Control Por Fosfato En La Biosíntesis Del Inmunosupresor Tacrolimus En Dos Especies Del Género Streptomyces

Total Page:16

File Type:pdf, Size:1020Kb

Control Por Fosfato En La Biosíntesis Del Inmunosupresor Tacrolimus En Dos Especies Del Género Streptomyces Universidad de León Departamento de Biología molecular INBIOTEC Instituto de Biotecnología de León Control por fosfato en la biosíntesis del inmunosupresor tacrolimus en dos especies del género Streptomyces MIRIAM MARTÍNEZ CASTRO LEÓN 2011 = = = A mis padres Agradecimientos La realización de esta tesis doctoral ha sido posible gracias a la ayuda, apoyo y ánimo que he recibido de muchas personas. El mundo de la ciencia es un mundo fascinante pero en ocasiones muy duro, momentos que se quedan en el olvido gracias al cariño que he sentido por muchos de los que me rodean. A Juan Francisco Martín, Director de esta Tesis, por haber confiado en mí al darme la oportunidad de realizar este trabajo bajo su dirección. A Carlos Barreiro, Co-director de esta Tesis y compañero, por todas tus enseñanzas y consejos pero sobre todo por la paciencia en los momentos de incertidumbre y desanimo. Gracias por enseñarme a poner en todo lo que hago un cuidado exquisito. Al Ministerio de Educación por haberme otorgado una beca predoctoral, así como la financiación para la realización de estancias en el extranjero y a la Universidad de León por ofrecerme el apoyo administrativo y de diversos recursos para la consecución de este trabajo. A todos los compañeros de Inbiotec por crear un ambiente de trabajo cálido; en general, siempre he recibido buenas palabras y disposición cuando he requerido ayuda o colaboración. En especial quiero dar las gracias a todas las personas que han pasado por mi “cuarto” con las que he compartido el trabajo del día a día codo con codo. A Antonio por la paciencia y amabilidad con las que me escuchas y aconsejas cada vez que tengo dudas sobre el complejo mundo de los Streptomicetos. A Ramiro y a José, por socorrerme en los momentos de colapso informático. A Elena, compañera de viaje en algún que otro congreso y a Javi, que me procuró medio de transporte y “culturizantes” conversaciones para la vuelta a casa durante muchos fines de semana. A los compañeros de descansos Silvia, Carlos P, Pedro y otros por ayudarme a desconectar; que bien vienen esos momentos para enfrentarse de nuevo al trabajo. A Rosma y a Patricia, por esa sonrisa cada vez que les llevaba unas muestras a secuenciar. A Claudia, Susi y Maite por sus consejos y conversaciones en las campanas o por los pasillos. A Alberto, Alma, Ana, Carlos G, Carmen, Irene, Fernando T, Katarina, Mafe, María, Marta, Nuria, Ricardo, Rosma, Rubén, Saeed, Tamara, Vane-Vane y Zahra por vuestro compañerismo. To my Ljubljana mates and Petko, which made me feel part of its group and showed me another way of working with Streptomyces. A Josefina, Berna, Andrea, Bea y Alcira, gracias a su apoyo técnico y administrativo es más fácil sacar el trabajo adelante. = Existen ciertos compañeros más especiales que no sólo me han ayudado a crecer como científica sino también como persona y con los que he tenido el placer de compartir el tiempo tanto dentro como fuera del laboratorio. Además, me han ayudado a descubrir que la ciencia no sólo se hace en el laboratorio sino que, a veces, las ideas más importantes aparecen a lo largo de interesantes conversaciones en los viajes, cenas o a la luz de las farolas. Thank you Sedef for your kind teachings and advise in my first steps in the Streptomyces world. A Mónica y a Carlos, por hacerme sentir como en casa desde el primer día, pero sobre todo por ese saber escuchar y la compañía en los malos momentos. Nunca se me olvidará ese viaje a Valencia. A Inma, Tania, Raúl y Kristian, por todos los momentos que hemos compartido. A pesar de que las circunstancias de la vida nos han deparado destinos diferentes espero que los lazos de amistad, que se forjaron aquí en León, duren para siempre. A