Ultra-Differentiation of Sperm Tail of Lesser Egyptian Jerboa, Jaculus Jaculus (Family: Dipodidae)

Total Page:16

File Type:pdf, Size:1020Kb

Ultra-Differentiation of Sperm Tail of Lesser Egyptian Jerboa, Jaculus Jaculus (Family: Dipodidae) Journal of Advanced Laboratory Research in Biology E-ISSN: 0976-7614 Volume 7, Issue 1, 2016 PP 27-35 https://e-journal.sospublication.co.in Research Article Ultra-differentiation of Sperm Tail of Lesser Egyptian Jerboa, Jaculus jaculus (Family: Dipodidae) Osama M. Sarhan1,3* and Hany A. Hefny2,4 1Department of Zoology, Faculty of Science, Fayoum University, Egypt. 2Department of Zoology, Faculty of Science, Suez Canal University, Egypt. 3Department of Biology, Faculty of Applied Science, Umm Al-Qura University, KSA. 4Department of Biology, University College, Um Al Qura University Al-Jomoum KSA. Abstract: In the present study, events of sperm tail differentiation in Lesser Egyptian Jerboa, Jaculus jaculus were studied for the first time. Generally, stages of sperm tail differentiation are more or less similar to that described by other studies in other rodents. In the present species, special structures were observed. These structures include, first: the formation of a hollow large unit of microtubules that appears to surround the nuclear envelope at its equatorial plane. The manchette microtubules (MMs) are re-oriented toward the longitudinal direction and attached along hollow large unit of microtubules. Second, the formation of perinuclear space filled with an electron-translucent substance surrounds the posterior third of the developing nucleus. Third, the nuclear fossa and the connecting piece were inserted in the ventrodorsal region of the nucleus. Fourth, the fibrous sheath (FS) is formed of dextral spiral fibrous ribs. Finally, the sperm tail of the present species has a single outer FS, however, other rodents, having additional inner fibrous units, between the outer FS and the inner developing axoneme. Keywords: Ultrastructure, Sperm tail, Lesser Egyptian Jerboa, Jaculus jaculus, Rodents, Mammals. 1. Introduction Spermiogenesis involves highly regulated developmental and morphological stages during which Although Lesser Egyptian Jerboa, J. jaculus has a quiescent, inactive spermatids gain new movable wide geographical range in the middle-east with diverse shapes with highly specialized heads, necks, middle habitats, including coastal sand dunes, desert, semi- pieces, in addition, principal and end pieces of the tail desert and rocky regions, it is recorded in the red list of regions [3] with disposal of excess cytoplasmic threatened species [1]. In Egyptian mammals, components [4]. Mammalian sperm head and tail insufficient data have published to explain the stages of differentiation has been studied in the platypus, spermiogenesis in the mammalian fauna of Egypt. Ornithorhynchus anatinus [5], shrews [6-8], bats, Shahin and Ibraheem [2] described two morphs of Rhinopoma kinneari and Myotis macrodactylus [9-10], spermatozoa in Egyptian dipodids. The sperm head has marsupials [11,12], cats [13], as well as in primates, long paddle-shaped of pear-short heads with long or such as Callithrix jacchus and Rhesus monkey [14,16], short tails, however, their connecting pieces may be and man [17-19]. However, spermiogenesis of rodents inserted centrally or attaches mid basally to the lower [20-22] was also studied in mice [23-25], rat [26,27], concavity at the base of the sperm head. However, the and Guinea pig [28,29]. stages of spermiogenesis of the Egyptian jerboas Stages of sperm tail differentiation include the including present species was not investigated in formation of specific structures in the neck's connecting details. Furthermore, Sarhan [3] studied spermiogenesis piece, formation of axial filament, MS and FS in the of Egyptian fat-tailed gerbil, Pachyuromys duprasi. He middle piece that terminates at the annulus, in addition, described very long acrosomal segment that capping the study the fine structure of the principal and a terminal entire nucleus, with unique structures including special end piece of the tail [30-36]. These published data of mitochondrial sheath (MS), two FS and fin-like mammalian spermiogenesis described numerous fine structure supported by dorsal and ventral pairs of structures which are specific to different species, but