13.7 News Feat Mind Machine MH 11/7/06 9:45 AM Page 125

Total Page:16

File Type:pdf, Size:1020Kb

13.7 News Feat Mind Machine MH 11/7/06 9:45 AM Page 125 13.7 News Feat Mind Machine MH 11/7/06 9:45 AM Page 125 NATURE|Vol 442|13 July 2006 NEWS FEATURE IN SEARCH OF THE SIXTH SENSE Implants in the brain could one day help paralysed people move robotic arms and legs. But first, scientists need to work out how our brains know where our limbs are, says Alison Abbott. hut your eyes. Now, touch your nose. to work in a much more life-like way. What’s but he can also tune in to the tug of a jacket Chances are you can do this without more, they hope to gain a deeper understand- sleeve to work out the direction his arm is even thinking about it. For this you can ing of how proprioception works, and how moving. Or to the cool air on his armpit when thank your sense of proprioception, they might be able to manipulate it. he raises his arm in a loose shirt. Neuropros- S R. MASSEY/GETTY which is so much a part of us that most of us Some months after his virus attacked, thetic engineers are realizing that many are unaware that it exists. This ‘sixth sense’ lets Waterman, only 19 years old, was lying in bed sensory feedback signals could be similarly our brain know the relative positions in space applying all his mental energy to the fight for harnessed. of different parts of our bodies. Without it, our control of his body. He tensed his stomach A neuroprosthetic is more accurately called brains are lost. muscles, lifted his head and stared down at the a brain–machine interface. Hundreds of elec- Ian Waterman knows how that loss feels. limbs that seemed no longer to belong to him. trodes, fixed into tiny arrays, are placed in or More than 30 years ago he lost this sense He willed himself to sit up. on the surface of the cortex, the thin, folded almost overnight, when a flu-like virus dam- outer surface of the brain that controls com- aged the required sensory nerves. His muscles Concentrated effort plex functions including the organization of worked perfectly, but he could not control Later, he realized that it was the visual feed- movement. The electrodes record the electri- them. “I lost ownership of my body,” he says. back that allowed his body to unexpectedly cal signals from the cortex’s neurons and these He could no longer stand, or even sit up by obey the mental instruction. “But the eupho- are translated by a computer algorithm and himself, and doctors said he would never be ria of the moment made me lose concentration used to drive specific actions — the movement able to do so again. Waterman’s condition arose and I nearly fell out of bed,” he remembers. of a cursor on a computer screen, for example, from a disease called acute sensory neuropathy From then on he learnt to compensate for or of an artificial limb. and is so rare that only a dozen or so similar his deficit in proprioception with other forms In this issue of Nature, two papers1–3 demon- cases are known to the medical literature. of sensory feedback to help him understand strate dramatic progress in the area. A team Some neuroscientists are taking a cue from where his limbs are, and thus control them. It consisting of John Donoghue’s group, based at Waterman’s experiences and starting to inves- requires constant, intense concentration, but Brown University in Rhode Island and Cyber- tigate whether robotic devices controlled by now, despite his profound impairments, he can netics Neurotechnology Systems in Foxbor- thought alone could be integrated with an arti- manage fairly normal movements. Most of the ough, Massachusetts, implanted 96 electrodes ficial sense of proprioception. If so, they rea- input that he relies on is visual — standing up into Matt Nagle’s motor cortex, the brain son, these ‘neuroprosthetics’ could be made with his eyes closed is still nearly impossible — region that processes information about move- 125 © 2006 Nature Publishing Group 13.7 News Feat Mind Machine MH 11/7/06 9:45 AM Page 126 NEWS FEATURE NATURE|Vol 442|13 July 2006 and redirected to the appropriate part of the cortex, or the sensory cortex itself. The ‘how’ refers to the design of the electri- R. FRIEDMAN cal signals to be fed into the cortex. These could mimic the sensory system’s natural nerve impulses, based on parameters such as frequency and amplitude. Or they could involve creating artificial signals that the sen- sory cortex is able to distinguish, in the hope that the brain can be trained to associate par- ticular signals with particular parameters. Once scientists have worked out how best to encode the signals, the idea would be to place sensors on artificial limbs to generate signals representing proprioceptive information such as angle of joint, vibration, force of grip — and other sensory information that Waterman has found helpful, such as temperature. Trained brain Most in the field have a hunch that the signal will not have to mimic neural activity per- fectly. The brain can, after all, cope with the