Lorena y Rebe, mis “pequeñas” compañeras del último año, gracias por vuestro cariño y por hacerme olvidar de vez en cuando “que tenía un tesis que escribir”. A Fernando, por estar siempre dispuesto a que te bombardeara con miles de preguntas del regulón pho. A Alcira, por la simpatía y el humor desbordantes con los que has sabido ganarte a esta burgalesa. A mi grupo de “cenitas” Abel, Chi, Pili, Rubén y Ruti, por aportarme los momentos de desconexión del mundo científico y otros puntos de vista de ver la vida. Gracias por aceptar que en algunas ocasiones no podía estar porque seguía “encerrada” en el laboratorio. Y por supuesto, quiero agradecer el apoyo incondicional de mi familia que aunque no entendiesen muy bien que en qué consistía mi trabajo siempre me han proporcionado el aliento y cariño necesarios para seguir adelante. Gracias por estar siempre a mi lado. A Javi, contar contigo me hace más fuerte para afrontar cualquier reto de la vida. Gracias por tu confianza y ayuda. Abreviaturas ADNt ADN total o genómico E: unidad de repetición extensión de la ADNasa: desoxirribonucleasa unión Ácidoetilendiaminotetraacético antibióticoR: resistente a un determinado EDTA: antibiótico EU: unidad de extensión inestable de los antibioticoS: sensible a un determinado operadores de PhoP antibiótico ES: unidad de extensión de soporte de los Apr: apramicina operadores de PhoP ARNasa: ribonucleasa GST: glutatión-S-transferasa ARNr: ARN riobosomal HPLC Cromatografía líquida de alta resolución (High Performance Liquid ARNt: ARN de transferencia Chromatography). ARS: Agricultural Research Service kb: kilobase ATCC: American Type Culture Collection Kn: kanamicina AU: unidades de absorbancia M: molar. BSA: seroalbúmina bovina MOPS: ácido 3-(N- C: unidad de repetición que forma el morfolino)propanesulfonico] núcleo de la unión MTBE: metilterbutileter CIA: Cloroformo-isoamílico Mezclar 24 nm: nanómetro partes de cloroformo y 1 de alcohol isoamílico. nt: nucleótido CoA: coenzima A. pb: pares de bases Da: dalton. Pi: fosfato inorgánico ddNTP: didesoxinucleótido trifosfato. rpm: revoluciones por minuto DE: dominio efector de un regulador SDS: docedil sulfato sódico DMSO: dimetilsulfóxido TFA: ácido trifluoro acético dNTPs: desoxinucleótidos trifosfato. Tris: tris-hidroximetil-aminometano. U: unidades DO600: densidad óptica a 600 nm de longitud de onda UFC: unidades formadoras de colonias DR: dominio receptor de un regulador UV: luz ultravioleta DRu: unidad de repetición directa (direct WT: fenotipo salvaje (wild type). repeat unit) DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH DTT: ditiotreitol Control por fosfato de la biosíntesis del inmunosupresor tacrolimus en dos especies del género Streptomyces 1. Introducción 1 1.1. Sistemática del género Streptomyces ............................................................... 3 1.1.1. Descubrimiento de los Actinomicetos ............................................................ 3 1.1.2. Taxonomía del género Streptomyces .............................................................. 4 1.1.3. Posición actual del género Streptomyces en el Orden de los Actinomycetales 7 1.2. Características del género Streptomyces .......................................................... 9 1.2.1. Ciclo de vida ................................................................................................. 9 1.2.2. Particularidades genéticas .......................................................................... 12 1.2.3. Metabolismo secundario y su regulación .................................................... 15 1.3. Control por fosfato en el género Streptomyces ................................................ 24 1.3.1. El sistema de dos componentes PhoR-PhoP ................................................ 25 1.3.2. PhoB/P el regulador de respuesta............................................................... 30 1.3.3. El regulón pho ............................................................................................ 