fibrous masses that disappear in the same structure of none, dealing with Lesser Egyptian Jerboa. Thus, the the end piece. present study aimed to discover the specific ultra- *Corresponding author: E-mail: [email protected]. Ultra-differentiation of Sperm Tail of Jaculus jaculus Sarhan and Hefny structures of sperm tail differentiation of the present "MMs" (Figs. 3-9). Finally, unique FS and axial threatened species, J. jaculus. filament are formed (Figs. 12-19). Thus, the developing spermatid consists of a head with an elongated nucleus 2. Material and Methods capped with different adjacent, abutted segments of acrosome connecting piece and middle piece (Fig. 6 & 2.1. Animals 9). Ten adult males of Lesser Egyptian Jerboa, J. With more detail, Figures 10-12 show specific jaculus were collected, during the period of their sexual structures in the neck and middle piece of the sperm. In activity between April and May, from the Marsa the neck region, the connecting piece of the tail shows Matrouh region, at the northwest coast of Egypt. the insertion of proximal and distal centrioles in the NF, which situated at the ventrodorsal side of the nucleus. 2.2. Dissection and preparation of tissues Also, the neck region contains centrioles, chromatoid Animals were dissected, their testes extracted, bodies (CB), skeleton of the connecting piece, which, immediately washed in cold cacodylate buffer, cut into represented by longitudinal bundles of MMs (Figs. 3, 6 thin slices and fixed for 6h using 2.5% glutaraldehyde & 9). The mechanism of microtubules re-orientation in 0.1mol cacodylate buffer adjusted at 7.2 pH. One starts at equatorial level of the nuclear envelope, hour later, selected sliced were cut into 1mm units for whereas, some microtubules unite together to form good fixation, washed in fresh cacodylate buffer to large hollow microtubule unit (MtU) running in a remove residual tissues and transferred into small circular pathway (Figs. 6 & 8). At this point, the brown bottles filled with fresh 2.5% cold acrosomal cap stop, however, other longitudinal glutaraldehyde to complete fixation in the refrigerator. bundles of microtubules (Figs. 2-4) attach to the After fixation, the small specimens washed in circular MtU (Figs. 6-9). MMs draw the cell membrane cacodylate buffer and post-fixed for 3 hours by adding to surround both acrosomal cap and nuclear envelope, 1% cold osmium tetroxide (OsO4) dissolved in in the same time, forcing other cytoplasmic components cacodylate buffer and re-washed in cacodylate buffer. towards connecting piece of the tail (Figs. 4-9). Also, a Tissues were dehydrated in ascending grades of new cavity, filled with translucent material, appears to ethanol, cleared in propylene oxide and embedded in surround the posterior nuclear protrusion as a resistance Epon­Araldite mixture. Semi-thin sections were cut at structure, which may be protects the chromatin during 1µm thick using glass knives, stained with toluidine the condensation period. Figs. from 4 to 9 showed blue and examined under research light microscope posterior perinuclear space, which gradually increases (Axioskop 2 Plus, Zeiss, Germany) to select the most to surround the posterior nuclear protrusion (PN). It is active sites containing different stages of worth to mention that this space is located between spermiogenesis. Ultra-thin sections were cut, stained anterior (ANS) and posterior nuclear shelves (PNS) as with 1.5% aqueous uranyl acetate followed by shown in Figure 9. Reynold's lead citrate and studied under a Jeol "JEM- The middle piece involves a growing axoneme 1200 EXII" operating at 60-70kv. Selected figures were (AX) surrounded by ribs of a unique fibrous sheath taken for description. (RFS). The outstanding rear forms of FS, which is represented by contiguous fibrous ribs that arranged in 3. Results a dextral spiral (Fig. 11). Figures 13 and 14 show mitochondria surround the axial filament in the Early spermatids of Lesser Egyptian Jerboa, J. transverse sections in the different parts of the middle jaculus have spherical nucleus with fine chromatin piece including the initial (IMP), posterior (PMP) and granules and their cytoplasm showed few mitochondria. terminal (TMP) portions. The terminal end of the In addition, numerous solitary microtubules arranged middle piece is restricted by an annulus (AN) formed of