This is a repository copy of Improving whole-brain neural decoding of fMRI with domain adaptation. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/136411/ Version: Submitted Version Article: Zhou, S., Cox, C. and Lu, H. orcid.org/0000-0002-0349-2181 (Submitted: 2018) Improving whole-brain neural decoding of fMRI with domain adaptation. bioRxiv. (Submitted) https://doi.org/10.1101/375030 © 2018 The Author(s). For reuse permissions, please contact the Author(s). Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing
[email protected] including the URL of the record and the reason for the withdrawal request.
[email protected] https://eprints.whiterose.ac.uk/ Improving Whole-Brain Neural Decoding of fMRI with Domain Adaptation Shuo Zhoua, Christopher R. Coxb,c, Haiping Lua,d,∗ aDepartment of Computer Science, the University of Sheffield, Sheffield, UK bSchool of Biological Sciences, the University of Manchester, Manchester, UK cDepartment of Psychology, Louisiana State University, Baton Rouge, Louisiana, USA dSheffield Institute for Translational Neuroscience, Sheffield, UK Abstract In neural decoding, there has been a growing interest in machine learning on whole-brain functional magnetic resonance imaging (fMRI).