Identification of NFIB As Recurrent Translocation Partner Gene of HMGIC in Pleomorphic Adenomas

Total Page:16

File Type:pdf, Size:1020Kb

Identification of NFIB As Recurrent Translocation Partner Gene of HMGIC in Pleomorphic Adenomas Oncogene (1998) 16, 865 ± 872 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 Identi®cation of NFIB as recurrent translocation partner gene of HMGIC in pleomorphic adenomas Jan MW Geurts1, Eric FPM Schoenmakers1, Eva RoÈ ijer2, Anna-Karin AstroÈ m2,GoÈran Stenman2 and Wim JM van de Ven1 1Laboratory for Molecular Oncology, Center for Human Genetics, University of Leuven & Flanders Interuniversity Institute for Biotechnology, B-3000 Leuven, Belgium; 2Laboratory of Cancer Genetics, Department of Pathology, GoÈteborg University, Sahlgrenska University Hospital, S-41345 GoÈteborg, Sweden Approximately 12% of all pleomorphic adenomas of the guished, i.e. tumors with rearrangements of 8q12 or salivary glands are characterized by chromosome 12q13 ± 15. Whereas the t(3;8)(p21;q12) is the most aberrations involving the chromosome segment 12q13 ± frequently observed translocation, many dierent 15. Several chromosomes have been found as transloca- chromosome segments can act as translocation tion partners of chromosome 12, and some of these partners of both 8q12 and 12q13 ± 15 (Sandros et al., recurrently. Recently, the HMGIC gene was identi®ed as 1990; Bullerdiek et al., 1993). The short arm of the target gene aected by the 12q13 ± 15 aberrations. chromosome 9, with breakpoints in the segment Here, we report the identi®cation and characterization of 9p12 ± 24, is the preferential translocation partner of a new translocation partner gene of HMGIC in chromosome 12q13 ± 15 (Stenman et al., 1994). The pleomorphic adenomas. 3'-RACE analysis of a primary reason for the variability of the breakpoints in 9p is adenoma with an apparently normal karyotype revealed likely to be due to the limited resolution of the banding an HMGIC fusion transcript containing ectopic se- pattern in 9p12 ± 24 and 12q13 ± 15, making it almost quences derived from the human NFIB gene, previously impossible to determine the exact locations of the mapped to chromosome band 9p24.1. The HMGIC breakpoints with certainty. NFIB fusion transcript was also con®rmed by RT ± Recently, HMGIC was identi®ed as the gene PCR. Since the chromosome segment 9p12 ± 24 is consistently aected in pleomorphic adenomas of the repeatedly involved as translocation partner of chromo- salivary glands and in a variety of other benign some 12q13 ± 15 in pleomorphic adenomas, we tested mesenchymal tumor types characterized by 12q13 ± 15 whether NFIB might be a recurrent partner of HMGIC. aberrations (Schoenmakers et al., 1995b; Ashar et al., RT ± PCR analysis of a second adenoma with an 1995). The location of the breakpoints with respect to ins(9;12)(p23;q12q15) as the sole anomaly, revealed that HMGIC is variable and occur 5' and 3' to HMGIC as also in this tumor an HMGIC/NFIB hybrid transcript well as recurrently in the very large, third intron of the was present. The reciprocal NFIB/HMGIC fusion gene, resulting in the separation of the three predicted transcript, however, could not be detected in any of DNA binding domains in the amino-terminal region these tumors. Nucleotide sequence analysis of the fusion from the acidic, carboxy-terminal domain of HMGIC. transcripts indicated that the genetic aberration in both HMGIC is a member of the high mobility group tumors resulted in the replacement of a carboxy-terminal (HMG) protein gene family which comprises proteins segment of HMGIC by the last ®ve amino acids of that are heterogeneous, nonhistone components of NFIB. In conclusion, our results reveal the recurrent chromatin (Grosschedl et al., 1994). HMGIC expres- involvement of the NFIB gene as translocation