under the plasma membrane, and around the nuclear a poor and thin discoid fibrous plate (Fig. 15) that envelope that oriented in circular patterns (Fig. 1). allows the growing axoneme and the surrounding FS to Briefly, the events of the present sperm tail protrude and extends posteriorly, forming a long differentiation include nuclear elongation, that principal piece and a thick short end piece. In both protrudes into anterior and posterior directions (PN) regions, a relatively thick FS surrounds an axial (Figs. 2, 3), formation of a basal plate (BP), and nuclear filament. Figures 16-19 show that the ultra-structures of fossa (NF), at its posterior ventrodorsal side (Figs. 2, 3). the principal and the end piece of the sperm tail are The situation of this fossa shows that the connecting more or less similar in its structure and diameter of the piece of the tail is attached to the sperm head at this FS. In the principal piece, the FS has homogeneous unexpected situation (Figs. 2, 3). Moreover, the fibrous ribs, with two large ribs, situated at its lateral proximal (PC) and distal (DC) centrioles are fitted in or sides (LFR) (Fig. 16). The transverse sections showed nearby the nuclear fossa (NF) (Figs. 2, 3, 5), and the the structure of FS and axial filament, narrowing cytoplasmic components are aggregated at the posterior towards the end of the tail with thinner fibrous ribs and end of the sperm head, namely connecting piece (CP) constant radius of the axial filament (Figs. 17-19). which mainly supported by longitudinal bundles of J. Adv. Lab. Res. Biol. 28 Ultra-differentiation of Sperm Tail of Jaculus jaculus Sarhan and Hefny Fig. 1. Electron Micrographs showed two early spermatids.
Recommended publications
  • Evolutionary History of Two Cryptic Species of Northern African Jerboas
    Evolutionary history of two cryptic species of Northern African jerboas Ana Filipa Moutinho ( [email protected] ) Max-Planck-Institut für Evolutionsbiologie https://orcid.org/0000-0002-2838-9113 Nina Serén Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Joana Paupério Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Teresa Luísa Silva Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Fernando Martínez-Freiría Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Graciela Sotelo Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Rui Faria Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Tapio Mappes Jyvaskylan Yliopisto Paulo Célio Alves Universidade do Porto Faculdade de Ciencias José Carlos Brito Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Zbyszek Boratyński Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Research article Keywords: African jerboas, cryptic diversity, demographic history, deserts, Jaculus, local adaptation, phylogenetics, reproductive isolation, Sahara-Sahel, speciation. Posted Date: February 3rd, 2020 DOI: https://doi.org/10.21203/rs.2.13580/v4 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/31 Version of Record: A version of this preprint was published on February 13th, 2020. See the published version at https://doi.org/10.1186/s12862-020-1592-z. Page 2/31 Abstract Background Climatic variation and geologic change both play signicant roles in shaping species distributions, thus affecting their evolutionary history. In Sahara-Sahel, climatic oscillations shifted the desert extent during the Pliocene-Pleistocene interval, triggering the diversication of several species.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • Systematics, Distribution and Ecological Analysis of Rodents in Jordan
    Systematics, distribution and ecological analysis of rodents in Jordan ZUHAIR S. AMR1,2, MOHAMMAD A. ABU BAKER3, MAZIN QUMSIYEH4 & EHAB EID5 1Department of Biology, Jordan University of Science and Technology, P. O. Box 3030, Irbid, Jordan. E-mail: [email protected] 2Corresponding author 2Enviromatics, Environmental Management and Consulting Company, Amman, Jordan, E- mail: [email protected] 3Palestine Museum of Natural History, Bethlehem University, Bethlehem, Palestine, E-mail: [email protected]. 