36 1.4. Tacrolimus .................................................................................................... 43 1.4.1. Inmunosupresores ...................................................................................... 43 1.4.2. Mecanismo de acción de los inmunosupresores .......................................... 45 1.4.3. Biosíntesis del inmunosupresor tacrolimus ................................................ 46 1.4.4. Agrupación génica de biosíntesis de tacrolimus .......................................... 49 1.4.5. Especies del género Streptomyces productoras de inmunosupresores ......... 51 1.5. Objetivos ....................................................................................................... 53 2. Materiales y métodos 55 2.1. Microorganismos utilizados ........................................................................... 57 2.1.1. Cepas de Escherichia coli ............................................................................ 57 2.1.2. Especies pertenecientes al género Streptomyces .......................................... 58 2.1.3. Otros microorganismos ............................................................................... 58 2.1.4. Crecimiento y conservación de los microorganismos ................................... 59 2.2. Medios de cultivo ........................................................................................... 60 2.2.1. Medios de cultivo para E. coli ...................................................................... 60 2.2.2. Medios de cultivo para Streptomyces spp. ................................................... 61 2.2.3. Medios propios de los estudios de taxonomía de Streptomyces .................... 62 2.2.4. Otros medios .............................................................................................. 65
Recommended publications
  • Unraveling the First Step in the Streptomyces Scabies Pathology: How Does the Pathogen Sense It Is in the Vicinity of a Living R
    Unraveling the first step in the Streptomyces scabies pathology: How does the pathogen sense it is in the vicinity of a living root? By: Dianna Mojica A thesis submitted to the Department of Biology at California State University, Bakersfield in partial fulfilment for the degree of Master of Science in Biology Spring 2021 ii Copyright By Dianna Mojica 2021 i Table of Contents Acknowledgements v Abstract vi Keywords viii List of Figures ix Chapter 1 8 Introduction 8 Streptomyces, an unusual bacterial genus 8 Streptomyces as symbionts in interactions with plants and animals 10 Streptomyces scabies, a well-established and worldwide occurring plant pathogen 12 Literature Cited 16 Chapter 2 22 Abstract 22 Introduction 23 Materials and Methods 26 Bacterial strains and growth conditions used in this study 26 Thaxtomin A production in response to living or dead radish plant material 26 Thaxtomin A production in response to radish root exudates 28 Cellulase activity and thaxtomin A production in response to cellulose 29 S. scabies cannot distinguish between a living and a dead host plant to start thaxtomin A production 30 Literature Cited 39 Figures 43 Chapter 3 48 Conclusion 48 Literature Cited 50 iv Acknowledgements I thank my thesis advisor Dr. Francis for donating her time and sharing her knowledge on Streptomyces scabies as well as guiding me on how to write this thesis. I also thank Dr. Stokes and Dr. Keller for agreeing to be part of my thesis committee in such short notice. v Abstract Streptomyces is the largest genus within the phylum Actinobacteria. The genus contains Gram-positive bacteria with a complex life cycle resembling that of fungi and are distinctly recognized for their diverse secondary metabolites that have pharmaceutical, agricultural and industrial properties.
    [Show full text]
  • Improved Taxonomy of the Genus Streptomyces
    UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR.
