ОФИЦИАЛЬНЫЙ КАТАЛОГ Official Catalogue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
E-Mail: [email protected]
ATOMENERGOMASH JSC Nuclear and Power Engineering Address: 28/3 Ozerkovsakaya nab., Moscow, 115184 Telephone: +7(495) 668-20-93 Fax: +7(495) 668-20-95 Website: http://www.aem-group.ru/en/ E-mail: [email protected] www.aem-group.ru/en/ 3 JSC Atomenergomash ABOUT US Аtomenergomash JSC (AEM, Сompany, Group) is a machine building division of ROSATOM State Atomic Energy Corporation. One of the leading Russian power engineering companies, a supplier of efficient integrated solutions for nuclear and thermal power plants, natural gas and petrochemical industry, shipbuilding, hydroelectricity, demineralization, water treatment, water purification and special steel market. FIGURES AND FACTS ATOMENERGOMASH • The key developer and equipment manu- • AEM was established in 2006 as part of facturer for the reactor facility of the ROSATOM State Atomic Energy Corporation. water-water energetic reactor (VVER). • The Holding includes about 20 • The key developer and equipement man- power engineering companies, R&D, ufacturer of fast nuclear reactors (FNR). manufacturing, construction and • Equipment manufacturer for the turbine construction companies located in Russia, island of NPP with VVER. Ukraine, the Czech Republic, and Hungary. • The only Russian manufacturer of steam • The Holding’s equipment is installed in generators and main circulation pumps more than 20 countries. for Russian-built NPPs. • 14% of global Nuclear Power Plants (NPP) • The key developer and manufacturer of and 40% of Thermal Power Plants (TPP) marine reactor plants for the Navy and in Russia and the former Soviet Union nuclear icebreakers. countries run our equipment. • One of the largest manufacturers of power plant boilers and Heat Recovery Steam Generator (HRSG) for medium and large Combined Cycle Gas Turbine (CCGT) units. -
2014 Integrated Annual Report Jsc Atomenergomash Capacity Building
Capacity building 2014 INTEGRATED ANNUAL REPORT Short version 2014 INTEGRATED ANNUAL REPORT JSC ATOMENERGOMASH CAPACITY BUILDING THE COMPANY IN BRIEF ............................................................................ 2 2014 PERFORMANCE HIGHLIGHTS ........................................................... 3 KEY EVENTS IN 2014 ................................................................................... 4 MESSAGE FROM COMPANY MANAGEMENT ............................................. 6 BUSINESS MODEL .................................................................................... 12 BUSINESS GEOGRAPHY ........................................................................... 16 KEY PROJECTS .......................................................................................... 18 STRATEGIC VISION AND OBJECTIVES ..................................................... 19 ECONOMIC PERFORMANCE .................................................................... 20 COMMERCIAL ACTIVITIES ........................................................................ 22 INNOVATION ACTIVITIES .......................................................................... 23 ar2014.aem-group.ru RESULTS OF PRODUCTION ACTIVITIES .................................................. 24 OPTIMIZATION OF PRODUCTION PROCESSES ....................................... 25 JSC Atomenergomash provides access to the integrated interactive ENVIRONMENTAL IMPACT ....................................................................... 26 version of the annual -
Program Jądrowy W Federacji Rosyjskiej 10