4The Royal Marine Conservation Society of Jordan, Amman, Jordan, E-mail: [email protected] Abstract Distributional and ecological data were given to all rodents of Jordan. The rodent fauna of Jordan consists of 28 species with 20 genera in eight families (Cricetidae, Dipodidae, Gliridae, Hystricidae, Muridae, Myocastoridae, Sciuridae, and Spalacidae), including four introduced species. Keys for families and species were provided, along with diagnosis for each species and cranial illustrations for most species. Habitat preference and zoogeographic affinities of rodents in Jordan were analyzed, as well as their status and conservation. Threat categories and causes of threats on the rodents of Jordan were also analyzed. The distribution of rodents in Jordan represents a reflection of their global distribution ranges and habitat preferences. Species associated with the temperate forest of northern Jordan includes Sciurus anomalus and two wood mice, Apodemus mystacinus and A. flavicollis, while non-forested areas are represented by Nannospalax ehrenbergi and Microtus guentheri. Strict sand dwellers include Gerbillus cheesmani and G. gerbillus. Petrophiles associated with sandstone or black lava deserts are exemplified by Acomys russatus, A. r. lewsi, H. indica and S. calurus. Others including: Jaculus jaculus, G.
    [Show full text]
  • Vertical Leaping Mechanics of the Lesser Egyptian Jerboa Reveal Specialization for Maneuverability Rather Than Elastic Energy Storage
    Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Moore, Talia Y., Alberto M. Rivera, and Andrew A. Biewener. 2017. “Vertical Leaping Mechanics of the Lesser Egyptian Jerboa Reveal Specialization for Maneuverability Rather Than Elastic Energy Storage.” Frontiers in Zoology 14 (1) (July 3). doi:10.1186/ s12983-017-0215-z. Published Version doi:10.1186/s12983-017-0215-z Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34461316 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Moore et al. RESEARCH Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage Talia Y Moore1,2*, Alberto M Rivera1 and Andrew A Biewener1 Abstract Background: Numerous historical descriptions of the Lesser Egyptian jerboa, Jaculus jaculus, a small bipedal mammal with elongate hindlimbs, make special note of their extraordinary leaping ability. We observed jerboa locomotion in a laboratory setting and performed inverse dynamics analysis to understand how this small rodent generates such impressive leaps. We combined kinematic data from video, dynamic data from a force platform, and morphometric data from dissections to calculate the relative contributions of each hindlimb muscle and tendon to the total movement. Results: Jerboas leapt in excess of 10 times their hip height.
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]
  • Biosystematics of Three-Toed Jerboas, Genus Jaculus (Erxleben, 1777) from Iran (Dipodidae, Rodentia)
    Iranian Journal of Animal Biosystematics (IJAB) Vol.12, No.1, 123-139, 2016 ISSN: 1735-434X (print); 2423-4222 (online) Biosystematics of three-toed Jerboas, Genus Jaculus (Erxleben, 1777) from Iran (Dipodidae, Rodentia) Darvish, J.a, b*, Tarahomi, M.a, Dianat, M.a, Mohammadi, Z.a, Haddadian Shad, H.a and Moshtaghi, S.a a Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran b Rodentology Research Department, Institute of Applied Zoology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran (Received: 10 October 2015; Accepted: 20 June 2016) The genus Jaculusis distributed in Palearctic desert and semi-desert areas, extending from Central Asia to the Western Sahara in the North Africa. In Iran three species of three- toed Jerboa have been reported: Jaculus jaculus from the south west and west of Iran, Jaculus blanfordi from the northeast, east and central part of Iran and Jaculus thaleri from the east of Iran. In present study, the phylogenetic and taxonomic relationships in the genus Jaculus from Iran were examined using molecular, geometric morphometric and morphologic data. Our molecular analyses indicated two monophyletic clades which contain J. jaculus and J. blanfordi. There is a high amount of genetic interspecific distance (12.7%) between J. jaculus and J.blanfordi, while the intraspecific divergence within these two species is low. Analysis of Variance (ANOVA) of morphometric variables were significant (P<0.05) and shows that J. jaculus is significantly smaller than J. blanfordi. Statistical Analysis on outline data shows that there is an intraspecific geographic variation in 2nd lower molar shape in J.blanfordi so that northern populations are determinable from the south ones (Pvalue= 0.016).