Mind control: Matt Nagle’s neuroprosthetic lets him move a cursor using thought alone. very unphysiological signals generated by the most successful brain–machine interface to ment. Nagle is a quadriplegic patient and the A handful of researchers is starting to try to date: the cochlear transplant. Already, some first human volunteer to reach this advanced work out where and how to stimulate the sen- 110,000 profoundly deaf people have been stage of testing (see picture, above). Hooked up sory nervous system to reproduce the sorts of implanted with the device, according to the US to computers and attended by a team of techni- information that a limb might send to the sen- National Institutes of Health. The implant sits cians, Nagle could move a cursor to issue dif- sory cortex. It is early days: none of their work in the inner ear and interfaces with the audi- ferent instructions — for example, to open is published. And as so little is known about tory nerve. Its signals are totally artificial, and, e-mails or turn down the television. the system, there is no obvious place to start. at first, recipients can make nothing of the Krishna Shenoy’s group at Stanford Univer- Theoretically, the ‘where’ could be the noise. But the auditory cortex, it turns out, is sity, California, has done similar work in a nerves running from the limb into the spinal highly adaptable. With appropriate training, it non-paralysed monkey’s premotor cortex, the cord, or the spinal cord itself (see graphic). Or can quickly learn to associate particular codes area of brain where the animal’s movement- it could be higher — in the brain’s thalamus, with particular sounds, so that transplant related ‘intentions’ are generated. Using a new where incoming sensory signals are integrated recipients can learn to follow conversations algorithm, the team’s brain–computer inter- with ease. face produced results four times faster and HOW SOME OF THE BODY’S SENSORY “When the concept of stimulating the audi- more accurate than previously seen. INPUTS WIRE INTO THE BRAIN tory nerve emerged in the 1970s, people said it would be impossible to generate the right elec- Closing the loop Thalamus trical signal to the brain,” says Shenoy. “But it The two papers show how closely neuropros- turned out that you don’t have to get it perfect, thetics are approaching medical reality. But just close enough for the brain to do its own although moving a computer cursor by fine-tuning.” On the other hand, one does not thought alone may be dazzling, scientists have want to burden patients with having to learn long-term ambitions to make neuroprosthet- too much, says John Chapin a physiologist at ics reproduce more complex functions. Could the State University of New York Health patients direct a robotic arm to pick up a cof- Science Center in Brooklyn, and a pioneer in fee cup, for example? “For this, the devices using neural activity to control robots. “Ideally CLINICAL NEUROANATOMY AND RELATED NEUROSCIENCE AND RELATED NEUROANATOMY CLINICAL need to deliver feedback to the brain — we we should aim to mimic the natural signal as need to close the loop,” says Daofen Chen, closely as possible,” he says (see ‘Voyagers in director of the neural prosthesis programme at Face the cortex’). Somatic the US National Institute of Neurological Dis- sensory For now, whatever works will be good. “We orders and Stroke in Bethesda, Maryland. cortex don’t know if it will turn out to be possible to The brain’s sensory cortex receives signals — incorporate sensory information but we are proprioception, touch, pain and so on — from Arm going to try,” says neuroscientist Andrew the body (see graphic), and in response con- Schwartz of the University of Pittsburgh, an stantly modifies its movement-related com- expert in brain–computer interface technol- mands. The current generation of output-only of information Flow ogy for the control of robotic arm movement. neuroprosthetics are open-loop systems — Schwartz is working with Douglas Weber, with more limitations than Ian Waterman, who Trunk Nerve a bioengineer at Pittsburgh who is developing can at least use visual, temperature and tactile Spinal cord a model for studying sensory input. This feedback. “Brain–machine interfaces will have involves using electrodes to stimulate the FOLAN-CURRAN & J. FITZGERALD T. M. J. FROM: ADAPTED to become interactive,” says Chen. “But now sensory nerves from the limbs of an anaes- that we would like to exploit it, we realize we thetized cat at the point just before they enter Leg know next to nothing about sensory input.” the spinal cord, and simultaneously recording 126 © 2006 Nature Publishing Group 13.7 News Feat Mind Machine MH 11/7/06 9:45 AM Page 127 NATURE|Vol 442|13 July 2006 NEWS FEATURE Voyagers in the cortex If paralysed people can now use studies may have failed because rising and falling tones whether animal experiments on patients electronic implants to move a the cortex is too complicated to they are presented as sound, willing to take part.