    [Show full text]
  • Ep 2434019 A1
    (19) & (11) EP 2 434 019 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 28.03.2012 Bulletin 2012/13 C12N 15/82 (2006.01) C07K 14/395 (2006.01) C12N 5/10 (2006.01) G01N 33/50 (2006.01) (2006.01) (2006.01) (21) Application number: 11160902.0 C07K 16/14 A01H 5/00 C07K 14/39 (2006.01) (22) Date of filing: 21.07.2004 (84) Designated Contracting States: • Kamlage, Beate AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 12161, Berlin (DE) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Taman-Chardonnens, Agnes A. 1611, DS Bovenkarspel (NL) (30) Priority: 01.08.2003 EP 03016672 • Shirley, Amber 15.04.2004 PCT/US2004/011887 Durham, NC 27703 (US) • Wang, Xi-Qing (62) Document number(s) of the earlier application(s) in Chapel Hill, NC 27516 (US) accordance with Art. 76 EPC: • Sarria-Millan, Rodrigo 04741185.5 / 1 654 368 West Lafayette, IN 47906 (US) • McKersie, Bryan D (27) Previously filed application: Cary, NC 27519 (US) 21.07.2004 PCT/EP2004/008136 • Chen, Ruoying Duluth, GA 30096 (US) (71) Applicant: BASF Plant Science GmbH 67056 Ludwigshafen (DE) (74) Representative: Heistracher, Elisabeth BASF SE (72) Inventors: Global Intellectual Property • Plesch, Gunnar GVX - C 6 14482, Potsdam (DE) Carl-Bosch-Strasse 38 • Puzio, Piotr 67056 Ludwigshafen (DE) 9030, Mariakerke (Gent) (BE) • Blau, Astrid Remarks: 14532, Stahnsdorf (DE) This application was filed on 01-04-2011 as a • Looser, Ralf divisional application to the application mentioned 13158, Berlin (DE) under INID code 62.
    [Show full text]
  • CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
    report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations.
    [Show full text]
  • Characterization of Streptomyces Species Causing Common Scab Disease in Newfoundland Agriculture Research Initiative Project
    Dawn Bignell Memorial University [email protected] Characterization of Streptomyces species causing common scab disease in Newfoundland Agriculture Research Initiative Project #ARI-1314-005 FINAL REPORT Submitted by Dr. Dawn R. D. Bignell March 31, 2014 Page 1 of 34 Dawn Bignell Memorial University [email protected] Executive Summary Potato common scab is an important disease in Newfoundland and Labrador and is characterized by the presence of unsightly lesions on the potato tuber surface. Such lesions reduce the quality and market value of both fresh market and seed potatoes and lead to significant economic losses to potato growers. Currently, there are no control strategies available to farmers that can consistently and effectively manage scab disease. Common scab is caused by different Streptomyces bacteria that are naturally present in the soil. Most of these organisms are known to produce a plant toxin called thaxtomin A, which contributes to disease development. Among the new scab control strategies that are currently being proposed are those aimed at reducing or eliminating the production of thaxtomin A by these bacteria in soils. However, such strategies require a thorough knowledge of the types of pathogenic Streptomyces bacteria that are prevalent in the soil and whether such pathogens have the ability to produce this toxic metabolite. Currently, no such information exists for the scab-causing pathogens that are present in the soils of Newfoundland. This project entitled “Characterization of Streptomyces species causing common scab disease in Newfoundland” is the first study that provides information on the types of pathogenic Streptomyces species that are present in the province and the virulence factors that are used by these microbes to induce the scab disease symptoms.
    [Show full text]
  • Genomic Insights Into the Evolution of Hybrid Isoprenoid Biosynthetic Gene Clusters in the MAR4 Marine Streptomycete Clade
    UC San Diego UC San Diego Previously Published Works Title Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade. Permalink https://escholarship.org/uc/item/9944f7t4 Journal BMC genomics, 16(1) ISSN 1471-2164 Authors Gallagher, Kelley A Jensen, Paul R Publication Date 2015-11-17 DOI 10.1186/s12864-015-2110-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Gallagher and Jensen BMC Genomics (2015) 16:960 DOI 10.1186/s12864-015-2110-3 RESEARCH ARTICLE Open Access Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade Kelley A. Gallagher and Paul R. Jensen* Abstract Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemical scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites.