    [Show full text]
  • For Peer Review Only
    Page 1 of 41 Journal of Anatomy 1 2 Structure and function of the mammalian middle ear . 3 ForI: Large Peer middle ears Review in small desert Onlymammals 4 5 Dr. Matthew J. Mason 6 University of Cambridge 7 Department of Physiology, Development & Neuroscience 8 Downing Street, Cambridge CB2 3EG 9 +44 1223 333829 10 [email protected] 1 Journal of Anatomy Page 2 of 41 11 Abstract 12 13 Many species of small desert mammals are known to have expanded auditory bullae. The ears of 14 gerbils and heteromyids have been well-described, but much less is known about the middle ear 15 anatomy ofFor other desert Peer mammals. In Reviewthis study, the middle earsOnly of three gerbils (Meriones , 16 Desmodillus and Gerbillurus ), two jerboas (Jaculus ) and two sengis (elephant-shrews: Macroscelides 17 and Elephantulus ) were examined and compared, using micro-computed tomography and light 18 microscopy . Middle ear cavity expansion has occurred in members of all three groups, apparently in 19 association with an essentially “freely mobile” ossicular morphology and the development of bony 20 tubes for the middle ear arteries. Cavity expansion can occur in different ways, resulting in different 21 subcavity patterns even between different species of gerbils. Having enlarged middle ear cavities 22 aids low-frequency audition, and several adaptive advantages of low-frequency hearing to small 23 desert mammals have been proposed. However, while Macroscelides was found here to have middle 24 ear cavities so large that together they exceed brain volume, the bullae of Elephantulus are 25 considerably smaller. Why middle ear cavities are enlarged in some desert species but not others 26 remains unclear, but it may relate to microhabitat.
    [Show full text]
  • Evolutionary History of the Lesser Egyptian Jerboa, Jaculus Jaculus, in Northern Africa Using a Multi-Locus Approach
    Evolutionary history of the Lesser Egyptian Jerboa, Jaculus jaculus, in Northern Africa using a multi-locus approach Ana Filipa da Silva Moutinho Mestrado em Biodiversidade, Genética e Evolução Departamento de Biologia 2015 Orientador Zbyszek Boratyński, Post-Doc Researcher, CIBIO-InBIO Coorientadores Paulo Célio Alves, Associate Professor, FCUP/ CIBIO-InBIO Joana Paupério, Post-Doc Researcher, CIBIO-InBIO Todas as correções determinadas pelo júri, e só essas, foram efetuadas. O Presidente do Júri, Porto, ______/______/_________ FCUP 1 Evolutionary history of the Lesser Egyptian Jerboa, Jaculus jaculus, in Northern Africa using a multi-locus approach Agradecimentos First, I would like to thank my coordinator, Dr. Zbyszek Boratyński, for all the support along the work and opportunities that he made possible. I want also thank him for the amazing experience in Morocco during our field expedition. Ao Professor Doutor Paulo Célio Alves, por ter possibilitado este projeto e pelo apoio fornecido. À Doutora Joana Paupério pelo apoio extraordinário durante todo o processo, foi essencial! Ao Doutor José Carlos Brito pelo apoio prestado desde o início. Aos membros do Biodeserts, por todo o apoio e conselhos fornecidos. Um especial obrigado ao Paulo pela ajuda numa das análises, e à Teresa por toda a paciência e apoio essencial ao longo destes anos todos. À Susana Lopes, por toda a ajuda e tempo disponibilizado no processo de desenvolvimento e otimização dos microssatélites. À Clara, por ter efectuado uma das leituras independentes na análise dos microssatélites. Aquele obrigado especial à Sara e ao Fábio, vocês tornam tudo muito mais fácil. Os três mosqueteiros estarão sempre juntos! Aos meus colegas de mestrado, a vossa amizade e apoio foram indispensáveis.
