List of Tables

Total Page:16

File Type:pdf, Size:1020Kb

List of Tables Technical Report FOOD HABITS OF YOUNG-OF-THE-YEAR ESTUARINE FISHES IN THE MIDDLE ATLANTIC BIGHT: A SYNTHESIS Frank T. Mancini III and Kenneth W. Able August 2005 Institute of Marine and Coastal Sciences Rutgers, The State University of New Jersey 71 Dudley Road New Brunswick, NJ 08901-8521 This is IMCS Contribution #2005-15 FOOD HABITS OF YOUNG-OF-THE-YEAR ESTUARINE FISHES IN THE MIDDLE ATLANTIC BIGHT: A SYNTHESIS Frank T. Mancini III and Kenneth W. Able August 2005 Marine Field Station Institute of Marine and Coastal Sciences Rutgers, The State University of New Jersey Tuckerton, NJ 08087-2004 This is IMCS Contribution #2005-15 TABLE OF CONTENTS Abstract .................................................................................................................. 1 Introduction ............................................................................................................ 2 Methods .................................................................................................................. 2 Source of Literature ................................................................................... 2 Results .................................................................................................................... 3 Characterization of available data .............................................................. 3 Major categories of prey consumed ........................................................... 4 Species-specific variation in food habits ................................................... 4 Family Carcharhinidae ................................................................... 4 Mustelus canis .................................................................... 4 Family Anguillidae ........................................................................ 5 Anguilla rostrata ................................................................ 5 Family Congridae ........................................................................... 5 Conger oceanicus ............................................................... 5 Family Clupeidae ........................................................................... 6 Alosa aestivalis .................................................................. 6 Alosa mediocris .................................................................. 6 Alosa pseudoharengus ...................................................... 6 Alosa sapidissima ............................................................. 6 Brevoortia tyrannus .......................................................... 7 Clupea harengus ............................................................... 7 Family Engraulidae ........................................................................ 8 Anchoa hepsetus ................................................................. 8 Anchoa mitchilli ................................................................ 8 Family Osmeridae .......................................................................... 9 Osmerus mordax ................................................................ 9 Family Synodntidae ....................................................................... 9 Synodus foetens ................................................................. 9 Family Gadidae .............................................................................. 9 Microgadus tomcod ........................................................... 9 Pollachius virens ................................................................ 9 Family Phycidae ........................................................................... 10 Urophycis chuss ............................................................... 10 Urophycis regia ............................................................... 10 Urophycis tenuis .............................................................. 11 Family Ophidiidae ........................................................................ 11 Ophidion marginatum ...................................................... 11 Family Batrachoididae ................................................................. 11 Opsanus tau ..................................................................... 11 Family Belondae .......................................................................... 12 Strongylura marina .......................................................... 12 Family Cyprinodontidae ............................................................... 12 Cyprinodon variegatus .................................................... 12 i Family Fundulidae ....................................................................... 12 Fundulus heteroclitus ...................................................... 12 Fundulus luciae ............................................................... 13 Fundulus majalis ............................................................. 13 Lucania parva .................................................................. 13 Family Poeciliidae ........................................................................ 14 Gambusia holbrooki ......................................................... 14 Family Atherinidae ...................................................................... 