partner sion is tightly regulated, with the highest expression in gene of HMGIC in pleomorphic adenomas. fetal tissues and undetectable expression by Northern blot analysis of the normal full-length transcript in Keywords: NFIB; pleomorphic adenoma of the salivary normal adult tissues. HMGIC binds in the minor glands; HMGIC groove of DNA and has been suggested to act as an architectural factor (Wole, 1994) in the nuclear scaold (Saitoh and Laemmli, 1994; Tjian and Maniatis, 1994). The causal relationship between Introduction genetic aberrations aecting HMGIC and aberrant growth control in benign tumors remains to be Approximately 3 ± 6% of the tumors of the head and established. Of interest to note in this context is the neck region occur in the major and minor salivary observation that inactivation of both HMGIC alleles in glands (Shah and Ihde, 1990) and of these, the benign mice results in the so-called Pygmy phenotype with as pleomorphic adenoma is the most common tumor most important feature, disrupted growth leading to (Waldron, 1991). Previous studies have shown that dwar®sm (Zhou et al., 1995). These data demonstrate about 50 ± 80% of the pleomorphic adenomas display the important role of the HMGI proteins in clonal chromosomal abnormalities (Sandros et al., mammalian growth and development. 1990; Bullerdiek et al., 1993). Two major cytogenetic So far, four dierent fusion partner genes of subgroups with abnormal karyotypes can be distin- HMGIC have been identi®ed. The ®rst one is the LPP gene (Schoenmakers et al., 1995b; Ashar et al., Correspondence: WJM van de Ven 1995; Petit et al., 1996) which is located on Received 16 June 1997; revised 30 September 1997; accepted 30 chromosome 3q27 ± q28 and encodes a protein contain- September 1997 ing LIM domains. The second one is a postulated gene NFIB, recurrent translocation partner gene of HMGIC JMW Geurts et al 866 on chromosome 15q24 which has not yet been centromeric and telomeric of HMGIC, respectively. characterized in detail but which is predicted to Both YACs gave only signals on the two chromosomes encode a protein with a serine ± threonine-rich domain 12, demonstrating that the second chromosome 12 (Ashar et al., 1995). The third one is the mitochondrial breakpoint is distal to SAS ± CDK4. As expected from aldehyde dehydrogenase ALDH2 gene on chromosome cytogenetics, the SAS ± CDK4 signal in CG732 was 12q24.1, which was found as translocation partner gene transposed to 9p while the MDM2 signal remained on of HMGIC in a uterine leiomyoma (Kazmierczak et the der(12) (data not shown). al., 1995). In pleomorphic adenoma, the ®rst known fusion partner gene of HMGIC is the FHIT gene, Detection of an HMGIC fusion transcript which has been mapped to chromosome 3p14.2 (Geurts et al., 1997a). The pathogenetic relevance of the fusion In an attempt to determine whether the target gene on partners remains to be elucidated. The diversity in 12q is indeed the HMGIC gene, 3'-RACE analysis was chromosomal segments that have been found to performed. Analysis of adenoma CG575 resulted in the participate in translocations could indicate that the isolation of a 814 bp PCR product, 773 bp of which critical sequences are abundantly present in the human were deposited at GenBank (accession number genome. However, it has not yet been possible to AF022215), representing the 3'-RACE product devoid reliably identify a common structural or functional of non-speci®c cloning and PCR tails. Nucleotide denominator for the limited number of known sequence analysis of this product revealed that it translocation partner genes. contains 21 nucleotides of exon 4 of HMGIC Here, we present the results of 3'-RACE and RT ± (nucleotides 1073 ± 1093 in wild-type HMGIC acces- PCR experiments leading to the identi®cation and sion number U28749) and 752 nucleotides