Vertical Leaping Mechanics of the Lesser Egyptian Jerboa Reveal Specialization for Maneuverability Rather Than Elastic Energy Storage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolutionary History of Two Cryptic Species of Northern African Jerboas
Evolutionary history of two cryptic species of Northern African jerboas Ana Filipa Moutinho ( [email protected] ) Max-Planck-Institut für Evolutionsbiologie https://orcid.org/0000-0002-2838-9113 Nina Serén Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Joana Paupério Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Teresa Luísa Silva Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Fernando Martínez-Freiría Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Graciela Sotelo Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Rui Faria Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Tapio Mappes Jyvaskylan Yliopisto Paulo Célio Alves Universidade do Porto Faculdade de Ciencias José Carlos Brito Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Zbyszek Boratyński Universidade do Porto Centro de Investigacao em Biodiversidade e Recursos Geneticos Research article Keywords: African jerboas, cryptic diversity, demographic history, deserts, Jaculus, local adaptation, phylogenetics, reproductive isolation, Sahara-Sahel, speciation. Posted Date: February 3rd, 2020 DOI: https://doi.org/10.21203/rs.2.13580/v4 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/31 Version of Record: A version of this preprint was published on February 13th, 2020. See the published version at https://doi.org/10.1186/s12862-020-1592-z. Page 2/31 Abstract Background Climatic variation and geologic change both play signicant roles in shaping species distributions, thus affecting their evolutionary history. In Sahara-Sahel, climatic oscillations shifted the desert extent during the Pliocene-Pleistocene interval, triggering the diversication of several species. -
List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34. -
Systematics, Distribution and Ecological Analysis of Rodents in Jordan
Systematics, distribution and ecological analysis of rodents in Jordan ZUHAIR S. AMR1,2, MOHAMMAD A. ABU BAKER3, MAZIN QUMSIYEH4 & EHAB EID5 1Department of Biology, Jordan University of Science and Technology, P. O. Box 3030, Irbid, Jordan. E-mail: [email protected] 2Corresponding author 2Enviromatics, Environmental Management and Consulting Company, Amman, Jordan, E- mail: [email protected] 3Palestine Museum of Natural History, Bethlehem University, Bethlehem, Palestine, E-mail: [email protected]. 4The Royal Marine Conservation Society of Jordan, Amman, Jordan, E-mail: [email protected] Abstract Distributional and ecological data were given to all rodents of Jordan. The rodent fauna of Jordan consists of 28 species with 20 genera in eight families (Cricetidae, Dipodidae, Gliridae, Hystricidae, Muridae, Myocastoridae, Sciuridae, and Spalacidae), including four introduced species. Keys for families and species were provided, along with diagnosis for each species and cranial illustrations for most species. Habitat preference and zoogeographic affinities of rodents in Jordan were analyzed, as well as their status and conservation. Threat categories and causes of threats on the rodents of Jordan were also analyzed. The distribution of rodents in Jordan represents a reflection of their global distribution ranges and habitat preferences. Species associated with the temperate forest of northern Jordan includes Sciurus anomalus and two wood mice, Apodemus mystacinus and A. flavicollis, while non-forested areas are represented by Nannospalax ehrenbergi and Microtus guentheri. Strict sand dwellers include Gerbillus cheesmani and G. gerbillus. Petrophiles associated with sandstone or black lava deserts are exemplified by Acomys russatus, A. r. lewsi, H. indica and S. calurus. Others including: Jaculus jaculus, G. -
Ultra-Differentiation of Sperm Tail of Lesser Egyptian Jerboa, Jaculus Jaculus (Family: Dipodidae)