Program jądrowy w Federacji Rosyjskiej PROGRAM POLSKIEJ ENERGETYKI JĄDROWEJ ANALIZY I OPRACOWANIA 10 materiał informacyjny opracowany przez Departament Energii Jądrowej Ministerstwa Energii JAMAŁ Rosyjski 150-metrowy lodołamacz wyposażony w dwa reaktory jądrowe. Jest jednym z niewielu statków, którym udało się dopłynąć do bieguna północne- go, i jedynym, któremu ta sztuka udała się kilkadziesiąt razy. Jednostka jest również statkiem wycieczkowym posiadającym 50 kabin i apartamentów. Opracowanie uwzględnia dane według stanu na maj 2016. Program jądrowy w Federacji Rosyjskiej Energia jądrowa pozostaje strategicznym priorytetem dla Rosji. Utrzy- muje się stały wzrost jej udziału w bilansie energetycznym kraju zarówno poprzez budowę nowych bloków jądrowych, jak i dzięki znacznej poprawie wydajności istniejących instalacji. Obecnie FR eksploatuje 35 reaktorów energetycznych o całkowitej mocy 26,1 GWe, które dostarczają ok. 18% krajowej produkcji energii elektrycznej, a w budowie znajduje się kolejnych 8 reaktorów. Do roku 2030 planowane jest uruchomienie 15 nowych reaktorów i zwiększenie udziału energii jądrowej w bilansie energetycznym do 25-30%. Kraj ten opanował pełny cykl paliwowy, w tym wzbogacanie uranu oraz przerób wypalonego paliwa i jest samowystarczalny pod względem zaopa- trzenia w paliwo jądrowe oraz postępowania z odpadami promieniotwór- czymi. Eksport urządzeń i usług jądrowych stanowi jeden z głównych celów politycznych i ekonomicznych państwa. Firmy rosyjskie oferują kom- pleksową dostawę technologii (budowa elektrowni, dostarczanie paliwa, demontaż) a państwo zapewnia wsparcie finansowe tych inwestycji. Rosja jest także światowym liderem w technologii reaktorów prędkich. 1 1. Bilans energetyczny Krajowa produkcja energii elek- na krajowe cele energetyczne. reaktora energetycznego. trycznej w 2012 r. wyniosła 1071 W 2015 r. całkowita zainstalo- W dalszej perspektywie strategia TWh, z czego 525 TWh wyprodu- wana moc elektrowni jądrowych rosyjska zakłada, że ograniczone kowano w elektrowniach gazowych wynosiła 26,1 GWe. -
Nuclear Power Industry
JSC ATOMENERGOMASH RESULTS OF 20161 1 The brochure data are valid as of April 26, 2017. JSC ATOMENERGOMASH RESULTS OF 2016 The pilot fast neutron reactor After a long interruption, JSC Atomenergomash with primary sodium CEFR the nuclear industry equipment reinforces the key 3,668 developed under the order manufacture was resumed at business areas – nuclear from Chinese Nuclear Power “Atommash” plant. In particular, power industry, gas and Corporation. The developer the activities were commenced petrochemical industry, of the reactor plant was for the manufacture of the main shipbuilding and general 10 YEARS OF PROGRESS OJSC Afrikantov OKBM, the equipment of the reactor island industry. steam generator developer of the Power units 1 and 2 of was OJSC OKB GIDROPRESS. Belarusian NPP. THE HISTORY OF JSC ATOMENERGOMASH, THE mechanical ENGINEERING DIVISION OF ROSATOM STATE CORPORATION (THE «DIVISION») STARTED FROM TWO 2,947 OJSC Atomenergomash The complete cycle of steam COMPANIES. TODAY THE DIVISION IS ONE OF THE LEADING mechanical ENGINEERING COMPANIES IN RUSSIA. IT COMPRISES OVER 20 LEADING ENGINEERING manufactured a core catcher generators manufacture was at the Atommash plant in mastered – from semi-products JSC TsKBM completed the BUREAUS, MAJOR MACHINE BUILDERS, RESEARCH INSTITUTIONS. THE DIVISION IS INVOLVED IN THE KEY PROJECTS IMPLEMENTED BY ROSATOM, WIDENS unprecedentedly short time (PJSC Energomashspetsstal) to test of the new MCP design – and supplied it to the Baltic body manufacture (OJSC PZM), single-shaft configuration 2,414 Labor productivity per employee, thousand rubles THE COMPETENCES AND ACTIVELY MASTERS NEW MARKETS AND TECHNOLOGIES. 2,397 NPP. assembly of in-vessel components with water cooling of motor and shipment to client and bearing assemblies that (OJSC ZiO-Podolsk). -
CONTENTS Back to Contents
NEWSLETTER #8 (244) AUGUST 2021 CONTENTS Back to contents ROSATOM NEWS TRENDS Kudankulam, High Five! Nuclear Technology Saves Lives Arctic Sea Lane ROSATOM GEOGRAPHY Russian Atom Reaches New Heights NEWSLETTER #8 (244) AUGUST 2021 ROSATOM NEWS Back to contents Представители ТВЭЛ, ENUSA, ENSA и IDOM подписывают меморандум we are prepared to launch mass Kudankulam, construction of Russian- designed power units with the state-of-the-art Generation High Five! III+ reactors at other sites in India. This possibility is stipulated in our existing Construction of Kudankulam Unit 5 agreements,” Director General of Rosatom has been officially kicked off. This is Alexey Likhachev said at the ceremony. the third stage of the Indian nuclear project carried out by Rosatom. Kudankulam profile The ceremony of pouring the first concrete for the basemat of Kudankulam Unit 5 The fifth power unit is constructed