Recommended publications
  • Wired 13.03: Mind Control
    Wired 13.03: Mind Control http://www.wired.com/wired/archive/13.03/brain.html Issue 13.03 - March 2005 Subscribe - save over 80% and get a FREE Gift! Mind Control Matt Nagle is paralyzed. He's also a pioneer in the new science of brain implants. By Richard Martin Matthew Nagle is beating me at Pong. "O, baby," he Feature: mutters. The creases in his forehead deepen as he moves the onscreen paddle to block the ball. "C'mon - here you go," Mind Control he says, sending a wicked angle shot ricocheting down the Plus: screen and past my defense. "Yes!" he says in triumph, his Thoughts Into Action voice hoarse from the ventilator that helps him breathe. "Let's go again, dude." The remarkable thing about Nagle is not that he plays skillfully; it's that he can play at all. Nagle is a C4 quadriplegic, paralyzed from the neck down in a stabbing three years ago. He pilots a motorized wheelchair by blowing into a sip-and-puff tube, his pale hands strapped to the armrests. He's playing Pong with his thoughts alone. A bundle of wires as thick as a coaxial cable runs from a connector in Nagle's scalp to a refrigerator-sized cart of electronic gear. Inside his brain, a tiny array of microelectrodes picks up the cacophony of his neural activity; processors recognize the patterns associated with arm motions and translate them into signals that control the Pong paddle, draw with a cursor, operate a TV, and open email. Nagle, 25, is the first patient in a controversial clinical trial that seeks to prove brain-computer interfaces can return function to people paralyzed by injury or disease.
    [Show full text]
  • BRAIN-COMPUTER INTERFACE N. S. Sirobaba — Student, Group IK
    BRAIN-COMPUTER INTERFACE N. S. Sirobaba — student, group IK-91 D. O. Marchenko — EI. Advisor A brain–computer interface (BCI), sometimes called a direct neural interface or a brain–machine interface (BMI), is a direct communication pathway between the brain and an external device. BCIs are often aimed at assisting, augmenting or repairing human cognitive or sensory-motor functions. The field of BCI has advanced mostly toward neuroprosthetics applications that aim at restoring damaged hearing, sight and movement. Thanks to the remarkable cortical plasticity of the brain, signals from implanted prostheses can, after adaptation, be handled by the brain like natural sensor or effector channels. Following years of animal experimentation, the first neuroprosthetic devices implanted in humans appeared in the mid-nineties. Invasive BCI research has targeted repairing damaged sight and providing new functionality to persons with paralysis. Invasive BCIs are implanted directly into the grey matter of the brain during neurosurgery. As they rest in the grey matter, invasive devices produce the highest quality signals of BCI devices but are prone to scar-tissue build-up, causing the signal to become weaker or even lost as the body reacts to a foreign object in the brain. In vision science, direct brain implants have been used to treat non-congenital (acquired) blindness. One of the first scientists to come up with a working brain interface to restore sight was a private researcher William Dobelle. Dobelle's first prototype was implanted into "Jerry", a man blinded in adulthood. A single-array BCI containing 68 electrodes was implanted onto Jerry’s visual cortex and succeeded in producing phosphenes, the sensation of seeing light.