    [Show full text]
  • N Domains Help Define Novel Apoptosis and Immunity
    RESEARCH ARTICLE Bacterial death and TRADD- N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans Gurmeet Kaur†, Lakshminarayan M Iyer†, A Maxwell Burroughs, L Aravind* Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States Abstract Several homologous domains are shared by eukaryotic immunity and programmed cell- death systems and poorly understood bacterial proteins. Recent studies show these to be components of a network of highly regulated systems connecting apoptotic processes to counter- invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor domains, namely those of the Death- like and TRADD- N superfamilies, a quintessential feature of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and comparative genomics methods to identify unambiguous bacterial homologs of the Death- like and TRADD- N superfamilies. We show the former to have arisen as part of a radiation of effector- associated α-helical adaptor domains that likely mediate homotypic interactions bringing together diverse effector and signaling domains in predicted bacterial apoptosis- and counter- invader *For correspondence: systems. Similarly, we show that the TRADD- N domain defines a key, widespread signaling bridge aravind@ mail. nih. gov that links effector deployment to invader- sensing in multicellular bacterial and metazoan counter- †These authors contributed invader systems. TRADD- N domains are expanded in aggregating marine invertebrates and point equally to this work to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and cellular pathogens that might infect such communities. These TRADD- N and Death- like domains Competing interest: The authors helped identify several new bacterial and metazoan counter- invader systems featuring underappre- declare that no competing interests exist.
    [Show full text]
  • Phylogenetic Study of the Species Within the Family Streptomycetaceae
    Antonie van Leeuwenhoek DOI 10.1007/s10482-011-9656-0 ORIGINAL PAPER Phylogenetic study of the species within the family Streptomycetaceae D. P. Labeda • M. Goodfellow • R. Brown • A. C. Ward • B. Lanoot • M. Vanncanneyt • J. Swings • S.-B. Kim • Z. Liu • J. Chun • T. Tamura • A. Oguchi • T. Kikuchi • H. Kikuchi • T. Nishii • K. Tsuji • Y. Yamaguchi • A. Tase • M. Takahashi • T. Sakane • K. I. Suzuki • K. Hatano Received: 7 September 2011 / Accepted: 7 October 2011 Ó Springer Science+Business Media B.V. (outside the USA) 2011 Abstract Species of the genus Streptomyces, which any other microbial genus, resulting from academic constitute the vast majority of taxa within the family and industrial activities. The methods used for char- Streptomycetaceae, are a predominant component of acterization have evolved through several phases over the microbial population in soils throughout the world the years from those based largely on morphological and have been the subject of extensive isolation and observations, to subsequent classifications based on screening efforts over the years because they are a numerical taxonomic analyses of standardized sets of major source of commercially and medically impor- phenotypic characters and, most recently, to the use of tant secondary metabolites. Taxonomic characteriza- molecular phylogenetic analyses of gene sequences. tion of Streptomyces strains has been a challenge due The present phylogenetic study examines almost all to the large number of described species, greater than described species (615 taxa) within the family Strep- tomycetaceae based on 16S rRNA gene sequences Electronic supplementary material The online version and illustrates the species diversity within this family, of this article (doi:10.1007/s10482-011-9656-0) contains which is observed to contain 130 statistically supplementary material, which is available to authorized users.
    [Show full text]
  • C G M 2 0 1 8 [0 4 on D Er Z O E K S R a Pp O
    Update of the bacterial the of bacterial Update intaxonomy the classification lists of COGEM CGM 2018 - 04 ONDERZOEKSRAPPORT report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly.
    [Show full text]
  • New Antimicrobials to Target Gut and Food Pathogens
    New antimicrobials to target gut and food pathogens Enriqueta Garcia-Gutierrez A thesis submitted for the degree of Doctor of Philosophy to the University of East Anglia Quadram Institute Bioscience Teagasc September 2019 ©This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. PhD Thesis 2019 Enriqueta Garcia-Gutierrez New Antimicrobials to Target Gut and Food Pathogens ABSTRACT There is a pressing need for the discovery of new antimicrobials to fight antibiotic resistant bacteria. The aim of this thesis was the discovery and characterisation of new bacteriocins from two sources, fermented foods and human faeces, testing the hypothesis that bacteria from the same niche will produce antimicrobials uniquely suited to act in this niche. Isolates from culture collections and new isolates from food and faecal samples were screened against a panel of pathogens responsible for food spoilage and human disease. Promising candidates were selected for genome sequencing, antimicrobial characterisation and biological study. The genome of Lactobacillus gasseri LM19 showed the presence of antimicrobial genes encoding, among others, a new bacteriocin, gassericin M. L. gasseri LM19 could survive and express its bacteriocin genes under colonic conditions. Its administration modulated the effects of Clostridium perfringens on the gut microbiota composition. Streptococcus agalactiae DPC7040 was previously shown to produce the natural variant nisin P. MALDI-ToF analysis confirmed that nisin P is three amino acids shorter than nisin A and that two lanthionine rings were absent in 50% of molecules.