within located in the same-name town in the Indian the framework of a Russian- Indian treaty state of Tamil Nadu was held on June 29. signed in November 1988 and amended in June 1998. Since then, Rosatom has “The nuclear construction project in constructed and put in operation two power Kudankulam has been a symbol of close units of the Kudankulam Nuclear Power collaboration between Russia and India Plant. The first of them was connected to for many years. But it is not the time to the Indian national power grid in October rest — Rosatom possesses all the most 2013, followed by the other in August 2016. advanced nuclear energy technologies. In The two units have VVER-1000 reactors, the a partnership with our Indian colleagues, most powerful in India. -
Annual Report 2017 (Hereinafter Federal Contests: According to Expert RA • TOP 100 (Rank 36 Ahead of All • in November 2018
Table of Contents Adress of the Chairman of the Board of Directors Alexander Lokshin. 2 4 .2 . Financial Capital . 62 APPROVED BY Adress of the Director General Vladimir Verkhovtsev . 3 4 .2 .1 . Financial Management . 62 the resolution of the Board of Directors of JSC Atomredmetzoloto Adress of the President of the Veteran Council Nikolay Petrukhin . 4 4 .2 .2 . Financial Management Performance . 63 10 Years: Sustainable Development Trajectory . 4 4 .2 .3 . Investments . 65 (Minutes No.209 dd. May 25, 2018) 2017 Key Events. 6 4 .3 . Intellectual Capital . 67 2017 Key Indicators . 7 4 .3 .1 . Intellectual Capital Management . 68 4 .3 .2 . Innovative Performance . .. 70 1 . INFORMATION ABOUT JSC ATOMREDMETZOLOTO . 8 4 .3 .3 . Digital Economy Performance. .. 70 This Report has been pre-approved by 1 .1 . About the Company. .. 9 4 .4 . Natural Capital . .71 1 .1 .1 . General Information .. 9 4 .4 .1 . Natural Capital Management Environmental Policy . 71 the Director General, JSC Atomredmetzoloto 1 .1 .2 . Holding Structure . .. 9 4 .4 .2 . Natural Capital Management Performance: . 71 (order No. 003/124-П dd. May 14, 2018) 1 .1 .3 . Mission and Values . 10 4 .4 .2 .1 . Protection of Land Resources and Biodiversity . 71 1 .2 . Market Presence . 10 4 .4 .2 .2 . Protection of Water Resources . 72 1 .3 . Our Role in ROSATOM’s Production Cycle .. 11 4 .4 .2 .3 . Air Protection . 73 1 .4 . Supply Chain . 11 4 .4 .2 .4 . Waste Management . 74 1 .5 . Value Chain and Business Model . .. 13 4 .4 .2 .5 . Environmental Costs . 75 1 .5 .1 . -
Annual Report 2018
1 APPROVED BY the resolution of the Board of Directors of JSC Atomredmetzoloto (Minutes № 239, May 24th, 2019) INTEGRATED ANNUAL REPORT JSC ATOMREDMETZOLOTO 2018 THE POWER OF GENERATIONS Table of Contents Key information 2 4 Address of the Chairman Chapter 2 . Chapter 4 . 4.3.1. Intellectual Capital 4.6.1.2. Internal Social of the Board of Directors Strategy and Markets . 24 Capital Management Management ..............66 Investment Management Alexander Lokshin . 6 Performance...............87 2.1. Strategic Vision Results . 46 4.3.2. Innovative Development 4.6.1.3. External Social and Targets . 25 Programme ...............66 Address 4.1. Production Capital......47 Investments. Contribution to the of the Director General Development 2.2. Contribution to the 4.1.1. Mineral Raw Materials 4.3.3. Digital Economy Vladimir Verkhovtsev . 8 of Operation Areas..........90 Achievement of ROSATOM’s Base Development..........47 Performance...............69 Strategic Goals ............26 4.7. Contribution Address of the Nuclear 4.1.2. Production Capital 4.4. Natural Capital ........70 to the National Projects .....94 Energy and Industry Veteran 2.3. Sustainable Development Management ..............48 Valery Litvinenko . 10 . Management ..............27 4.4.1. Natural Capital 4.1.3. Business Management. Environmental 50 Accomplishments 2.4. Natural Uranium Market Diversification .............53 Policy.....................70 of PJSC PIMCU . 6-10 Overview and Outlook ......32 4.1.3.1. Development 4.4.2. Natural Capital 2018 Key Events . .12 . of New Businesses ..........53 Management Performance ...70 4.1.3.2. Project “Production 4.4.2.1. Protection of Land 2018 Key Indicators . 13. of Associated Scandium at Resources and Biodiversity...70 JSC Dalur” ................55 4.4.2.2. -