    [Show full text]
  • Law in an Era of Smart Technology
    Law in an Era of “Smart” Technology This page intentionally left blank Law in an Era of “Smart” Technology By Susan W. Brenner 1 1 Oxford University Press, Inc., publishes works that further Oxford University’s objective of excel- lence in research, scholarship, and education. Copyright © 2007 by Oxford University Press, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 Oxford is a registered trademark of Oxford University Press Oceana is a registered trademark of Oxford University Press, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press, Inc. Library of Congress Cataloging-in-Publication Data Brenner, Susan W., 1947- Law in an era of “smart” technology / By Susan W. Brenner. p. cm. Includes bibliographical references and index. ISBN 978-0-19-533348-0 (clothbound : alk. paper) 1. Technology and law. 2. Justice, Administration of—Technological innovations. 3. Technological innovations—Law and legislation. 4. Computers—Law and legislation 5. High technology industries—Law and legislation. I. Title. K487.T4B74 2007 344′.095—dc22 2007023638 Note to Readers: Th is publication is designed to provide accurate and authoritative information in regard to the sub- ject matter covered. It is based upon sources believed to be accurate and reliable and is intended to be current as of the time it was written. It is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
    [Show full text]
  • Cyberpunk 2077 Review
    RPG REVIEW Issue #49-50, Dec-Mar 2020-2021 ISSN 2206-4907 (Online) Proceedings of "Cyberpunk 2020: Year of the Stainless Steel Rat" Convention Proceedings, Articles, and Scenarios Keynote by Walter Jon Williams What Was/Is Cyberpunk? ¼ Hackers and IT Security Issues ¼ Cyberculture ¼ Technology Trends and Solarpunk ¼ Anarchist Politics ¼ Gaming and Cyberpunk ¼ GURPS Biotech ¼ Cyberpunk 2020, Cyberspace, Scenarios ¼ GURPS Biotech ¼ and more! 1 RPG REVIEW ISSUE 49-50 Dec to Mar 2020-2021 Table of Contents ADMINISTRIVIA.........................................................................................................................................................2 EDITORIAL AND COOPERATIVE NEWS................................................................................................................2 WHAT WAS/IS CYBERPUNK?...................................................................................................................................7 HACKERS: THE IT SECURITY PANEL..................................................................................................................17 TECHNOLOGY : CYBERPUNK AND SOLARPUNK.............................................................................................26 POLITICS: ANARCHISM, LIBERTARIANISM, CYPHERPUNKS........................................................................35 CYBERCULTURE PANEL........................................................................................................................................44 CYBERPUNK GAMING............................................................................................................................................56
    [Show full text]
  • Making Perfect Life: Bio-Engineering (In) the 21St Century Is the Result of the Second Phase of the STOA-Project “Making Perfect Life”
    EUROPEAN PARLIAMENT Science and Technology Options Assessment S T O A MAKING PERFECT LIFE BIO-ENGINEERING (IN) THE 21st CENTURY MONITORING REPORT PHASE II (IP/A/STOA/FWC-2008-96/LOT6/SC1) PE 471.570 DIRECTORATE GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT E: LEGISLATIVE COORDINATION AND CONCILIATIONS SCIENCE AND TECHNOLOGY OPTIONS ASSESSMENT MAKING PERFECT LIFE BIO-ENGINEERING (IN) THE 21st CENTURY MONITORING REPORT - PHASE II Abstract The report describes four fields of bio-engineering: engineering of living artefacts (chapter 2), engineering of the body (chapter 3), engineering of the brain (chapter 4), and engineering of intelligent artefacts (chapter 5). Each chapter describes the state of the art of these bio-engineering fields, and whether the concepts “biology becoming technology” and “technology becoming biology” are helpful in describing and understanding, from an engineering perspective, what is going on in each R&D terrain. Next, every chapter analyses to what extent the various research strands within each field of bio-engineering are stimulated by the European Commission, i.e., are part and parcel of the European Framework program. Finally, each chapter provides an overview of the social, ethical and legal questions that are raised by the various scientific and technological activities involved. The report’s final chapter discusses to what extent the trends “biology becoming technology” and vice versa capture many of the developments that are going on in the four bio-engineering fields we have mapped. The report also reflects on the social, ethical and legal issues that are raised by the two bio- engineering megatrends that constitute a new technology wave.
