Computer Science ABSTRACT Brain Gate & Brain Computer Interface
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neural Lace" Company
5 Neuroscience Experts Weigh in on Elon Musk's Mysterious "Neural Lace" Company By Eliza Strickland (/author/strickland-eliza) Posted 12 Apr 2017 | 21:15 GMT Elon Musk has a reputation as the world’s greatest doer. He can propose crazy ambitious technological projects—like reusable rockets for Mars exploration and hyperloop tunnels for transcontinental rapid transit—and people just assume he’ll pull it off. So his latest venture, a new company called Neuralink that will reportedly build brain implants both for medical use and to give healthy people superpowers, has gotten the public excited about a coming era of consumerfriendly neurotech. Even neuroscientists who work in the field, who know full well how difficult it is to build working brain gear that passes muster with medical regulators, feel a sense of potential. “Elon Musk is a person who’s going to take risks and inject a lot of money, so it will be exciting to see what he gets up to,” says Thomas Oxley, a neural engineer who has been developing a medical brain implant since 2010 (he hopes to start its first clinical trial in 2018). Neuralink is still mysterious. An article in The Wall Street Journal (https://www.wsj.com/articles/elonmusklaunches neuralinktoconnectbrainswithcomputers1490642652) announced the company’s formation and first hires, while also spouting vague verbiage about “cranial computers” that would Image: iStockphoto serve as “a layer of artificial intelligence inside the brain.” So IEEE Spectrum asked the experts about what’s feasible in this field, and what Musk might be planning. -
Topic 1 September 2015 – Volume 08, Issue 02
Topic 1 September 2015 – Volume 08, Issue 02 www.medical-neurosciences.de 22 Editorial CNSNewsletter September 2015 3 FOCUS Eating Right, Staying Bright 3 From Molecules to Mouthwatering Feast your eyes on the latest issue of the CNS Newsletter! If you’re reading this fi rst thing in the morning, have you 4 Boost Your Baby’s Brain! had breakfast yet? We can’t believe we’re saying this but 5 Breakfast and Brain Function if you haven’t, put the newsletter down and grab the most important meal of the day before doing anything else 6 The ABCs of Brain Foods (you’ll thank us when you get to page 5). 8 Our Moods, Our Foods What’s the hype about those shiny green “Bio” signs scattered across Berlin you pass by everyday on your 9 The Social Microbiome: A Gutsy Hypothesis morning commute? Read the low-down about organic 10 Aphrodisiacs and the Doctrine of Signatures food and the big debate about genetically modifi ed crops on pages 16 and 17. Are they any good for us? If you’re not 10 Are Oreos the New Cocaine? convinced, maybe you’re a natural skeptic. In that case: 11 Can You Be Addicted to Food? what do you think about the state of science? Is it in big trouble? Is it in need of profound change? Our brand new 12 Can Surgery Treat a Mental Illness? “Critique Corner” features an anonymous contributor dis- cussing the gloomier parts of contemporary science. 13 Ceasing Seizures with Fat? We have an inspiring interview with the man who 14 Dieting and the Brain brought us even more excitement than is usually expected from a FIFA World Cup opening match. -
Superhuman Enhancements Via Implants: Beyond the Human Mind
philosophies Article Superhuman Enhancements via Implants: Beyond the Human Mind Kevin Warwick Office of the Vice Chancellor, Coventry University, Priory Street, Coventry CV1 5FB, UK; [email protected] Received: 16 June 2020; Accepted: 7 August 2020; Published: 10 August 2020 Abstract: In this article, a practical look is taken at some of the possible enhancements for humans through the use of implants, particularly into the brain or nervous system. Some cognitive enhancements may not turn out to be practically useful, whereas others may turn out to be mere steps on the way to the construction of superhumans. The emphasis here is the focus on enhancements that take such recipients beyond the human norm rather than any implantations employed merely for therapy. This is divided into what we know has already been tried and tested and what remains at this time as more speculative. Five examples from the author’s own experimentation are described. Each case is looked at in detail, from the inside, to give a unique personal experience. The premise is that humans are essentially their brains and that bodies serve as interfaces between brains and the environment. The possibility of building an Interplanetary Creature, having an intelligence and possibly a consciousness of its own, is also considered. Keywords: human–machine interaction; implants; upgrading humans; superhumans; brain–computer interface 1. Introduction The future life of superhumans with fantastic abilities has been extensively investigated in philosophy, literature and film. Despite this, the concept of human enhancement can often be merely directed towards the individual, particularly someone who is deemed to have a disability, the idea being that the enhancement brings that individual back to some sort of human norm. -