from the last subsequent characterization of a novel fusion partner exon of NFIB and part of its 3'-UTR (nucleotides gene of HMGIC in pleomorphic adenomas of the 1455 ± 2206 in wild-type NFIB as described in this salivary glands. manuscript and also available under accession number U85193). The sequence diversion point was thus found immediately downstream of HMGIC exon 4, suggest- ing a rearrangement within intron 4 of the HMGIC Results gene. As a result, the acidic tail of HMGIC was separated from the three DNA binding domains and Cytogenetic and FISH analysis the spacer domain. In phase with the HMGIC reading Conventional cytogenetic analysis of adenoma CG575 frame, the ectopic sequences appeared to contain a revealed an apparently normal karyotype (Figure 1a). stop codon after ®ve codons, adding only ®ve, ectopic However, detailed analysis of two metaphases with amino acid residues (SWYLG) to the truncated elongated chromosomes suggested that one of the two HMGIC protein. chromosome 12 homologs was somewhat shorter than the other (data not shown). The banding pattern of the Identi®cation of NFIB as fusion partner gene of HMGIC 12q-marker suggested an interstitial deletion of band 12q15. Hybridization with a chromosome 12 painting To establish the nature and origin of the ectopic probe did not reveal translocation of chromosome 12 sequences, genomic clones corresponding to these were material to any other chromosome. Adenoma CG732 isolated from a phage library using PCH203 as had a pseudodiploid karyotype with an ins(9;12) molecular probe. This probe was synthesized with the (p23;q12q15) as the sole anomaly (Figure 1a). PCR primer set PCH203-upper and -lower, which were Hybridization with painting probes for chromosomes developed on the basis of the ectopic sequences. Three 9 and 12 con®rmed the insertion of 12q material into 9p. clones were obtained which were characterized by To test whether both cases with 12q13 ± 15 restriction enzyme and partial nucleotide sequence abnormalities belonged to the group of pleomorphic analysis. A routine BLAST search by e-mail at adenomas with rearrangements of HMGIC we used [email protected] revealed that the ectopic se- two YAC clones, 341C1 and 452E1 (data not shown), quences, fused to HMGIC sequences, were 95% which contain the complete HMGIC gene. FISH identical to hamster clone pNFI ± Red1 which encodes analysis using these YACs revealed signals on the nuclear factor I (NFI) protein (Gil et al., 1988), normal chromosome 12 as well as on the der(9) and suggesting that the ectopic sequences were derived der(12) chromosomes, demonstrating that the HMGIC from the human NFIB gene.
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Cutting Edge: Expression of IRF8 in Gastric Epithelial Cells Confers
    Cutting Edge: Expression of IRF8 in Gastric Epithelial Cells Confers Protective Innate Immunity against Helicobacter pylori Infection This information is current as of September 27, 2021. Ming Yan, Hongsheng Wang, Jiafang Sun, Wei Liao, Peng Li, Yin Zhu, Chengfu Xu, Jungsoo Joo, Yan Sun, Sadia Abbasi, Alexander Kovalchuk, Nonghua Lv, Warren J. Leonard and Herbert C. Morse III J Immunol published online 3 February 2016 Downloaded from http://www.jimmunol.org/content/early/2016/02/02/jimmun ol.1500766 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2016/02/02/jimmunol.150076 Material 6.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published February 3, 2016, doi:10.4049/jimmunol.1500766 Th eJournal of Cutting Edge Immunology Cutting Edge: Expression of IRF8 in Gastric Epithelial Cells Confers Protective Innate Immunity against Helicobacter pylori Infection x x Ming Yan,*,1 Hongsheng Wang,†,1 Jiafang Sun,† Wei Liao,‡, Peng Li,‡, { † Yin Zhu, ChengfuXu,*JungsooJoo,*YanSun,*SadiaAbbasi,{ x Alexander Kovalchuk,† Nonghua Lv, Warren J.