    [Show full text]
  • Mécanismes Moléculaires Associés À L'induction De La
    Mécanismes moléculaires associés à l’induction de la pathogénicité chez Streptomyces scabies Thèse défendue par Samuel Jourdan le 26 septembre 2016 En vue de l’obtention du titre de Docteur en Sciences Promoteur : Docteur Sébastien Rigali Jury de thèse : Professeur Jaques Dommes (Président) Université de Liège, Belgique Professeur Pierre Cardol (Secrétaire) Université de Liège, Belgique Professeur Anne Legrève Université Catholique de Louvain, Belgique Docteur Marc Ongena Gembloux Agro-Bio Tech (ULg), Belgique Docteur Philippe Delfosse Centre de Recherche Public Gabriel Lippmann (LIST), Luxembourg Docteur Sébastien Rigali (Promoteur) Université de Liège, Belgique Les recherches présentées dans cette thèse ont été financées durant quatre années par le FRS-FNRS par l’intermédiaire d’une bourse d’aspirant FNRS. Je dédie ce travail à mon père, José Jourdan, pour qui j’ai la plus grande estime. Puisque dans nos Ardennes natales éprouver un sentiment s’apparente à une marque de faiblesse, je serai faible en te disant que je suis fier de t’avoir comme papa. Remerciements Je tiens tout d’abord à remercier le FNRS de m’avoir accordé une bourse d’aspirant de 4 ans m’ayant permis de réaliser ce travail. Je remercie également le professeur Moreno Galleni, directeur du centre d’ingénierie des protéines (CIP), de m’avoir permis de réaliser ma thèse au sein du centre. Je remercie également l’ensemble des membres de mon comité de thèse de m’avoir suivi ces quatre années, mais également les membres du jury d’avoir accepté de lire ce manuscrit. Je tiens à remercier tout particulièrement Séba qui m’aura finalement suivi durant toutes les étapes de mon parcours scolaire.
    [Show full text]
  • Sweet Potato Diseases: Diagnosis and Management
    ® Fruit, Vegetable and Cereal Science and Biotechnology ©2012 Global Science Books Sweet Potato Diseases: Diagnosis and Management Vinayaka Hegde* • R. S. Misra, M. L. Jeeva Central Tuber Crops Research Institute, Thiruvananthapuram-695 017, India Corresponding author : * [email protected] ABSTRACT Yield of sweet potato cultivars have appeared to gradually decline over the years in most of the sweet potato growing areas. This decline in yield and quality may be caused by a combination of several factors, including mutation, viruses and other pathogens. Several pathogens are known to cause diseases in sweet potato. Among them, the diseases caused by viruses are of worldwide economic importance. However, fungi, bacteria, viruses, nematodes and phytoplasma are known to attack sweet potato. Pathogenic bacteria, although not very common, are responsible for important economic losses. They affect vascular tissue as well as storage and fibrous roots, thus causing vine wilting and rots. Fungal pathogens are classified according to the type of disease they cause, such as foliar, stem, storage root and post harvest diseases. Even though the specific management practices have not been developed for various sweet potato diseases since the crop is propagated through vine cuttings, most of the viral and fungal diseases could be avoided by selecting healthy planting materials and sanitation. In the present chapter, an attempt has been made to review the worldwide diseases of sweet potato and the available management practices. This would be highly
    [Show full text]