit rotations 7 h0j1i = h1j0i = 0: (2b) A. Special case of equal angles 7 In general, the qubit jqi in (1) is said to be in a superpo- VII. Example composite rotation 7 sition state of the two logical basis states j0i and j1i. If References 9 α and β are complex, it would seem that a qubit should have four free real-valued parameters (two magnitudes and two phases): I. WHAT IS A QUBIT? iθ0 α φ0 e jqi = = iθ1 : (3) Let us begin by introducing some notation: β φ1 e 1 state (called \minus" on the Bloch sphere) Yet, for a qubit to contain only one classical bit of infor- 0 mation, the qubit need only be unimodular (normalized j1i = the alternate symbol is |−i 1 to unity) α∗α + β∗β = 1: (4) 0 state (called \plus" on the Bloch sphere) 1 Hence it lives on the complex unit circle, depicted on the j0i = the alternate symbol is j+i: 0 top of Figure 1. -
Arxiv:1605.06950V4 [Stat.ML] 12 Apr 2017 Racy of RAND Depends on the Diameter of the Network, 1 X Which Motivated Cohen Et Al
A Sub-Quadratic Exact Medoid Algorithm James Newling Fran¸coisFleuret Idiap Research Institute & EPFL Idiap Research Institute & EPFL Abstract network analysis. In clustering, the Voronoi iteration K-medoids algorithm (Hastie et al., 2001; Park and Jun, 2009) requires determining the medoid of each of We present a new algorithm trimed for ob- K clusters at each iteration. In operations research, taining the medoid of a set, that is the el- the facility location problem requires placing one or ement of the set which minimises the mean several facilities so as to minimise the cost of connect- distance to all other elements. The algorithm ing to clients. In network analysis, the medoid may is shown to have, under certain assumptions, 3 d represent an influential person in a social network, or expected run time O(N 2 ) in where N is R the most central station in a rail network. the set size, making it the first sub-quadratic exact medoid algorithm for d > 1. Experi- ments show that it performs very well on spa- 1.1 Medoid algorithms and our contribution tial network data, frequently requiring two A simple algorithm for obtaining the medoid of a set orders of magnitude fewer distance calcula- of N elements computes the energy of all elements and tions than state-of-the-art approximate al- selects the one with minimum energy, requiring Θ(N 2) gorithms. As an application, we show how time. In certain settings Θ(N) algorithms exist, such trimed can be used as a component in an as in 1-D where the problem is solved by Quickse- accelerated K-medoids algorithm, and then lect (Hoare, 1961), and more generally on trees. -
Robust Geometry Estimation Using the Generalized Voronoi Covariance Measure Louis Cuel, Jacques-Olivier Lachaud, Quentin Mérigot, Boris Thibert
Robust Geometry Estimation using the Generalized Voronoi Covariance Measure Louis Cuel, Jacques-Olivier Lachaud, Quentin Mérigot, Boris Thibert To cite this version: Louis Cuel, Jacques-Olivier Lachaud, Quentin Mérigot, Boris Thibert. Robust Geometry Estimation using the Generalized Voronoi Covariance Measure. SIAM Journal on Imaging Sciences, Society for In- dustrial and Applied Mathematics, 2015, 8 (2), pp.1293-1314. 10.1137/140977552. hal-01058145v2 HAL Id: hal-01058145 https://hal.archives-ouvertes.fr/hal-01058145v2 Submitted on 4 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Robust Geometry Estimation using the Generalized Voronoi Covariance Measure∗y Louis Cuel1,2, Jacques-Olivier Lachaud 2, Quentin M´erigot1,3, and Boris Thibert2 1Laboratoire Jean Kuntzman, Universit´eGrenoble-Alpes, France 2Laboratoire de Math´ematiques(LAMA), Universit´ede Savoie, France 3CNRS November 4, 2015 Abstract d The Voronoi Covariance Measure of a compact set K of R is a tensor-valued measure that encodes geometrical information on K and which is known to be resilient to Hausdorff noise but sensitive to outliers. In this article, we generalize this notion to any distance-like function δ and define the δ-VCM. -
Theory of Angular Momentum and Spin