Deep Learning Approaches for Neural Decoding: from Cnns to Lstms and Spikes to Fmri
Deep learning approaches for neural decoding: from CNNs to LSTMs and spikes to fMRI Jesse A. Livezey1,2,* and Joshua I. Glaser3,4,5,* [email protected], [email protected] *equal contribution 1Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States 2Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, California, United States 3Department of Statistics, Columbia University, New York, United States 4Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States 5Center for Theoretical Neuroscience, Columbia University, New York, United States May 21, 2020 Abstract Decoding behavior, perception, or cognitive state directly from neural signals has applications in brain-computer interface research as well as implications for systems neuroscience. In the last decade, deep learning has become the state-of-the-art method in many machine learning tasks ranging from speech recognition to image segmentation. The success of deep networks in other domains has led to a new wave of applications in neuroscience. In this article, we review deep learning approaches to neural decoding. We describe the architectures used for extracting useful features from neural recording modalities ranging from spikes to EEG. Furthermore, we explore how deep learning has been leveraged to predict common outputs including movement, speech, and vision, with a focus on how pretrained deep networks can be incorporated as priors for complex decoding targets like acoustic speech or images. Deep learning has been shown to be a useful tool for improving the accuracy and flexibility of neural decoding across a wide range of tasks, and we point out areas for future scientific development. -
Download a Copy of the 264-Page Publication
2020 Department of Neurological Surgery Annual Report Reporting period July 1, 2019 through June 30, 2020 Table of Contents: Introduction .................................................................3 Faculty and Residents ...................................................5 Faculty ...................................................................6 Residents ...............................................................8 Stuart Rowe Lecturers .........................................10 Peter J. Jannetta Lecturers ................................... 11 Department Overview ............................................... 13 History ............................................................... 14 Goals/Mission .................................................... 16 Organization ...................................................... 16 Accomplishments of Note ................................ 29 Education Programs .................................................. 35 Faculty Biographies ................................................... 47 Resident Biographies ................................................171 Research ....................................................................213 Overview ...........................................................214 Investigator Research Summaries ................... 228 Research Grant Summary ................................ 242 Alumni: Past Residents ........................................... 249 Donations ................................................................ 259 Statistics -
Coalcrashsinksminegiant
For personal non-commercial use only. Do not edit or alter. Reproductions not permitted. To reprint or license content, please contact our reprints and licensing department at +1 800-843-0008 or www.djreprints.com Jeffrey Herbst A Fare Change Facebook’s Algorithm For Business Fliers Is a News Editor THE MIDDLE SEAT | D1 OPINION | A15 ASSOCIATED PRESS ***** THURSDAY, APRIL 14, 2016 ~ VOL. CCLXVII NO. 87 WSJ.com HHHH $3.00 DJIA 17908.28 À 187.03 1.1% NASDAQ 4947.42 À 1.55% STOXX 600 343.06 À 2.5% 10-YR. TREAS. À 6/32 , yield 1.760% OIL $41.76 g $0.41 GOLD $1,246.80 g $12.60 EURO $1.1274 YEN 109.32 What’s Migrants Trying to Leave Greece Meet Resistance at Border Big Bank’s News Earnings Business&Finance Stoke Optimism .P. Morgan posted bet- Jter-than-expected re- sults, delivering a reassur- BY EMILY GLAZER ing report on its business AND PETER RUDEGEAIR and the U.S. economy. A1 The Dow climbed 187.03 J.P. Morgan Chase & Co. de- points to 17908.28, its high- livered a reassuring report on est level since November, as the state of U.S. consumers J.P. Morgan’s earnings ignited and corporations Wednesday, gains in financial shares. C1 raising hopes that strength in the economy will help banks Citigroup was the only offset weakness in their Wall bank whose “living will” plan Street trading businesses. wasn’t rejected by either the Shares of the New York Fed or the FDIC, while Wells bank, which reported better- Fargo drew a rebuke. -