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • The Staurotypus Turtles and Aves Share the Same Origin of Sex Chromosomes but Evolved Different Types of Heterogametic Sex Determination
    The Staurotypus Turtles and Aves Share the Same Origin of Sex Chromosomes but Evolved Different Types of Heterogametic Sex Determination Taiki Kawagoshi1, Yoshinobu Uno1, Chizuko Nishida2, Yoichi Matsuda1,3* 1 Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan, 2 Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan, 3 Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan Abstract Reptiles have a wide diversity of sex-determining mechanisms and types of sex chromosomes. Turtles exhibit temperature- dependent sex determination and genotypic sex determination, with male heterogametic (XX/XY) and female heterogametic (ZZ/ZW) sex chromosomes. Identification of sex chromosomes in many turtle species and their comparative genomic analysis are of great significance to understand the evolutionary processes of sex determination and sex chromosome differentiation in Testudines. The Mexican giant musk turtle (Staurotypus triporcatus, Kinosternidae, Testudines) and the giant musk turtle (Staurotypus salvinii) have heteromorphic XY sex chromosomes with a low degree of morphological differentiation; however, their origin and linkage group are still unknown. Cross-species chromosome painting with chromosome-specific DNA from Chinese soft-shelled turtle (Pelodiscus sinensis) revealed that the X and Y chromosomes of S. triporcatus have homology with P. sinensis chromosome 6, which corresponds to the chicken Z chromosome. We cloned cDNA fragments of S. triporcatus homologs of 16 chicken Z-linked genes and mapped them to S. triporcatus and S. salvinii chromosomes using fluorescence in situ hybridization. Sixteen genes were localized to the X and Y long arms in the same order in both species.
    [Show full text]
  • Xo GENE PANEL
    xO GENE PANEL Targeted panel of 1714 genes | Tumor DNA Coverage: 500x | RNA reads: 50 million Onco-seq panel includes clinically relevant genes and a wide array of biologically relevant genes Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4
    [Show full text]
  • The Expression of Genes Contributing to Pancreatic Adenocarcinoma Progression Is Influenced by the Respective Environment – Sagini Et Al
    The expression of genes contributing to pancreatic adenocarcinoma progression is influenced by the respective environment – Sagini et al Supplementary Figure 1: Target genes regulated by TGM2. Figure represents 24 genes regulated by TGM2, which were obtained from Ingenuity Pathway Analysis. As indicated, 9 genes (marked red) are down-regulated by TGM2. On the contrary, 15 genes (marked red) are up-regulated by TGM2. Supplementary Table 1: Functional annotations of genes from Suit2-007 cells growing in pancreatic environment Categoriesa Diseases or p-Valuec Predicted Activation Number of genesf Functions activationd Z-scoree Annotationb Cell movement Cell movement 1,56E-11 increased 2,199 LAMB3, CEACAM6, CCL20, AGR2, MUC1, CXCL1, LAMA3, LCN2, COL17A1, CXCL8, AIF1, MMP7, CEMIP, JUP, SOD2, S100A4, PDGFA, NDRG1, SGK1, IGFBP3, DDR1, IL1A, CDKN1A, NREP, SEMA3E SERPINA3, SDC4, ALPP, CX3CL1, NFKBIA, ANXA3, CDH1, CDCP1, CRYAB, TUBB2B, FOXQ1, SLPI, F3, GRINA, ITGA2, ARPIN/C15orf38- AP3S2, SPTLC1, IL10, TSC22D3, LAMC2, TCAF1, CDH3, MX1, LEP, ZC3H12A, PMP22, IL32, FAM83H, EFNA1, PATJ, CEBPB, SERPINA5, PTK6, EPHB6, JUND, TNFSF14, ERBB3, TNFRSF25, FCAR, CXCL16, HLA-A, CEACAM1, FAT1, AHR, CSF2RA, CLDN7, MAPK13, FERMT1, TCAF2, MST1R, CD99, PTP4A2, PHLDA1, DEFB1, RHOB, TNFSF15, CD44, CSF2, SERPINB5, TGM2, SRC, ITGA6, TNC, HNRNPA2B1, RHOD, SKI, KISS1, TACSTD2, GNAI2, CXCL2, NFKB2, TAGLN2, TNF, CD74, PTPRK, STAT3, ARHGAP21, VEGFA, MYH9, SAA1, F11R, PDCD4, IQGAP1, DCN, MAPK8IP3, STC1, ADAM15, LTBP2, HOOK1, CST3, EPHA1, TIMP2, LPAR2, CORO1A, CLDN3, MYO1C,