Chapter 5 Theory of Angular Momentum and Spin Rotational symmetry transformations, the group SO(3) of the associated rotation matrices and the 1 corresponding transformation matrices of spin{ 2 states forming the group SU(2) occupy a very important position in physics. The reason is that these transformations and groups are closely tied to the properties of elementary particles, the building blocks of matter, but also to the properties of composite systems. Examples of the latter with particularly simple transformation properties are closed shell atoms, e.g., helium, neon, argon, the magic number nuclei like carbon, or the proton and the neutron made up of three quarks, all composite systems which appear spherical as far as their charge distribution is concerned. In this section we want to investigate how elementary and composite systems are described. To develop a systematic description of rotational properties of composite quantum systems the consideration of rotational transformations is the best starting point. As an illustration we will consider first rotational transformations acting on vectors ~r in 3-dimensional space, i.e., ~r R3, 2 we will then consider transformations of wavefunctions (~r) of single particles in R3, and finally N transformations of products of wavefunctions like j(~rj) which represent a system of N (spin- Qj=1 zero) particles in R3. We will also review below the well-known fact that spin states under rotations behave essentially identical to angular momentum states, i.e., we will find that the algebraic properties of operators governing spatial and spin rotation are identical and that the results derived for products of angular momentum states can be applied to products of spin states or a combination of angular momentum and spin states. -
Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation -
Unipotent Flows and Applications
Clay Mathematics Proceedings Volume 10, 2010 Unipotent Flows and Applications Alex Eskin 1. General introduction 1.1. Values of indefinite quadratic forms at integral points. The Op- penheim Conjecture. Let X Q(x1; : : : ; xn) = aijxixj 1≤i≤j≤n be a quadratic form in n variables. We always assume that Q is indefinite so that (so that there exists p with 1 ≤ p < n so that after a linear change of variables, Q can be expresses as: Xp Xn ∗ 2 − 2 Qp(y1; : : : ; yn) = yi yi i=1 i=p+1 We should think of the coefficients aij of Q as real numbers (not necessarily rational or integer). One can still ask what will happen if one substitutes integers for the xi. It is easy to see that if Q is a multiple of a form with rational coefficients, then the set of values Q(Zn) is a discrete subset of R. Much deeper is the following conjecture: Conjecture 1.1 (Oppenheim, 1929). Suppose Q is not proportional to a ra- tional form and n ≥ 5. Then Q(Zn) is dense in the real line. This conjecture was extended by Davenport to n ≥ 3. Theorem 1.2 (Margulis, 1986). The Oppenheim Conjecture is true as long as n ≥ 3. Thus, if n ≥ 3 and Q is not proportional to a rational form, then Q(Zn) is dense in R. This theorem is a triumph of ergodic theory. Before Margulis, the Oppenheim Conjecture was attacked by analytic number theory methods. (In particular it was known for n ≥ 21, and for diagonal forms with n ≥ 5). -
Linear Operators Hsiu-Hau Lin [email protected] (Mar 25, 2010)
Linear Operators Hsiu-Hau Lin [email protected] (Mar 25, 2010) The notes cover linear operators and discuss linear independence of func- tions (Boas 3.7-3.8). • Linear operators An operator maps one thing into another. For instance, the ordinary func- tions are operators mapping numbers to numbers. A linear operator satisfies the properties, O(A + B) = O(A) + O(B);O(kA) = kO(A); (1) where k is a number. As we learned before, a matrix maps one vector into another. One also notices that M(r1 + r2) = Mr1 + Mr2;M(kr) = kMr: Thus, matrices are linear operators. • Orthogonal matrix The length of a vector remains invariant under rotations, ! ! x0 x x0 y0 = x y M T M : y0 y The constraint can be elegantly written down as a matrix equation, M T M = MM T = 1: (2) In other words, M T = M −1. For matrices satisfy the above constraint, they are called orthogonal matrices. Note that, for orthogonal matrices, computing inverse is as simple as taking transpose { an extremely helpful property for calculations. From the product theorem for the determinant, we immediately come to the conclusion det M = ±1. In two dimensions, any 2 × 2 orthogonal matrix with determinant 1 corresponds to a rotation, while any 2 × 2 orthogonal HedgeHog's notes (March 24, 2010) 2 matrix with determinant −1 corresponds to a reflection about a line. Let's come back to our good old friend { the rotation matrix, cos θ − sin θ ! cos θ sin θ ! R(θ) = ;RT = : (3) sin θ cos θ − sin θ cos θ It is straightforward to check that RT R = RRT = 1. -