    [Show full text]
  • Transhumanism and Its Critics on the Ethics of Enhancement Via Brain-Computer Interfacing
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-17-2014 12:00 AM Cultivating Better Brains: Transhumanism and its Critics on the Ethics of Enhancement Via Brain-computer Interfacing Matthew Devlin The University of Western Ontario Supervisor Dr. Tim Blackmore The University of Western Ontario Graduate Program in Media Studies A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Arts © Matthew Devlin 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Film and Media Studies Commons Recommended Citation Devlin, Matthew, "Cultivating Better Brains: Transhumanism and its Critics on the Ethics of Enhancement Via Brain-computer Interfacing" (2014). Electronic Thesis and Dissertation Repository. 1946. https://ir.lib.uwo.ca/etd/1946 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. CULTIVATING BETTER BRAINS: TRANSHUMANISM AND ITS CRITICS ON THE ETHICS OF COGNITIVE ENHANCEMENT VIA BRAIN-COMPUTER INTERFACING (Thesis format: Monograph) by Matthew Devlin Graduate Program in Media Studies A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Matthew Devlin 2014 Abstract Transhumanists contend that enhancing the human brain—a subfield of human enhancement called cognitive enhancement—is both a crucial and desirable pursuit, supporting the cultivation of a better world.
    [Show full text]
  • Brain Computer Interface Technology
    || Volume 3 || Issue 10 || October 2018 || ISSN (Online) 2456-0774 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH AND ENGINEERING TRENDS Brain Computer Interface Technology Khan Sana Zarrin1, Prof B K PATIL2 1 PG Student Computer Science and Engineering, , Everest College Engineering & Technology Aurangabad (MS) 2 HOD, Computer Science and Engineering, Everest College Engineering & Technology Aurangabad (MS) Abstract— Brain computer Interface Technology is a that augment human functions rather than simply restoring interface between computer and brain. Brain computer them, previously only the realm of science fiction. interface used in Brain gate system which is brain II BRAIN COMPUTER INTERFACE BACKGROUND implant system developed by bio tech company cyberkinectics in conjunction with the Department of Research on BCIs began in the 1970s at the University Neuroscience at Brown University. The development of of California, Los Angeles (UCLA) under a grant from the the Brain computer interface system brain computer National Science Foundation, followed by a contract from interface is to enable those with severe paralysis and DARPA. The papers published after this research also mark the other neurological conditions to live more productively first appearance of the expression brain–computer interface in and independently When a person becomes paralyzed, scientific literature. neural signal from the brain no longer reach their The field of BCI research and development has since designated site of termination. However, the brain focused primarily on neuroprosthetics applications that aim at continues to send out these signals although they do not restoring damaged hearing, sight and movement. Thanks to the reach their destination. It is these signals that the Brain remarkable cortical plasticity of the brain, signals from computer interface system picks up and they must be implanted prostheses can, after adaptation, be handled by the present in order for the system to work.