State Atomic Energy Corporation Rosatom
STATE ATOMIC ENERGY CORPORATION ROSATOM. STATE ATOMIC ENERGY CORPORATION ROSATOM. PERFORMANCE IN 2019 PERFORMANCE IN 2019 PERFORMANCE OF STATE ATOMIC ENERGY CORPORATION ROSATOM IN 2019 TABLE OF CONTENTS Report Profile 4 CHAPTER 7. DEVELOPMENT OF THE NORTHERN SEA ROUTE 122 7.1. Escorting Vessels and Handling Cargo Traffic along the Northern Sea Route 127 CHAPTER 1. OUR ACHIEVEMENTS 6 7.2. Construction of New Icebreakers 128 History of the Russian Nuclear Industry 8 7.3. New Products 128 ROSATOM Today 10 7.4. Digitization of Operations 128 Key Results in 2019 14 7.5. Activities of FSUE Hydrographic Enterprise 129 Key Events in 2019 15 7.6. Plans for 2020 and for the Medium Term 130 Address by the Chairman of the Supervisory Board 16 Address by the Director General 17 CHAPTER 8. EFFECTIVE MANAGEMENT OF RESOURCES 132 Address by a Stakeholder Representative 18 8.1. Corporate Governance 135 Financial and Economic Results 20 8.2. Risk Management 141 8.3. Performance of Government Functions 155 CHAPTER 2. STRATEGY FOR A SUSTAINABLE FUTURE 22 8.4. Financial and Investment Management 158 2.1. Business Strategy until 2030 24 8.5. ROSATOM Production System 164 2.2. Sustainable Development Management 28 8.6. Procurement Management 168 2.3. Value Creation and Business Model 34 8.7. Internal Control System 172 8.8. Prevention of Corruption and Other Offences 174 CHAPTER 3. CONTRIBUTION TO GLOBAL DEVELOPMENT 40 3.1. Markets Served by ROSATOM 42 CHAPTER 9. DEVELOPMENT OF HUMAN POTENTIAL 176 3.2. International Cooperation 55 AND INFRASTRUCTURE 3.3. International Business 63 9.1. -
At Work 2021 Edition Foreword
At Work 2021 edition Foreword 2020 is a year unlikely to be forgotten anytime soon, for published a white paper, The need for large and small a number of reasons. All of us have been impacted by nuclear, today and tomorrow, describing how both large- the pandemic in one way or another, and we have been scale nuclear power plants and small modular reactors forced to reassess our priorities. The ongoing crisis can play a significant role in the clean energy transition. showcased just how important affordable and reliable Towards the end of 2020, the Association also began electricity is, both hallmarks of the nuclear industry. As we its preparation for COP26 in earnest, meeting with UK look ahead at the challenges of the post-COVID economic government ministers to reinforce the importance of recovery, of achieving greater climate ambitions at COP26 nuclear energy in any deep decarbonization efforts. and reaching the Sustainable Development Goals, nuclear energy is perhaps more important than ever before. The World Nuclear University became virtual in 2020 to Association will continue to devote every effort towards continue its mission to train the future leaders of the ensuring that the industry’s voice is heard loud and clear. nuclear industry. Two World Nuclear Industry Today courses were hosted, one in China and one in Brazil, The pandemic recovery has inevitably been an important with over 1400 participants. Furthermore, three Extended aspect of the Association’s work for the past year. We Leadership Development workshops were hosted, joined forces with the OECD Nuclear Energy Agency attracting more than 350 participants. -
Co-Operation Among CMEA Member Countries in the Development of Nuclear Energy Its Role in the Implementation of the NPT by A.F
Co-operation among CMEA Member Countries in the Development of Nuclear Energy Its Role in the Implementation of the NPT by A.F. Panasenkov An important aspect of the multilateral co-operation among the member countries of the Council for Mutual Economic Assistance (CMEA) is the development of nuclear power, a technology which can practically eliminate the threat of fuel and energy shortages and significantly reduce environmental pollution. Nuclear power is gradually becoming an independent specialized branch of power generation. However, the presence of transmission lines and the interconnected fuel cycle, both of which cross national boundaries, make nuclear power an international activity within the framework of CMEA. The nuclear power plants being