Implantable Microelectrodes on Soft Substrate with Nanostructured Active Surface for Stimulation and Recording of Brain Activities Valentina Castagnola
Implantable microelectrodes on soft substrate with nanostructured active surface for stimulation and recording of brain activities Valentina Castagnola To cite this version: Valentina Castagnola. Implantable microelectrodes on soft substrate with nanostructured active sur- face for stimulation and recording of brain activities. Micro and nanotechnologies/Microelectronics. Universite Toulouse III Paul Sabatier, 2014. English. tel-01137352 HAL Id: tel-01137352 https://hal.archives-ouvertes.fr/tel-01137352 Submitted on 31 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSETHÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Présentée et soutenue le 18/12/2014 par : Valentina CASTAGNOLA Implantable Microelectrodes on Soft Substrate with Nanostructured Active Surface for Stimulation and Recording of Brain Activities JURY M. Frédéric MORANCHO Professeur d’Université Président de jury M. Blaise YVERT Directeur de recherche Rapporteur Mme Yael HANEIN Professeur d’Université Rapporteur M. Pascal MAILLEY Directeur de recherche Examinateur M. Christian BERGAUD Directeur de recherche Directeur de thèse Mme Emeline DESCAMPS Chargée de Recherche Directeur de thèse École doctorale et spécialité : GEET : Micro et Nanosystèmes Unité de Recherche : Laboratoire d’Analyse et d’Architecture des Systèmes (UPR 8001) Directeur(s) de Thèse : M. -
Maybe Not--But You Can Have Fun Trying
12/29/2010 Can You Live Forever? Maybe Not--But… Permanent Address: http://www.scientificamerican.com/article.cfm?id=e-zimmer-can-you-live-forever Can You Live Forever? Maybe Not--But You Can Have Fun Trying In this chapter from his new e-book, journalist Carl Zimmer tries to reconcile the visions of techno-immortalists with the exigencies imposed by real-world biology By Carl Zimmer | Wednesday, December 22, 2010 | 14 comments Editor's Note: Carl Zimmer, author of this month's article, "100 Trillion Connections," has just brought out a much-acclaimed e-book, Brain Cuttings: 15 Journeys Through the Mind (Scott & Nix), that compiles a series of his writings on neuroscience. In this chapter, adapted from an article that was first published in Playboy, Zimmer takes the reader on a tour of the 2009 Singularity Summit in New York City. His ability to contrast the fantastical predictions of speakers at the conference with the sometimes more skeptical assessments from other scientists makes his account a fascinating read. Let's say you transfer your mind into a computer—not all at once but gradually, having electrodes inserted into your brain and then wirelessly outsourcing your faculties. Someone reroutes your vision through cameras. Someone stores your memories on a net of microprocessors. Step by step your metamorphosis continues until at last the transfer is complete. As engineers get to work boosting the performance of your electronic mind so you can now think as a god, a nurse heaves your fleshy brain into a bag of medical waste. As you —for now let's just call it "you"—start a new chapter of existence exclusively within a machine, an existence that will last as long as there are server farms and hard-disk space and the solar power to run them, are "you" still actually you? This question was being considered carefully and thoroughly by a 43-year-old man standing on a giant stage backed by high black curtains. -
Human Enhancement Technologies and Our Merger with Machines
Human Enhancement and Technologies Our Merger with Machines Human • Woodrow Barfield and Blodgett-Ford Sayoko Enhancement Technologies and Our Merger with Machines Edited by Woodrow Barfield and Sayoko Blodgett-Ford Printed Edition of the Special Issue Published in Philosophies www.mdpi.com/journal/philosophies Human Enhancement Technologies and Our Merger with Machines Human Enhancement Technologies and Our Merger with Machines Editors Woodrow Barfield Sayoko Blodgett-Ford MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editors Woodrow Barfield Sayoko Blodgett-Ford Visiting Professor, University of Turin Boston College Law School Affiliate, Whitaker Institute, NUI, Galway USA Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Philosophies (ISSN 2409-9287) (available at: https://www.mdpi.com/journal/philosophies/special issues/human enhancement technologies). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-0904-4 (Hbk) ISBN 978-3-0365-0905-1 (PDF) Cover image courtesy of N. M. Ford. © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. -
A Multi-Channel, Impedance-Matching, Wireless, Passive Recorder for Medical Applications (2019 Version)