    [Show full text]
  • Nutrition RP(3월호)-최종.Hwp
    Nutrition Research and Practice (2007), 1, 19-28 ⓒ2007 The Korean Nutrition Society and the Korean Society of Community Nutrition Transcriptome analysis and promoter sequence studies on early adipogenesis in 3T3-L1 cells* Su-jong Kim1, Ki-Hwan Lee1, Yong-Sung Lee1, Eun-Gyeng Mun2, Dae-Young Kwon3 and Youn-Soo Cha2§ 1Department of Biochemistry, College of Medicine, Hanyang University, Seoul 133-791, Korea 2Department of Food Science and Human Nutrition, Research Institute of Human Ecology, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea 3Food Function Research, Division Korea Food Research Institute, San46-1, Baekhyun-dong, Bundang-gu, Sungnam-si, Gyeonggi-do 463-746, Korea Received January 22, 2007; Revised March 2, 2007; Accepted March 5, 2007 Abstract To identify regulatory molecules which play key roles in the development of obesity, we investigated the transcriptional profiles in 3T3-L1 cells at early stage of differentiation and analyzed the promoter sequences of differentially regulated genes. One hundred and sixty-one (161) genes were found to have significant changes in expression at the 2nd day following treatment with differentiation cocktail. Among them, 86 transcripts were up-regulated and 75 transcripts were down-regulated. The 161 transcripts were classified into 10 categories according to their functional roles; cytoskeleton, cell adhesion, immune, defense response, metabolism, protein modification, protein metabolism, regulation of transcription, signal transduction and transporter. To identify transcription factors likely involved in regulating these differentially expressed genes, we analyzed the promoter sequences of up- or –down regulated genes for the presence of transcription factor binding sites (TFBSs). Based on coincidence of regulatory sites, we have identified candidate transcription factors (TFs), which include those previously known to be involved in adipogenesis (CREB, OCT-1 and c-Myc).
    [Show full text]
  • Inter-Individual Variation in Response to Estrogen and Implications for Breast Cancer Risk
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses 5-8-2020 INTER-INDIVIDUAL VARIATION IN RESPONSE TO ESTROGEN AND IMPLICATIONS FOR BREAST CANCER RISK Amye L. Black University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Cancer Biology Commons, and the Developmental Biology Commons Recommended Citation Black, Amye L., "INTER-INDIVIDUAL VARIATION IN RESPONSE TO ESTROGEN AND IMPLICATIONS FOR BREAST CANCER RISK" (2020). Doctoral Dissertations. 1976. https://doi.org/10.7275/gxe7-4m14 https://scholarworks.umass.edu/dissertations_2/1976 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. INTER-INDIVIDUAL VARIATION IN RESPONSE TO ESTROGEN AND IMPLICATIONS FOR BREAST CANCER RISK A Dissertation Presented by AMYE L. BLACK Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2020 Molecular and Cellular Biology © Copyright by Amye L. Black 2020 All Rights Reserved INTER-INDIVIDUAL VARIATION IN RESPONSE TO ESTROGEN AND IMPLICATIONS FOR BREAST CANCER RISK A Dissertation Presented by AMYE L. BLACK Approved as to style and content by: ____________________________________ D. Joseph Jerry, Chair ____________________________________ Sallie S. Schneider, Member ____________________________________ Kathleen Arcaro, Member ____________________________________ Thomas Zoeller, Member ____________________________________ Scott Garman, Director Molecular and Cellular Biology DEDICATION To my family, for their never-ending support.