14 Membras martinica .......................................................... 14 Menidia beryllina ............................................................. 14 Menidia menidia .............................................................. 15 Family Gasterosteidae .................................................................. 16 Apeltes quadracus ............................................................ 16 Gasterosteus aculeatus ..................................................... 16 Family Syngnathidae .................................................................... 16 Hippocampus erectus ....................................................... 16 Syngnathus fuscus ............................................................ 16 Family Triglidae ........................................................................... 17 Prinonotus carolinus ........................................................ 17 Prinonotus evolans ........................................................... 17 Family Cottidae ............................................................................ 18 Myoxocephalus aenaeus .................................................. 18 Family Percichthyidae .................................................................. 18 Morone americana .......................................................... 18 Morone saxatilis .............................................................. 19 Family Serranidae ........................................................................ 20 Centropristis striata ......................................................... 20 Family Pomatomidae ................................................................... 20 Pomatomus saltatrix ....................................................... 20 Family Carangidae ....................................................................... 21 Caranx hippos ................................................................. 21 Family Lutjanidae ........................................................................ 22 Lutjanus griseus ............................................................... 22 Family Sparidae ........................................................................... 22 Stenotomus chrysops ........................................................ 22 Family Sciaenidae ........................................................................ 22 Bairdiella chrysoura ........................................................ 22 Cynoscion regalis ............................................................. 23 Leiostomus xanthurus ..................................................... 24 Menticirrhus saxatilis ....................................................... 25 Micropogonias undulatus ................................................ 25 Pogonias cromis .............................................................. 26 Family Chaetodontidae ................................................................ 26 Chaetodon ocellatus ........................................................ 26 ii Family Mugilidae ......................................................................... 26 Mugil cephalus ................................................................. 26 Mugil curema ................................................................... 27 Family Sphyraenidae .................................................................... 27 Sphyraena borealis .......................................................... 27 Family Labridae ........................................................................... 27 Tautoga onitis .................................................................. 27 Tautogolabrus adspersus .................................................. 27 Family Pholidae ........................................................................... 28 Pholis gunnellus ............................................................... 28 Family Uranoscopidae ................................................................. 28 Astroscopus guttatus ........................................................ 28 Family Blenniidae ........................................................................ 28 Hypsoblennius hentz ........................................................ 28 Family Ammodytidae ..................................................................
Recommended publications
  • Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3
    ACTA ICHTHYOLOGICA ET PISCATORIA (2018) 48 (4): 341–362 DOI: 10.3750/AIEP/02451 AN UPDATED CHECKLIST AND CHARACTERISATION OF THE ICHTHYOFAUNA (ELASMOBRANCHII AND ACTINOPTERYGII) OF THE LAGUNA DE TAMIAHUA, VERACRUZ, MEXICO Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3 1 Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 2 Instituto Nacional de Pesca y Acuacultura, SAGARPA, Ciudad de México 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México Raz-Guzmán A., Huidobro L., Padilla V. 2018. An updated checklist and characterisation of the ichthyofauna (Elasmobranchii and Actinopterygii) of the Laguna de Tamiahua, Veracruz, Mexico. Acta Ichthyol. Piscat. 