Journal of Advanced Laboratory Research in Biology E-ISSN: 0976-7614 Volume 7, Issue 1, 2016 PP 27-35 https://e-journal.sospublication.co.in Research Article Ultra-differentiation of Sperm Tail of Lesser Egyptian Jerboa, Jaculus jaculus (Family: Dipodidae) Osama M. Sarhan1,3* and Hany A. Hefny2,4 1Department of Zoology, Faculty of Science, Fayoum University, Egypt. 2Department of Zoology, Faculty of Science, Suez Canal University, Egypt. 3Department of Biology, Faculty of Applied Science, Umm Al-Qura University, KSA. 4Department of Biology, University College, Um Al Qura University Al-Jomoum KSA. Abstract: In the present study, events of sperm tail differentiation in Lesser Egyptian Jerboa, Jaculus jaculus were studied for the first time. Generally, stages of sperm tail differentiation are more or less similar to that described by other studies in other rodents. In the present species, special structures were observed. These structures include, first: the formation of a hollow large unit of microtubules that appears to surround the nuclear envelope at its equatorial plane. The manchette microtubules (MMs) are re-oriented toward the longitudinal direction and attached along hollow large unit of microtubules. Second, the formation of perinuclear space filled with an electron-translucent substance surrounds the posterior third of the developing nucleus. Third, the nuclear fossa and the connecting piece were inserted in the ventrodorsal region of the nucleus. Fourth, the fibrous sheath (FS) is formed of dextral spiral fibrous ribs. Finally, the sperm tail of the present species has a single outer FS, however, other rodents, having additional inner fibrous units, between the outer FS and the inner developing axoneme. -
List of Taxa for Which MIL Has Images
LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12. -
Biosystematics of Three-Toed Jerboas, Genus Jaculus (Erxleben, 1777) from Iran (Dipodidae, Rodentia)
Iranian Journal of Animal Biosystematics (IJAB) Vol.12, No.1, 123-139, 2016 ISSN: 1735-434X (print); 2423-4222 (online) Biosystematics of three-toed Jerboas, Genus Jaculus (Erxleben, 1777) from Iran (Dipodidae, Rodentia) Darvish, J.a, b*, Tarahomi, M.a, Dianat, M.a, Mohammadi, Z.a, Haddadian Shad, H.a and Moshtaghi, S.a a Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran b Rodentology Research Department, Institute of Applied Zoology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran (Received: 10 October 2015; Accepted: 20 June 2016) The genus Jaculusis distributed in Palearctic desert and semi-desert areas, extending from Central Asia to the Western Sahara in the North Africa. In Iran three species of three- toed Jerboa have been reported: Jaculus jaculus from the south west and west of Iran, Jaculus blanfordi from the northeast, east and central part of Iran and Jaculus thaleri from the east of Iran. In present study, the phylogenetic and taxonomic relationships in the genus Jaculus from Iran were examined using molecular, geometric morphometric and morphologic data. Our molecular analyses indicated two monophyletic clades which contain J. jaculus and J. blanfordi. There is a high amount of genetic interspecific distance (12.7%) between J. jaculus and J.blanfordi, while the intraspecific divergence within these two species is low. Analysis of Variance (ANOVA) of morphometric variables were significant (P<0.05) and shows that J. jaculus is significantly smaller than J. blanfordi. Statistical Analysis on outline data shows that there is an intraspecific geographic variation in 2nd lower molar shape in J.blanfordi so that northern populations are determinable from the south ones (Pvalue= 0.016). -
For Peer Review Only
Page 1 of 41 Journal of Anatomy 1 2 Structure and function of the mammalian middle ear . 3 ForI: Large Peer middle ears Review in small desert Onlymammals 4 5 Dr. Matthew J. Mason 6 University of Cambridge 7 Department of Physiology, Development & Neuroscience 8 Downing Street, Cambridge CB2 3EG 9 +44 1223 333829 10 [email protected] 1 Journal of Anatomy Page 2 of 41 11 Abstract 12 13 Many species of small desert mammals are known to have expanded auditory bullae. The ears of 14 gerbils and heteromyids have been well-described, but much less is known about the middle ear 15 anatomy ofFor other desert Peer mammals. In Reviewthis study, the middle earsOnly of three gerbils (Meriones , 16 Desmodillus and Gerbillurus ), two jerboas (Jaculus ) and two sengis (elephant-shrews: Macroscelides 17 and Elephantulus ) were examined and compared, using micro-computed tomography and light 18 microscopy . Middle ear cavity expansion has occurred in members of all three groups, apparently in 19 association with an essentially “freely mobile” ossicular morphology and the development of bony 20 tubes for the middle ear arteries. Cavity expansion can occur in different ways, resulting in different 21 subcavity patterns even between different species of gerbils. Having enlarged middle ear cavities 22 aids low-frequency audition, and several adaptive advantages of low-frequency hearing to small 23 desert mammals have been proposed. However, while Macroscelides was found here to have middle 24 ear cavities so large that together they exceed brain volume, the bullae of Elephantulus are 25 considerably smaller. Why middle ear cavities are enlarged in some desert species but not others 26 remains unclear, but it may relate to microhabitat. -