A Multi-Channel, Impedance-Matching, Wireless, Passive Recorder for Medical Applications (2019 Version) Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Wei-Chuan Chen, B.Eng. Graduate Program in Electrical and Computer Engineering The Ohio State University 2019 Dissertation Committee: Asimina Kiourti, Co-Advisor John L. Volakis, Co-Advisor Liang Guo Daniel Rivers © Copyright by Wei-Chuan Chen 2019 Abstract This dissertation presents a new technology for batteryless and wireless neu- rorecording system which can be applied clinically. Two clinical issues of this type of neural implant are the 1) multichannel operation and 2) high impedance and DC voltage offset from the brain electrode impedance. To resolve these two problems, one wireless multichannel system and one brain electrode interface impedance-matching system are proposed respectively. To achieve multichannel operation, one photo- activated multiplexer is employed in the implant circuit. The interrogator additionally sends an infrared control signal for channel selection. Experimental results show that the proposed neuropotential recorder exhibits 20 µVpp sensitivity at all eight channels. The system is also in compliance with the strictest Federal Communications Com- mission standards for patient safety. Notably, the proposed approach is scalable to a much higher number of channels. On the other hand, to mitigate the high impedance and DC voltage offset of the brain-electrode interface, one self-biasing PNP Bipolar Junction Transistor (BJT) is adopted in the brain circuits. This self-biasing PNP BJT increases the overall system's impedance and maintains the system sensitivity while the high impedance is present. -
Thermal Impact of an Active 3-D Microelectrode Array Implanted in the Brain Sohee Kim, Member, IEEE, Prashant Tathireddy, Richard A
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 15, NO. 4, DECEMBER 2007 493 Thermal Impact of an Active 3-D Microelectrode Array Implanted in the Brain Sohee Kim, Member, IEEE, Prashant Tathireddy, Richard A. Normann, Member, IEEE, and Florian Solzbacher, Member, IEEE Abstract—A chronically implantable, wireless neural interface lism, or induce physiological abnormalities [1]–[4]. As an ex- device will require integrating electronic circuitry with the inter- treme clinical case, it is reported that a patient with an implanted facing microelectrodes in order to eliminate wired connections. deep brain stimulator (DBS) suffered significant brain damage Since the integrated circuit (IC) dissipates a certain amount of power, it will raise the temperature in surrounding tissues where it after diathermy treatment, and subsequently died [5], [6]. In is implanted. In this paper, the thermal influence of the integrated their study, postmortem examinations showed acute deteriora- 3-D Utah electrode array (UEA) device implanted in the brain was tion in the tissue near the lead electrodes of the DBS induced investigated by numerical simulation using finite element analysis by excessive tissue heating. Even more moderate temperature (FEA) and by experimental measurement in vitro as well as in increases in tissue can cause significant damage to various cel- vivo. The numerically calculated and experimentally measured temperature increases due to the UEA implantation were in lular functions. A temperature increase of more than 3 above good agreement. The experimentally validated numerical model normal body temperature has been reported to lead to physiolog- predicted that the temperature increases linearly with power ical abnormalities such as angiogenesis or necrosis [2]. -
Attempts to Achieve Immortality
Attempts to achieve immortality Attempts to achieve immortality Author: Stepanka Boudova E-mail: [email protected] Student ID: 419572 Masaryk University Brno Course: Future of Informatics 1 Attempts to achieve immortality Table of Contents Attempts to achieve immortality......................................................................................................1 Introduction......................................................................................................................................3 Historical context.............................................................................................................................3 History of Alchemy.....................................................................................................................3 Religion and Immortality............................................................................................................ 5 Symbols of Immortality.............................................................................................................. 6 The future.........................................................................................................................................6 Mind Uploading.......................................................................................................................... 6 Cryonics.................................................................................................................................... 10 2 Attempts to achieve immortality Introduction