installed in CMEA member countries use thermal-neutron pressurized-water-cooled water-moderated tank reactors (designated WWER) having power outputs of 440 and 1000 MWe and in the USSR plants with uranium-graphite boiling-water channel-type reactors (designated RBMK) having power outputs or 1000 and 1500 MWe are being built as well. All these reactors use uranium fuel slightly enriched in the isotope uranium-235. Currently, the total power output of operating nuclear power plants in Bulgaria, Czechoslovakia, the German Democratic Republic and the USSR is over 17 000 MWe; the construction of a first nuclear power plant is nearing completion in Hungary, and preparatory design work for the construction of nuclear power plants in Cuba, Poland and Romania is being carried out. However, in thermal-neutron reactors the nuclear fuel is not utilized effectively enough. For this reason, the future development of nuclear power plants in the CMEA member countries is to involve the use of fast-neutron reactors. -
List of Congress Delegates № Company Name Surname Position 1 AB Engineering St
List of Congress Delegates № Company Name Surname Position 1 AB Engineering St. Petersburg Alexandr Alexandrov General Director 2 AB Engineering St. Petersburg Ekaterina Antonen Progect manager 3 AEM-Technology Evgeniy Pakermanov General manager 4 AEOI Rais Ali 5 AF-Consult Roberto Gerosa President International Division 6 Afrikantov OKBM Mechanical Engineering Boris Vasilyev Chief Designer 7 Afrikantov OKBM Mechanical Engineering Feliks Lisitsa Adviser of Director 8 Afrikantov OKBM Mechanical Engineering Igor Shmelev Head of Department 9 Afrikantov OKBM Mechanical Engineering Oleg Kondratenkov Head of Communications Department 10 Afrikantov OKBM Mechanical Engineering Valentin Budilov Head of Bureau 11 Afrikantov OKBM Mechanical Engineering Vitaliy Petrunin First Deputy Director 12 Afrikantov OKBM Mechanical Engineering Vladimir Galushkin Leading Engineer 13 Afrikantov OKBM Mechanical Engineering Yulia Kolesova Engineer 14 Afrikantov OKBM Mechanical Engineering Yuriy Fadeev Chief Designer 15 Agency for Atomic Energy of Hungary Kristof Horvath Deputy Director 16 AKKUYU NPP Alexander Superfin General Director 17 AKME JSC Natalia Zaitseva Strategic Development and International Relations 18 Alexandrov Research Institute of Technology Vyacheslav Vasilenko Director General 19 Alstom Andrey Lavrinenko Regional VP GPS Russia 20 Alstom Alexandr Tsvetkov General director 21 ALVEL Jan Love Consultant 22 ALVEL Josef Belac Chairman of the Board of Directors 23 Amirkabir University of Technology Hossein Afarideh 24 ANDRA Gerald Ouzounian Director international Division 25 ANDRA Jelena Bol 26 Arako Rovshan Abbasov General Director 27 Areva Lyudovik Devos Head of the Delegation 28 Areva Olga Dementieva Project Manager 29 Areva Ludovic Devos Chief representative in Rusia and the CIS 30 Areva Ingo Koban Vice President 31 Areva Luc Oursel President 32 Areva Od Martino Marketing Manager 33 ARMZ Uranium Holding Co. -
Nuclear Power Reactors in the World IAEA-RDS-2/41
REFERENCE DATA SERIES No. 2 REFERENCE DATA REFERENCE DATA SERIES No. 2 2021 Edition Nuclear Power Reactors in the World 2021 Edition INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA @ 21-01812E NUCLEAR POWER REACTORS IN THE WORLD REFERENCE DATA SERIES No. 2 NUCLEAR POWER REACTORS IN THE WORLD 2021 Edition INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2021 EDITORIAL NOTE This publication has been prepared from the original material as submitted by the contributors and has not been edited by the editorial staff of the IAEA. The views expressed remain the responsibility of the contributors and do not necessarily represent the views of the IAEA or its Member States. Neither the IAEA nor its Member States assume any responsibility for consequences which may arise from the use of this publication. This publication does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The IAEA has no responsibility for the persistence or accuracy of URLs for external or third party Internet web sites referred to in this publication and does not guarantee that any content on such web sites is, or will remain, accurate or appropriate.