Infield Biomass Bales Aggregation Logistics and Equipment Track
INFIELD BIOMASS BALES AGGREGATION LOGISTICS AND EQUIPMENT TRACK IMPACTED AREA EVALUATION A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Subhashree Navaneetha Srinivasagan In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Agricultural and Biosystems Engineering November 2017 Fargo, North Dakota NORTH DAKOTA STATE UNIVERSITY Graduate School Title INFIELD BIOMASS BALES AGGREGATION LOGISTICS AND EQUIPMENT TRACK IMPACTED AREA EVALUATION By Subhashree Navaneetha Srinivasagan The supervisory committee certifies that this thesis complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Igathinathane Cannayen Chair Dr. Halis Simsek Dr. David Ripplinger Approved: 11/22/2017 Dr. Sreekala Bajwa Date Department Chair ABSTRACT Efficient bale stack location, infield bale logistics, and equipment track impacted area were conducted in three different studies using simulation in R. Even though the geometric median produced the best logistics, among the five mathematical grouping methods, the field middle was recommended as it was comparable and easily accessible in the field. Curvilinear method developed (8–259 ha), incorporating equipment turning (tractor: 1 and 2 bales/trip, automatic bale picker (ABP): 8–23 bales/trip, harvester, and baler), evaluated the aggregation distance, impacted area, and operation time. The harvester generated the most, followed by the baler, and the ABP the least impacted area and operation time. The ABP was considered as the most effective bale aggregation equipment compared to the tractor. Simple specific and generalized prediction models, developed for aggregation logistics, impacted area, and operation time, have performed 2 well (0.88 R 0.99). -
Robustness Meets Algorithms
Robustness Meets Algorithms Ankur Moitra (MIT) Robust Statistics Summer School CLASSIC PARAMETER ESTIMATION Given samples from an unknown distribution in some class e.g. a 1-D Gaussian can we accurately estimate its parameters? CLASSIC PARAMETER ESTIMATION Given samples from an unknown distribution in some class e.g. a 1-D Gaussian can we accurately estimate its parameters? Yes! CLASSIC PARAMETER ESTIMATION Given samples from an unknown distribution in some class e.g. a 1-D Gaussian can we accurately estimate its parameters? Yes! empirical mean: empirical variance: R. A. Fisher The maximum likelihood estimator is asymptotically efficient (1910-1920) R. A. Fisher J. W. Tukey The maximum likelihood What about errors in the estimator is asymptotically model itself? (1960) efficient (1910-1920) ROBUST PARAMETER ESTIMATION Given corrupted samples from a 1-D Gaussian: + = ideal model noise observed model can we accurately estimate its parameters? How do we constrain the noise? How do we constrain the noise? Equivalently: L1-norm of noise at most O(ε) How do we constrain the noise? Equivalently: Arbitrarily corrupt O(ε)-fraction L1-norm of noise at most O(ε) of samples (in expectation) How do we constrain the noise? Equivalently: Arbitrarily corrupt O(ε)-fraction L1-norm of noise at most O(ε) of samples (in expectation) This generalizes Huber’s Contamination Model: An adversary can add an ε-fraction of samples How do we constrain the noise? Equivalently: Arbitrarily corrupt O(ε)-fraction L1-norm of noise at most O(ε) of samples (in expectation) -
Inclusion Relations Between Orthostochastic Matrices And