48 (4): 341–362. Background. Laguna de Tamiahua is ecologically and economically important as a nursery area that favours the recruitment of species that sustain traditional fisheries. It has been studied previously, though not throughout its whole area, and considering the variety of habitats that sustain these fisheries, as well as an increase in population growth that impacts the system. The objectives of this study were to present an updated list of fish species, data on special status, new records, commercial importance, dominance, density, ecotic position, and the spatial and temporal distribution of species in the lagoon, together with a comparison of Tamiahua with 14 other Gulf of Mexico lagoons. Materials and methods. Fish were collected in August and December 1996 with a Renfro beam net and an otter trawl from different habitats throughout the lagoon. The species were identified, classified in relation to special status, new records, commercial importance, density, dominance, ecotic position, and spatial distribution patterns.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Application of Threshold Concepts in Natural Resource Decision Making Glenn R
    Application of Threshold Concepts in Natural Resource Decision Making Glenn R. Guntenspergen Editor Application of Threshold Concepts in Natural Resource Decision Making 2123 Editor Glenn R. Guntenspergen USGS Patuxent Wildlife Research Center Laurel Maryland USA ISBN 978-1-4899-8040-3 ISBN 978-1-4899-8041-0 (eBook) DOI 10.1007/978-1-4899-8041-0 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2014930313 © Springer Science+Business Media, LLC 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher⣙s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Fisheries Data on Northern·Kingfish
    BIOLOGICAL @-'. FISHERIES DATA ON NORTHERN·KINGFISH .. Menticirrhus s'axatilis (Bloch and Schneider) JULY 1982 Biological and Fisheries Data on the Northern Kingfish, Menticirrhus saxatilis Daniel E. Ralph U. S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Fisheries Center Sandy Hook Laboratory Highlands, New Jersey 07732 Technical Series Report No. 27 CONTENTS 1. IDENTITY 1.1 Nomenclature................................................. 1 1.1.1 Valid Name.. 1 1. 1.2 Synonymy... ........................................... 1 1. 2 Taxonomy... .................................................. 1 1.2.1 Affinities.................. 1 1.2.2 Taxonomic Status...................................... 5 1.2.3 Subspecies 5 1. 2.4 Common Names.......................................... 5 1.3 Morphology............ 5 1.3.1 Externa1 Morphology................................... 5 1.3.2 Cytomorphology.............. 6 1.3.3 Protein Specificity... 6 2. DISTRIBUTION 2.1 Total Area................................................... 6 2.2 Differential Distribution....... 6 2.3 Determinants of Distribution............... 8 2.4 Hybridization.,... 8 3. BIONOMICS AND LIFE HISTORY 3.1 Reproduction................................................. 8 3.1.1 Sexuality 8 3.1.2 Maturity.............................................. 8 3.1.3 Mating................................................ 9 3.1.4 Fertilization...... 9 3.1.5 Gonads 9 3.1.6 Spawning.............................................. 9 3.1.7
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Comparative Sensory and Energetic Ecology of Sciaenid Fishes and Their Competitors in Chesapeake Bay, VA
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2009 Comparative sensory and energetic ecology of sciaenid fishes and their competitors in Chesapeake Bay, VA Andrij Z. Horodysky College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Horodysky, Andrij Z., "Comparative sensory and energetic ecology of sciaenid fishes and their competitors in Chesapeake Bay, VA" (2009). Dissertations, Theses, and Masters Projects. Paper 1539616699. https://dx.doi.org/doi:10.25773/v5-wdtk-qy37 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. COMPARATIVE SENSORY AND ENERGETIC ECOLOGY OF SCIAENID FISHES AND THEIR COMPETITORS IN CHESAPEAKE BAY, VA A Dissertation Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy by Andrij Zenon Horodysky 2009 APPROVAL SHEET This dissertation is submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy Approved August 2009. q-:af.;;; Committee Chairman, co-Advisor Mark R. Patterson, Ph.D. '~-- Duke University Durham, NC ii DEDICATION This dissertation is dedicated to the memory of my grandfather, John Zenon Horodysky, Ph. D., J.D. (1915-2002), who always made time to take me fishing and dreamed about seeing his grandson pursue a graduate education.
    [Show full text]
  • Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2016 Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes Christi Linardich Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Environmental Health and Protection Commons, and the Marine Biology Commons Recommended Citation Linardich, Christi. "Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes" (2016). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/hydh-jp82 https://digitalcommons.odu.edu/biology_etds/13 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES by Christi Linardich B.A. December 2006, Florida Gulf Coast University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY August 2016 Approved by: Kent E. Carpenter (Advisor) Beth Polidoro (Member) Holly Gaff (Member) ABSTRACT HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES Christi Linardich Old Dominion University, 2016 Advisor: Dr. Kent E. Carpenter Understanding the status of species is important for allocation of resources to redress biodiversity loss.