    [Show full text]
  • Braingate Submitted in Partial Fulfillment of the Requirement for the Award of Degree of Computer Science
    www.studymafia.org A Seminar report On BrainGate Submitted in partial fulfillment of the requirement for the award of degree Of Computer Science SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org www.studymafia.org Preface I have made this report file on the topic BrainGate, I have tried my best to elucidate all the relevant detail to the topic to be included in the report. While in the beginning I have tried to give a general view about this topic. My efforts and wholehearted co-corporation of each and everyone has ended on a successful note. I express my sincere gratitude to …………..who assisting me throughout the prepration of this topic. I thank him for providing me the reinforcement, confidence and most importantly the track for the topic whenever I needed it. www.studymafia.org Acknowledgement I would like to thank respected Mr…….. and Mr. ……..for giving me such a wonderful opportunity to expand my knowledge for my own branch and giving me guidelines to present a seminar report. It helped me a lot to realize of what we study for. Secondly, I would like to thank my parents who patiently helped me as i went through my work and helped to modify and eliminate some of the irrelevant or un-necessary stuffs. Thirdly, I would like to thank my friends who helped me to make my work more organized and well-stacked till the end. Next, I would thank Microsoft for developing such a wonderful tool like MS Word. It helped my work a lot to remain error-free.
    [Show full text]
  • CYBORG MIND What Brain–Computer And
    CYBORG MIND What Brain‒Computer and Mind‒Cyberspace Interfaces Mean for Cyberneuroethics CYBORG MIND Edited by Calum MacKellar Offers a valuable contribution to a conversation that promises to only grow in relevance and importance in the years ahead. Matthew James, St Mary’s University, London ith the development of new direct interfaces between the human brain and comput- Wer systems, the time has come for an in-depth ethical examination of the way these neuronal interfaces may support an interaction between the mind and cyberspace. In so doing, this book does not hesitate to blend disciplines including neurobiology, philosophy, anthropology and politics. It also invites society, as a whole, to seek a path in the use of these interfaces enabling humanity to prosper while avoiding the relevant risks. As such, the volume is the fi rst extensive study in cyberneuroethics, a subject matter which is certain to have a signifi cant impact in the twenty-fi rst century and beyond. Calum MacKellar is Director of Research of the Scottish Council on Human Bioethics, Ed- MACKELLAR inburgh, and Visiting Lecturer of Bioethics at St. Mary’s University, London. His past books EDITED BY What include (as co-editor) The Ethics of the New Eugenics (Berghahn Books, 2014). Brain‒Computer and Mind‒Cyberspace Interfaces Mean for Cyberneuroethics MEDICAL ANTHROPOLOGY EDITED BY CALUM MACKELLAR berghahn N E W Y O R K • O X F O R D Cover image by www.berghahnbooks.com Alexey Kuzin © 123RF.COM Cyborg Mind This open access edition has been made available under a CC-BY-NC-ND 4.0 license thanks to the support of Knowledge Unlatched.
    [Show full text]
  • By Stephen M. Fleming the Brain Has Had a Fairly Uneventful Past. It
    THE FUTURE OF THE BRAIN miniature electrical circuits that can mimic such neural activity, and interface with living tissue; in the form of — drugs, we have increasingly specific molecular technology that can mimic neurotransmitter action, or By Stephen M. Fleming modify existing activity. Despite not really understanding how the brain works, we are in a — formidable position to alter it, both in health and disease. The brain has had a fairly uneventful past. It has evolved: The idea of modifying brain and behaviour millions of years of expansion and adaptation have added through chemicals is certainly not a new idea – enormously to its capacity for controlling behaviour in alcohol and other drugs of abuse have been in use for the service of survival. But beyond this Darwinian centuries. But the specificity with which we may be miracle, it has been affected by little else. Such able to modify it in the future opens up some radical evolutionary changes have been incremental – as far as possibilities. Individual brain cells encode things as we know, the brain didn’t undergo a quantum leap in simple as bars of light and as complex as the sum of complexity or function. Its future, on the other hand, probabilities in a gambling task2. It is now generally may be very different. Sudden enlargement of faculties accepted in the neurosciences that the self – the I, me, could become commonplace. In this article I allude to and you of our everyday lives – is a product of the what that world might be like, and consider the physical brain and its interactions with the philosophical implications of technological advances for environment.