Linear and Multilinear Algebra, 1987, Vol. 21, pp. 253-259 Downloaded By: [Li, Chi-Kwong] At: 00:16 20 March 2009 Photocopying permitted by license only 1987 Gordon and Breach Science Publishers, S.A. Printed in the United States of America Inclusion Relations Between Orthostochastic Matrices and Products of Pinchinq-- Matrices YIU-TUNG POON Iowa State University, Ames, lo wa 5007 7 and NAM-KIU TSING CSty Poiytechnic of HWI~K~tig, ;;e,~g ,?my"; 2nd A~~KI:Lkwe~ity, .Auhrn; Al3b3m-l36849 Let C be thc set of ail n x n urthusiuihaatic natiiccs and ;"', the se! of finite prnd~uctpof n x n pinching matrices. Both sets are subsets of a,, the set of all n x n doubly stochastic matrices. We study the inclusion relations between C, and 9'" and in particular we show that.'P,cC,b~t-~p,t~forn>J,andthatC~$~~fori123. 1. INTRODUCTION An n x n matrix is said to be doubly stochastic (d.s.) if it has nonnegative entries and ail row sums and column sums are 1. An n x n d.s. matrix S = (sij)is said to be orthostochastic (0.s.) if there is a unitary matrix U = (uij) such that 2 sij = luijl , i,j = 1, . ,n. Following [6], we write S = IUI2. The set of all n x n d.s. (or 0s.) matrices will be denoted by R, (or (I,, respectively). If P E R, can be expressed as 1-t (1 2 54 Y. T POON AND N K. TSING Downloaded By: [Li, Chi-Kwong] At: 00:16 20 March 2009 for some permutation matrix Q and 0 < t < I, then we call P a pinching matrix. -
Geometric Median Shapes
GEOMETRIC MEDIAN SHAPES Alexandre Cunha Center for Advanced Methods in Biological Image Analysis Center for Data Driven Discovery California Institute of Technology, Pasadena, CA, USA ABSTRACT an efficient linear program in practice. They observed that smooth We present an algorithm to compute the geometric median of shapes do not necessarily lead to smooth medians, an aspect we also shapes which is based on the extension of median to high dimen- verified in some of our experiments. sions. The median finding problem is formulated as an optimization We propose a method to quickly build median shapes from over distances and it is solved directly using the watershed method closed planar contours representing silhouettes of shapes discretized as an optimizer. We show that the geometric median shape faithfully in images. Our median shape is computed using the notion of represents the true central tendency of the data, contaminated or not. geometric median [12], also known as the spatial median, Fermat- It is superior to the mean shape which can be negatively affected by Weber point, and L1 median (see [13] for the history and survey the presence of outliers. Our approach can be applied to manifold of multidimensional medians), which is an extension of the median and non manifold shapes, with single or multiple connected com- of numbers to points in higher dimensional spaces. The geometric ponents. The application of distance transform and watershed algo- median has the property, in any dimension, that it minimizes the n rithm, two well established constructs of image processing, lead to sum of its Euclidean distances to given anchor points xj 2 R , an algorithm that can be quickly implemented to generate fast solu- ∗ X x = arg min kx − xj k : (1) tions with linear storage requirement. -
2 Rotation Kinematics
2 Rotation Kinematics Consider a rigid body with a fixed point. Rotation about the fixed point is the only possible motion of the body. We represent the rigid body by a body coordinate frame B, that rotates in another coordinate frame G, as is shown in Figure 2.1. We develop a rotation calculus based on trans- formation matrices to determine the orientation of B in G, and relate the coordinates of a body point P in both frames. Z ZP z B zP G P r yP y YP X x P P Y X x FIGURE 2.1. A rotated body frame B in a fixed global frame G,aboutafixed point at O. 2.1 Rotation About Global Cartesian Axes Consider a rigid body B with a local coordinate frame Oxyz that is origi- nally coincident with a global coordinate frame OXY Z.PointO of the body B is fixed to the ground G and is the origin of both coordinate frames. If the rigid body B rotates α degrees about the Z-axis of the global coordi- nate frame, then coordinates of any point P of the rigid body in the local and global coordinate frames are related by the following equation G B r = QZ,α r (2.1) R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_2, © Springer Science+Business Media, LLC 2010 34 2. Rotation Kinematics where, X x Gr = Y Br= y (2.2) ⎡ Z ⎤ ⎡ z ⎤ ⎣ ⎦ ⎣ ⎦ and cos α sin α 0 − QZ,α = sin α cos α 0 .