    [Show full text]
  • Mitochondrial Evidence Indicates a Shallow Phylogeographic Structure for Jaculus Blanfordi (Murray, 1884) Populations (Rodentia: Dipodidae)
    Turkish Journal of Zoology Turk J Zool (2017) 41: 970-979 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1608-17 Mitochondrial evidence indicates a shallow phylogeographic structure for Jaculus blanfordi (Murray, 1884) populations (Rodentia: Dipodidae) 1 2, Ekaterina MELNIKOVA , Morteza NADERI * 1 Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia 2 Department of Environmental Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran Received: 08.08.2016 Accepted/Published Online: 22.06.2017 Final Version: 21.11.2017 Abstract: Our study was performed on the phylogeographic structure of Blanford’s jerboa (Jaculus blanfordi (Murray, 1884)) collected from nine localities in Iran, Turkmenistan, and Uzbekistan and was based on mitochondrial evidence indicating a slight phylogeographic divergence among the populations. We aimed to amplify two frequently used mitochondrial markers, cytochrome b (cyt b) and cytochrome c oxidase subunit I (COI) fragments, from 33 specimens obtained from the abovementioned countries. Our phylogeographic analyses uncovered two distinct groups, thus supporting the presence of two subspecies: J. b. blanfordi in Iran and J. b. turcmenicus in northern Turkmenistan and Uzbekistan. Finally, we discuss the intraspecies genetic structure of Blanford’s jerboa in relation to the biogeography of the Middle East and Middle Asia. Key words: Blanford’s jerboa, Jaculus, Middle Asia, Middle East, phylogeography 1. Introduction Previous phylogeographic studies have focused only on The arid areas of the Middle East and Middle Asia are some African Jaculus species populations, i.e. J. orientalis, which of the oldest known desert regions and host their own have been reported in Morocco to Egypt and eastwards specific fauna (Geptner, 1938; Korovin, 1961; Velichko, to Sinai and the Negev (Harrison and Bates, 1991).
    [Show full text]
  • Convergent Metatarsal Fusion in Jerboas and Chickens Is Mediated by Similarities and Differences in the Patterns of Osteoblast and Osteoclast Activities
    DOI: 10.1111/ede.12320 RESEARCH Convergent metatarsal fusion in jerboas and chickens is mediated by similarities and differences in the patterns of osteoblast and osteoclast activities Haydee L. Gutierrez1* | Rio Tsutsumi1* | Talia Y. Moore2 | Kimberly L. Cooper1 1Division of Biological Sciences, Section of Cellular and Developmental Biology, Abstract University of California San Diego, La In many vertebrate animals that run or leap, the metatarsals and/or metacarpals Jolla, California of the distal limb are fused into a single larger element, likely to resist fracture 2 Department of Ecology and Evolutionary due to high ground‐reaction forces during locomotion. Although metapodial Biology and Museum of Zoology, University of Michigan, Ann Arbor, fusion evolved independently in modern birds, ungulates, and jerboas, the Michigan developmental basis has only been explored in chickens, which diverged from the mammalian lineage approximately 300 million years ago. Here, we use a Correspondence Kimberly L. Cooper, Division of Biological bipedal rodent, the lesser Egyptian jerboa (Jaculus jaculus), to understand the Sciences, Section of Cellular and cellular processes of metatarsal fusion in a mammal, and we revisit the Developmental Biology, University of California San Diego, La Jolla, CA 92093. developing chicken to assess similarities and differences in the localization of Email: [email protected] osteoblast and osteoclast activities. In both species, adjacent metatarsals align along flat surfaces, osteoblasts cross the periosteal membrane