Evolutionary History of the Lesser Egyptian Jerboa, Jaculus Jaculus, in Northern Africa Using a Multi-Locus Approach
Evolutionary history of the Lesser Egyptian Jerboa, Jaculus jaculus, in Northern Africa using a multi-locus approach Ana Filipa da Silva Moutinho Mestrado em Biodiversidade, Genética e Evolução Departamento de Biologia 2015 Orientador Zbyszek Boratyński, Post-Doc Researcher, CIBIO-InBIO Coorientadores Paulo Célio Alves, Associate Professor, FCUP/ CIBIO-InBIO Joana Paupério, Post-Doc Researcher, CIBIO-InBIO Todas as correções determinadas pelo júri, e só essas, foram efetuadas. O Presidente do Júri, Porto, ______/______/_________ FCUP 1 Evolutionary history of the Lesser Egyptian Jerboa, Jaculus jaculus, in Northern Africa using a multi-locus approach Agradecimentos First, I would like to thank my coordinator, Dr. Zbyszek Boratyński, for all the support along the work and opportunities that he made possible. I want also thank him for the amazing experience in Morocco during our field expedition. Ao Professor Doutor Paulo Célio Alves, por ter possibilitado este projeto e pelo apoio fornecido. À Doutora Joana Paupério pelo apoio extraordinário durante todo o processo, foi essencial! Ao Doutor José Carlos Brito pelo apoio prestado desde o início. Aos membros do Biodeserts, por todo o apoio e conselhos fornecidos. Um especial obrigado ao Paulo pela ajuda numa das análises, e à Teresa por toda a paciência e apoio essencial ao longo destes anos todos. À Susana Lopes, por toda a ajuda e tempo disponibilizado no processo de desenvolvimento e otimização dos microssatélites. À Clara, por ter efectuado uma das leituras independentes na análise dos microssatélites. Aquele obrigado especial à Sara e ao Fábio, vocês tornam tudo muito mais fácil. Os três mosqueteiros estarão sempre juntos! Aos meus colegas de mestrado, a vossa amizade e apoio foram indispensáveis. -
Mitochondrial Evidence Indicates a Shallow Phylogeographic Structure for Jaculus Blanfordi (Murray, 1884) Populations (Rodentia: Dipodidae)
Turkish Journal of Zoology Turk J Zool (2017) 41: 970-979 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1608-17 Mitochondrial evidence indicates a shallow phylogeographic structure for Jaculus blanfordi (Murray, 1884) populations (Rodentia: Dipodidae) 1 2, Ekaterina MELNIKOVA , Morteza NADERI * 1 Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia 2 Department of Environmental Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran Received: 08.08.2016 Accepted/Published Online: 22.06.2017 Final Version: 21.11.2017 Abstract: Our study was performed on the phylogeographic structure of Blanford’s jerboa (Jaculus blanfordi (Murray, 1884)) collected from nine localities in Iran, Turkmenistan, and Uzbekistan and was based on mitochondrial evidence indicating a slight phylogeographic divergence among the populations. We aimed to amplify two frequently used mitochondrial markers, cytochrome b (cyt b) and cytochrome c oxidase subunit I (COI) fragments, from 33 specimens obtained from the abovementioned countries. Our phylogeographic analyses uncovered two distinct groups, thus supporting the presence of two subspecies: J. b. blanfordi in Iran and J. b. turcmenicus in northern Turkmenistan and Uzbekistan. Finally, we discuss the intraspecies genetic structure of Blanford’s jerboa in relation to the biogeography of the Middle East and Middle Asia. Key words: Blanford’s jerboa, Jaculus, Middle Asia, Middle East, phylogeography 1. Introduction Previous phylogeographic studies have focused only on The arid areas of the Middle East and Middle Asia are some African Jaculus species populations, i.e. J. orientalis, which of the oldest known desert regions and host their own have been reported in Morocco to Egypt and eastwards specific fauna (Geptner, 1938; Korovin, 1961; Velichko, to Sinai and the Negev (Harrison and Bates, 1991). -
Convergent Metatarsal Fusion in Jerboas and Chickens Is Mediated by Similarities and Differences in the Patterns of Osteoblast and Osteoclast Activities