    [Show full text]
  • Multi-Locus Fossil-Calibrated Phylogeny of Atheriniformes (Teleostei, Ovalentaria)
    Molecular Phylogenetics and Evolution 86 (2015) 8–23 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria) Daniela Campanella a, Lily C. Hughes a, Peter J. Unmack b, Devin D. Bloom c, Kyle R. Piller d, ⇑ Guillermo Ortí a, a Department of Biological Sciences, The George Washington University, Washington, DC, USA b Institute for Applied Ecology, University of Canberra, Australia c Department of Biology, Willamette University, Salem, OR, USA d Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA article info abstract Article history: Phylogenetic relationships among families within the order Atheriniformes have been difficult to resolve Received 29 December 2014 on the basis of morphological evidence. Molecular studies so far have been fragmentary and based on a Revised 21 February 2015 small number taxa and loci. In this study, we provide a new phylogenetic hypothesis based on sequence Accepted 2 March 2015 data collected for eight molecular markers for a representative sample of 103 atheriniform species, cover- Available online 10 March 2015 ing 2/3 of the genera in this order. The phylogeny is calibrated with six carefully chosen fossil taxa to pro- vide an explicit timeframe for the diversification of this group. Our results support the subdivision of Keywords: Atheriniformes into two suborders (Atherinopsoidei and Atherinoidei), the nesting of Notocheirinae Silverside fishes within Atherinopsidae, and the monophyly of tribe Menidiini, among others. We propose taxonomic Marine to freshwater transitions Marine dispersal changes for Atherinopsoidei, but a few weakly supported nodes in our phylogeny suggests that further Molecular markers study is necessary to support a revised taxonomy of Atherinoidei.
    [Show full text]
  • Nearshore Fish Community Structure in the Southwest Bay
    NEARSHORE FISH COMMUNITY STRUCTURE IN THE SOUTHWEST BAY OF FUNDY AND NORTHWEST ATLANTIC: COMPARING ASSEMBLAGES ACROSS MULTIPLE SPATIAL AND TEMPORAL SCALES by Collin Arens B.Sc. (Hon), University of New Brunswick, 2003 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master’s of Science In the Graduate Academic Unit of Biology Supervisors: David Methven, Ph.D., Dept of Biology, CRI, UNB Saint John Kelly Munkittrick, Ph.D., Dept of Biology, CRI, UNB Saint John Examining Board: Matthew Litvak, Ph.D., Dept. of Biology, UNB Saint John Keith Dewar, Ph.D., Faculty of Business, UNB Saint John This thesis has been accepted by the Dean of Graduate Studies THE UNIVERSITY OF NEW BRUNSWICK April, 2007 © Collin Arens, 2007 ABSTRACT The purpose of this investigation was to assess seasonal, tidal/diel and regional variation in the nearshore fish assemblage of the southwest Bay of Fundy, as well as identify overlying patterns in taxonomic and functional guild structure throughout coastal shallows of the northwest Atlantic. Within the southwest Bay of Fundy species richness and abundance varied seasonally and were correlated with water temperature exhibiting distinct cold and warm water assemblages throughout the year. Over a 24 hour period greater species richness and abundance were observed among samples collected at low tide, with larger fishes captured at night. Regionally, assemblage structure was largely influenced by habitat type with geographic proximity among sites having little direct influence on the structure observed. Throughout the northwest Atlantic taxonomic structure reflected existing biogeographic provinces with the Labrador, Acadian and Virginian provinces represented, while functional guild structure exhibited latitudinal gradients with respect to ecological type and egg dispersal.
    [Show full text]
  • Checklist of the Inland Fishes of Louisiana
    Southeastern Fishes Council Proceedings Volume 1 Number 61 2021 Article 3 March 2021 Checklist of the Inland Fishes of Louisiana Michael H. Doosey University of New Orelans, [email protected] Henry L. Bart Jr. Tulane University, [email protected] Kyle R. Piller Southeastern Louisiana Univeristy, [email protected] Follow this and additional works at: https://trace.tennessee.edu/sfcproceedings Part of the Aquaculture and Fisheries Commons, and the Biodiversity Commons Recommended Citation Doosey, Michael H.; Bart, Henry L. Jr.; and Piller, Kyle R. (2021) "Checklist of the Inland Fishes of Louisiana," Southeastern Fishes Council Proceedings: No. 61. Available at: https://trace.tennessee.edu/sfcproceedings/vol1/iss61/3 This Original Research Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Southeastern Fishes Council Proceedings by an authorized editor. For more information, please visit https://trace.tennessee.edu/sfcproceedings. Checklist of the Inland Fishes of Louisiana Abstract Since the publication of Freshwater Fishes of Louisiana (Douglas, 1974) and a revised checklist (Douglas and Jordan, 2002), much has changed regarding knowledge of inland fishes in the state. An updated reference on Louisiana’s inland and coastal fishes is long overdue. Inland waters of Louisiana are home to at least 224 species (165 primarily freshwater, 28 primarily marine, and 31 euryhaline or diadromous) in 45 families. This checklist is based on a compilation of fish collections records in Louisiana from 19 data providers in the Fishnet2 network (www.fishnet2.net).