    [Show full text]
  • ER Alpha Binding by Transcription Factors NFIB and YBX1 Enables FGFR2 Signalling to Modulate Estrogen Responsiveness in Breast Cancer
    Author Manuscript Published OnlineFirst on November 27, 2017; DOI: 10.1158/0008-5472.CAN-17-1153 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 ER alpha binding by transcription factors NFIB and YBX1 enables FGFR2 2 signalling to modulate estrogen responsiveness in breast cancer 3 4 Thomas M. Campbell1, Mauro A. A. Castro2, Kelin Gonçalves de Oliveira2, Bruce A. J. 5 Ponder1 and Kerstin B. Meyer1,3* 6 7 *Corresponding author: [email protected] 8 1Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing 9 Centre, Robinson Way, Cambridge CB2 0RE, UK. 10 2Bioinformatics and Systems Biology Lab, Federal University of Paraná (UFPR), 11 Polytechnic Center, Rua Alcides Vieira Arcoverde, 1225 Curitiba, PR 81520-260, 12 Brazil. 13 3Current address: Wellcome Trust Sanger Institute, Wellcome Genome Campus, 14 Hinxton, Cambridge CB10 1SA, UK. 15 [email protected] 16 [email protected] 17 [email protected] 18 [email protected] 19 [email protected] 20 21 Running title: NFIB and YBX1 regulate ESR1 in breast cancer 22 5 keywords: Breast cancer, ESR1, NFIB, YBX1, FGFR2 1 Downloaded from cancerres.aacrjournals.org on September 24, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on November 27, 2017; DOI: 10.1158/0008-5472.CAN-17-1153 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 23 Abstract 24 Two opposing clusters of transcription factors (TF) have been associated with the 25 differential risks of estrogen receptor positive or negative breast cancers, but the 26 mechanisms underlying the opposing functions of the two clusters are undefined.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0269772 A1 Califano Et Al
    US 20090269772A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0269772 A1 Califano et al. (43) Pub. Date: Oct. 29, 2009 (54) SYSTEMS AND METHODS FOR Publication Classification IDENTIFYING COMBINATIONS OF (51) Int. Cl. COMPOUNDS OF THERAPEUTIC INTEREST CI2O I/68 (2006.01) CI2O 1/02 (2006.01) (76) Inventors: Andrea Califano, New York, NY G06N 5/02 (2006.01) (US); Riccardo Dalla-Favera, New (52) U.S. Cl. ........... 435/6: 435/29: 706/54; 707/E17.014 York, NY (US); Owen A. (57) ABSTRACT O'Connor, New York, NY (US) Systems, methods, and apparatus for searching for a combi nation of compounds of therapeutic interest are provided. Correspondence Address: Cell-based assays are performed, each cell-based assay JONES DAY exposing a different sample of cells to a different compound 222 EAST 41ST ST in a plurality of compounds. From the cell-based assays, a NEW YORK, NY 10017 (US) Subset of the tested compounds is selected. For each respec tive compound in the Subset, a molecular abundance profile from cells exposed to the respective compound is measured. (21) Appl. No.: 12/432,579 Targets of transcription factors and post-translational modu lators of transcription factor activity are inferred from the (22) Filed: Apr. 29, 2009 molecular abundance profile data using information theoretic measures. This data is used to construct an interaction net Related U.S. Application Data work. Variances in edges in the interaction network are used to determine the drug activity profile of compounds in the (60) Provisional application No. 61/048.875, filed on Apr.
    [Show full text]
  • The Convergent Roles of the Nuclear Factor I Transcription Factors in Development and Cancer
    The convergent roles of the nuclear factor I transcription factors in development and cancer Kok-Siong Chen1, Jonathan W.C. Lim1, Linda J. Richards1,2*, Jens Bunt1* 1 Queensland Brain Institute, The University of Queensland, Brisbane, Australia 4072 2 The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia 4072 * Corresponding authors: Jens Bunt: [email protected] and Linda J Richards: [email protected] 1 Highlights • NFI transcription factors play important roles in normal development and are associated with cancer in multiple organ systems. • NFI transcription factors are implicated in tumours that arise from cells that normally express the concordant transcription factor during development. • The role of NFI transcription factors in regulating the balance between cell proliferation and differentiation during development may be disrupted in cancer. • NFI transcription factors are context-dependent in various cancer types and can play either oncogenic or tumour-suppressive roles. 2 Abstract The nuclear factor I (NFI) transcription factors play important roles during normal development and have been associated with developmental abnormalities in humans. All four family members, NFIA, NFIB, NFIC and NFIX, have a homologous DNA binding domain and function by regulating cell proliferation and differentiation via the transcriptional control of their target genes. More recently, NFI genes have also been implicated in cancer based on genomic analyses and studies of animal models in a variety of tumours across multiple organ systems. However, the association between their functions in development and in cancer is not well described. In this review, we summarise the evidence suggesting a converging role for the NFI genes in development and cancer.
    [Show full text]