DOI: 10.1111/ede.12320 RESEARCH Convergent metatarsal fusion in jerboas and chickens is mediated by similarities and differences in the patterns of osteoblast and osteoclast activities Haydee L. Gutierrez1* | Rio Tsutsumi1* | Talia Y. Moore2 | Kimberly L. Cooper1 1Division of Biological Sciences, Section of Cellular and Developmental Biology, Abstract University of California San Diego, La In many vertebrate animals that run or leap, the metatarsals and/or metacarpals Jolla, California of the distal limb are fused into a single larger element, likely to resist fracture 2 Department of Ecology and Evolutionary due to high ground‐reaction forces during locomotion. Although metapodial Biology and Museum of Zoology, University of Michigan, Ann Arbor, fusion evolved independently in modern birds, ungulates, and jerboas, the Michigan developmental basis has only been explored in chickens, which diverged from the mammalian lineage approximately 300 million years ago. Here, we use a Correspondence Kimberly L. Cooper, Division of Biological bipedal rodent, the lesser Egyptian jerboa (Jaculus jaculus), to understand the Sciences, Section of Cellular and cellular processes of metatarsal fusion in a mammal, and we revisit the Developmental Biology, University of California San Diego, La Jolla, CA 92093. developing chicken to assess similarities and differences in the localization of Email: [email protected] osteoblast and osteoclast activities. In both species, adjacent metatarsals align along flat surfaces, osteoblasts cross the periosteal membrane -
Multiple Phylogenetically Distinct Events Shaped the Evolution of Limb Skeletal Morphologies Associated with Bipedalism in the Jerboas
Article Multiple Phylogenetically Distinct Events Shaped the Evolution of Limb Skeletal Morphologies Associated with Bipedalism in the Jerboas Highlights Authors d Limb character states of the dipodoid rodents are placed in a Talia Y. Moore, Chris L. Organ, phylogenetic context Scott V. Edwards, ..., Clifford J. Tabin, Farish A. Jenkins, Jr., d Digit loss occurred at least three times, and metatarsal fusion Kimberly L. Cooper is monophyletic Correspondence d Between-limb and within-hindlimb allometries are genetically separable [email protected] d Hindlimb length evolved by punctuated evolution In Brief Moore et al. demonstrate the value of considering evolutionary history to elucidate the developmental genetic mechanisms of morphological change. Focusing on the jerboas and related rodents, they find that each derived limb skeletal character is genetically distinct and that elements of the hindlimb elongated by punctuated evolution. Accession Numbers KT164755 KT164756 KT164757 KT164758 KT164759 KT164760 KT164761 KT164762 KT164763 KT164764 Moore et al., 2015, Current Biology 25, 2785–2794 November 2, 2015 ª2015 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2015.09.037 Current Biology Article Multiple Phylogenetically Distinct Events Shaped the Evolution of Limb Skeletal Morphologies Associated with Bipedalism in the Jerboas Talia Y. Moore,1 Chris L. Organ,2 Scott V. Edwards,1 Andrew A. Biewener,1 Clifford J. Tabin,3 Farish A. Jenkins, Jr.,1 and Kimberly L. Cooper4,* 1Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 2Department of Earth Sciences, Montana State University, 226 Traphagen Hall, Bozeman, MT 59717, USA 3Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA 4Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.cub.2015.09.037 SUMMARY morphogenesis. -
Dactyla Carnivora Chiroptera
100 House mouse (Mus musculus) 100 Algerian mouse (Mus spretus) 100 Ryukyu mouse (Mus caroli) 93 Graidner's shrewmouse (Mus pahari) 72 Southern multimammate mouse (Mastomys coucha) 100 Brown rat (Rattus norvegicus) 71 African woodland thicket rat (Grammomys surdaster) 100 100 Fat sand rat (Psammomys obesus) Mongolian gerbil (Meriones unguiculatus) Cairo spiny mouse (Acomys cahirinus) 100 100 Prairie vole (Microtus ochrogaster) 100 Transcaucasian mole vole (Ellobius lutescens) 100 Muskrat (Ondatra zibethicus) RODENTIA 100 Golden hamster (Mesocricetus auratus) 100 100 Chinese hamster (Cricetulus griseus) 100 White−footed mouse (Peromyscus leucopus) 100 Deer mouse (Peromyscus maniculatus bairdii) Gambian pouched rat (Cricetomys gambianus) 99 Spalax (Nannospalax galili) 100 Lesser Egyptian jerboa (Jaculus jaculus) 87 100 Gobi jerboa (Allactaga bullata) Meadow jumping mouse (Zapus hudsonius) 67 Woodland dormouse (Graphiurus murinus) 100 European rabbit (Oryctolagus cuniculus) 100 Snowshoe hare (Lepus americanus) American pika (Ochotona princeps) 94 100 Yellow−bellied marmot (Marmota flaviventris) 100 Alpine marmot (Marmota marmota marmota) 100 Daurian ground squirrel (Spermophilus dauricus) 100 Thirteen−lined ground squirrel (Ictidomys tridecemlineatus) 96 Arctic ground squirrel (Urocitellus parryii) 100 Ord's kangaroo rat (Dipodomys ordii) 100 Stephens's kangaroo rat (Dipodomys stephensi) Little pocket mouse (Perognathus longimembris) 100 Capybara (Hydrochoerus hydrochaeris) 100 Pantagonian mara (Dolichotis patagonum) 97 100 100 Guinea pig