    [Show full text]
  • Multiple Phylogenetically Distinct Events Shaped the Evolution of Limb Skeletal Morphologies Associated with Bipedalism in the Jerboas
    Article Multiple Phylogenetically Distinct Events Shaped the Evolution of Limb Skeletal Morphologies Associated with Bipedalism in the Jerboas Highlights Authors d Limb character states of the dipodoid rodents are placed in a Talia Y. Moore, Chris L. Organ, phylogenetic context Scott V. Edwards, ..., Clifford J. Tabin, Farish A. Jenkins, Jr., d Digit loss occurred at least three times, and metatarsal fusion Kimberly L. Cooper is monophyletic Correspondence d Between-limb and within-hindlimb allometries are genetically separable [email protected] d Hindlimb length evolved by punctuated evolution In Brief Moore et al. demonstrate the value of considering evolutionary history to elucidate the developmental genetic mechanisms of morphological change. Focusing on the jerboas and related rodents, they find that each derived limb skeletal character is genetically distinct and that elements of the hindlimb elongated by punctuated evolution. Accession Numbers KT164755 KT164756 KT164757 KT164758 KT164759 KT164760 KT164761 KT164762 KT164763 KT164764 Moore et al., 2015, Current Biology 25, 2785–2794 November 2, 2015 ª2015 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2015.09.037 Current Biology Article Multiple Phylogenetically Distinct Events Shaped the Evolution of Limb Skeletal Morphologies Associated with Bipedalism in the Jerboas Talia Y. Moore,1 Chris L. Organ,2 Scott V. Edwards,1 Andrew A. Biewener,1 Clifford J. Tabin,3 Farish A. Jenkins, Jr.,1 and Kimberly L. Cooper4,* 1Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 2Department of Earth Sciences, Montana State University, 226 Traphagen Hall, Bozeman, MT 59717, USA 3Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA 4Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.cub.2015.09.037 SUMMARY morphogenesis.
    [Show full text]
  • Dactyla Carnivora Chiroptera
    100 House mouse (Mus musculus) 100 Algerian mouse (Mus spretus) 100 Ryukyu mouse (Mus caroli) 93 Graidner's shrewmouse (Mus pahari) 72 Southern multimammate mouse (Mastomys coucha) 100 Brown rat (Rattus norvegicus) 71 African woodland thicket rat (Grammomys surdaster) 100 100 Fat sand rat (Psammomys obesus) Mongolian gerbil (Meriones unguiculatus) Cairo spiny mouse (Acomys cahirinus) 100 100 Prairie vole (Microtus ochrogaster) 100 Transcaucasian mole vole (Ellobius lutescens) 100 Muskrat (Ondatra zibethicus) RODENTIA 100 Golden hamster (Mesocricetus auratus) 100 100 Chinese hamster (Cricetulus griseus) 100 White−footed mouse (Peromyscus leucopus) 100 Deer mouse (Peromyscus maniculatus bairdii) Gambian pouched rat (Cricetomys gambianus) 99 Spalax (Nannospalax galili) 100 Lesser Egyptian jerboa (Jaculus jaculus) 87 100 Gobi jerboa (Allactaga bullata) Meadow jumping mouse (Zapus hudsonius) 67 Woodland dormouse (Graphiurus murinus) 100 European rabbit (Oryctolagus cuniculus) 100 Snowshoe hare (Lepus americanus) American pika (Ochotona princeps) 94 100 Yellow−bellied marmot (Marmota flaviventris) 100 Alpine marmot (Marmota marmota marmota) 100 Daurian ground squirrel (Spermophilus dauricus) 100 Thirteen−lined ground squirrel (Ictidomys tridecemlineatus) 96 Arctic ground squirrel (Urocitellus parryii) 100 Ord's kangaroo rat (Dipodomys ordii) 100 Stephens's kangaroo rat (Dipodomys stephensi) Little pocket mouse (Perognathus longimembris) 100 Capybara (Hydrochoerus hydrochaeris) 100 Pantagonian mara (Dolichotis patagonum) 97 100 100 Guinea pig
    [Show full text]