    [Show full text]
  • Řízení Systémů Pomocí Aktivizace Mozkových Center
    Diserta ční práce Řízení systém ů pomocí aktivizace mozkových center Control Systems by Means of Activation of Brain Centers Autor: Ing. Roman Žák Studijní program: Inženýrská informatika Studijní obor: Inženýrská informatika Školitel: prof. Mgr. Roman Jašek, Ph.D. Zlín, Červenec 2017 © Roman Žák Vydala Univerzita Tomáše Bati ve Zlín ě v edici Doctoral Thesis Summary. Publikace byla vydána v roce 2017 Klí čová slova: Elektroencefalografie (EEG), Rozhraní mozek – po číta č (BCI), Emotiv, Mindstorm EV3 Key words: Elektroencephalography (EEG), Brain Computer Interface (BCI), Emotiv, Mindstorm EV3 Plná verze diserta ční práce je dostupná v Knihovn ě UTB ve Zlín ě. II POD ĚKOVÁNÍ Děkuji p ředevším školiteli mé diplomové práce panu prof. Mgr. Romanu Jaškovi, Ph.D. za cenné rady a trp ělivost. Zvlášt ě pak d ěkuji svým nejbližším a p řátel ům za pomoc při psaní teoretické části diktováním a za p řipomínky spojené s testováním a lad ěním navrženého modelu. DĚKUJU JI A TÉ III ABSTRAKT Ke snímání elektrických signál ů z mozku se používá za řízení využívající výsledky posledních v ědeckých výzkum ů v oblasti neuro-technologií. Samotná komunikace je zabezpe čována bezdrátovým p řenosem signálu ze za řízení do po číta če, kde dochází k jeho dalšímu zpracování a p řípadnému využití jak p ři řízení dalších systém ů napojených na výpo četní techniku, tak p ři ovládání softwaru. Komunika ční rozhraní mezi mozkem a po číta čem je primárním těžišt ěm této práce. ABSTRACT To capture electrical signals from the brain there exists a device that is using the latest reults of neuro-technology scientific research.
    [Show full text]
  • The FDA and the Future of the Brain-Computer Interface: Adapting FDA Device Law to the Challenges of Human-Machine Enhancement, 25 J
    The John Marshall Journal of Information Technology & Privacy Law Volume 25 Issue 1 Journal of Computer & Information Law Article 4 - Winter 2007 Winter 2007 The FDA and the Future of the Brain-Computer Interface: Adapting FDA Device Law to the Challenges of Human-Machine Enhancement, 25 J. Marshall J. Computer & Info. L. 117 (2007) Eric Chan Follow this and additional works at: https://repository.law.uic.edu/jitpl Part of the Administrative Law Commons, Computer Law Commons, Food and Drug Law Commons, Internet Law Commons, Privacy Law Commons, and the Science and Technology Law Commons Recommended Citation Eric Chan, The FDA and the Future of the Brain-Computer Interface: Adapting FDA Device Law to the Challenges of Human-Machine Enhancement, 25 J. Marshall J. Computer & Info. L. 117 (2007) https://repository.law.uic.edu/jitpl/vol25/iss1/4 This Comments is brought to you for free and open access by UIC Law Open Access Repository. It has been accepted for inclusion in The John Marshall Journal of Information Technology & Privacy Law by an authorized administrator of UIC Law Open Access Repository. For more information, please contact [email protected]. COMMENTS THE FOOD AND DRUG ADMINISTRATION AND THE FUTURE OF THE BRAIN-COMPUTER INTERFACE: ADAPTING FDA DEVICE LAW TO THE CHALLENGES OF HUMAN-MACHINE ENHANCEMENT ERIC CHANt I. INTRODUCTION "The Engineer" has billions of intelligent nanobots in her blood, al- lowing her to morph her limbs into any conceivable machine. "Apollo" has super-strength and ocular implants that extend his visual range for hundreds of miles; and "The Midnighter" has a neural implant that ana- lyzes a million different combat scenarios in a single second, making him the deadliest man alive.
    [Show full text]