    [Show full text]
  • Evolutionary History and Whole Genome Sequence of Pejerrey (Odontesthes Bonariensis): New Insights Into Sex Determination in Fishes
    Evolutionary History and Whole Genome Sequence of Pejerrey (Odontesthes bonariensis): New Insights into Sex Determination in Fishes by Daniela Campanella B.Sc. in Biology, July 2009, Universidad Nacional de La Plata, Argentina A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy January 31, 2015 Dissertation co-directed by Guillermo Ortí Louis Weintraub Professor of Biology Elisabet Caler Program Director at National Heart, Lung and Blood Institute, NIH The Columbian College of Arts and Sciences of The George Washington University certifies that Daniela Campanella has passed the Final Examination for the degree of Doctor of Philosophy as of December 12th, 2014. This is the final and approved form of the dissertation. Evolutionary History and Whole Genome Sequence of Pejerrey (Odontesthes bonariensis): New Insights into Sex Determination in Fishes Daniela Campanella Dissertation Research Committee: Guillermo Ortí, Louis Weintraub Professor of Biology, Dissertation Co-Director Elisabet Caler, Program Director at National Heart, Lung and Blood Institute, NIH, Dissertation Co-Director Hernán Lorenzi, Assistant Professor in Bioinformatics Department, J. Craig Venter Institute Rockville Maryland, Committee Member Jeremy Goecks, Assistant Professor of Computational Biology, Committee Member ! ""! ! Copyright 2015 by Daniela Campanella All rights reserved ! """! Dedication The author wishes to dedicate this dissertation to: My love, Ford, for his unconditional support and inspiration. For teaching me that admiration towards each other’s work is the fundamental fuel to go anywhere. My family and friends, for being there, meaning “there” everywhere and whenever. My grandpa Hugo, a pejerrey lover who knew how to fish, cook and enjoy the “silver arrows”.
    [Show full text]
  • Fundulus Heteroclitus): Recent Anthropogenic Introduction in Iberia
    This is a repository copy of Invasion genetics of the mummichog (Fundulus heteroclitus): recent anthropogenic introduction in Iberia. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/142627/ Version: Published Version Article: Morim, T., Bigg, G.R. orcid.org/0000-0002-1910-0349, Madeira, P.M. et al. (5 more authors) (2019) Invasion genetics of the mummichog (Fundulus heteroclitus): recent anthropogenic introduction in Iberia. PeerJ, 7. e6155. ISSN 2167-8359 https://doi.org/10.7717/peerj.6155 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Invasion genetics of the mummichog (Fundulus heteroclitus): recent anthropogenic introduction in Iberia Teófilo Morim1, Grant R. Bigg2, Pedro M. Madeira1, Jorge Palma1, David D. Duvernell3, Enric Gisbert4, Regina L. Cunha1 and Rita Castilho1 1 Centre for Marine Sciences (CCMAR), University of Algarve, Faro, Portugal 2 Department of Geography, University of Sheffield, Sheffield, United Kingdom 3 Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, United States of America 4 IRTA, Aquaculture Program, Centre de Sant Carles de la Ràpita, Sant Carles de la Ràpita, Spain ABSTRACT Human activities such as trade and transport have increased considerably in the last decades, greatly facilitating the introduction and spread of non-native species at a global level.
    [Show full text]