Phylogeography of Chinese Cherry (Prunus Pseudocerasus Lindl

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeography of Chinese Cherry (Prunus Pseudocerasus Lindl Plant Biology ISSN 1435-8603 RESEARCH PAPER Phylogeography of Chinese cherry (Prunus pseudocerasus Lindl.) inferred from chloroplast and nuclear DNA: insights into evolutionary patterns and demographic history T. Chen1, Q. Chen1, Y. Luo1, Z.-L. Huang1, J. Zhang1, H.-R. Tang1,2, D.-M. Pan3 & X.-R. Wang2 1 College of Horticulture, Sichuan Agricultural University, Ya’an, China 2 Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China 3 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China Keywords ABSTRACT Chinese cherry (Prunus pseudocerasus Lindl.); Prunus pseudocerasus cpDNA; nrDNA; phylogeography. Chinese cherry ( Lindl.) is a commercially valuable fruit crop in China. In order to obtain new insights into its evolutionary history and provide valu- Correspondence able recommendations for resource conservation, phylogeographic patterns of 26 nat- X.-R. Wang, Institute of Pomology and ural populations (305 total individuals) from six geographic regions were analyzed Olericulture, Sichuan Agricultural University, using chloroplast and nuclear DNA fragments. Low levels of haplotype and nucleotide Chengdu 611130, China. diversity were found in these populations, especially in landrace populations. It is E-mail: [email protected] likely that a combined effect of botanical characteristics impact the effective popula- tion size, such as inbreeding mating system, long life span, as well as vegetative repro- Editor duction. In addition, strong bottleneck effect caused by domestication, together with X. Wang founder effect after dispersal and subsequent demographic expansion, might also accelerate the reduction of the genetic variation in landrace populations. Interestingly, Received: 5 October 2014; Accepted: 10 populations from Longmen Mountain (LMM) and Daliangshan Mountain (DLSM) December 2014 exhibited relatively higher levels of genetic diversity, inferring the two historical genetic diversity centers of the species. Moreover, moderate population subdivision doi:10.1111/plb.12294 was also detected by both chloroplast DNA (GST = 0.215; NST = 0.256) and nuclear DNA (GST = 0.146; NST = 0.342), respectively. We inferred that the episodes of effi- cient gene flow through seed dispersal, together with features of long generation cycle and inbreeding mating system, were likely the main contributors causing the observed phylogeographic patterns. Finally, factors that led to the present demographic pat- terns of populations from these regions and taxonomic varieties were also discussed. this species inhabit wide eco-geographic regions in China INTRODUCTION (from North China Plain to Yungui Plateau) (Fig. 1). Consid- Rosaceae consists of over 100 genera and 3000 species, includ- erable genetic variation associated with multiple favorable ing many important fruit crops with diverse growth habits characters have been accumulated in these populations, such as (herbaceous, liana, bush and tree forms) and fruit types (pome, intensive pest/disease resistance, outstanding nutritional values, drupe, achene, hip, follicle and capsule) (Hummer & Janick unique flavor and remarkable abiotic adaptation (Huang et al. 2009; Janick 2005; Potter et al. 2007). The members of Rosa- 2013), thereby providing the promising opportunities for ceae such as Fragaria, Rosa, Rubus, and Prunus provide high- cherry breeding (Gutierrez-Pesce et al. 1998; Rugini 2004). value nutritional foods and contribute desirable aesthetic and Phylogeography has recently emerged as a powerful method commercial products. Chinese cherry (Prunus pseudocerasus for understanding population structure and evolutionary his- Lindl.) is an endemic tetraploid species (Iwatsubo et al. 2004; tory of plant species by synthesizing the influence of both his- Oginuma 1988), distributing throughout the temperate and torical and current genetic exchange (Petit et al. 2005; Schaal warm-temperate forests in China (Yu€ 1979). As an important et al. 1998). A large number of reports have witnessed increas- fruit crop of Rosaceae, Chinese cherry has been domesticated ing applications of phylogeography in economically important and cultivated for more than 3000 years (Liu & Liu 1993; Yu€ plants and their wild relatives, such as Oryza rufipogon (Huang 1979). It is a hermaphrodite, perennial woody plant with high et al. 2012), Spartina pectinata (Kim et al. 2013), Medicago sati- levels of inbreeding rate, strong animal or gravity seed dispersal va (Sakiroglu & Brummer 2013), Camellia taliensis (Liu et al. ability as well as long intergeneration period of 3–6 years (Yu€ 2012), Triticum monococcum (Oliveira et al. 2011), Miscanthus 1979). The drupe fruit contains rich nutritional ingredients sinensis (Shimono et al. 2013). However, most of these studies and trace elements, such as vitamins, minerals, fiber and anti- only focused on domesticated annual crops, phylogeographic oxidant compounds for healthy diets, and its flower is also studies of perennial fruit crops were scarcely reported, including endowed with well-known ornamental value (Huang et al. Rosaceae species (Bai et al. 2014; Zong et al. 2014). As for 2013; Yu€ et al. 1986). Both landrace and wild populations of Chinese cherry, although our previous study has provided Plant Biology 17 (2015) 787–797 © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands 787 Phylogeographic study of Prunus pseudocerasus Chen, Chen, Luo, Huang, Zhang, Tang, Pan & Wang A B C Fig. 1. Sampling locations and haplotypes distribution of P. pseudocerasus. A: The geographic distribution of sampled populations. The landrace and wild populations are represented with circles and triangles, respectively. The dotted circles with different colors delimit different geographic regions, as shown in the key. The six geographic regions are: Daliangshan Mountain (DLSM), Sichuan Basin (SCB), Longmen Mountain (LMM), Qinba Mountain (QBM), North China Plain (NCP) and Yungui Plateau (YGP). B: The geographic distribution and frequencies of cpDNA haplotypes. C: The geographic distribution and frequencies of nrDNA haplotypes. Colors represent the different haplotypes, as shown in the key. preliminary information about the genetic variation and popu- markers, elucidate the population structure patterns, and iden- lation structure, based on a single chloroplast DNA (cpDNA) tify hot-spots of diversity to define more accurate conservation fragment (Chen et al. 2013), more data are also critical for fur- criteria; (ii) clarify the usability of ITS polymorphism status in ther understanding the phylogeographic patterns of this species. population genetic studies in the tetraploid species; and (iii) DNA sequences derived from nuclear and cytoplasmic ge- explore the long-term population dynamics that have shaped nomes play a vital role in plant phylogeographic analyses (Soltis the current population structure, determine its demographic & Soltis 1998; Zheng et al. 2008). It was reported that intergenic and evolutionary history, as well as investigate recently colo- spacers of cpDNA such as rpl32-trnL and rps16-trnQ could nized areas throughout its distribution. offer higher levels of variation, thereby frequently used to inves- tigate intraspecific genetic diversity, population genetic struc- ture and phylogeography (Shaw et al. 2005, 2007; Small et al. MATERIALS AND METHODS 2005). In addition, internal transcribed spacer (ITS) region Sampling strategy from nuclear ribosomal DNA (nrDNA) was also widely applied in plant phylogeographic and evolutionary studies (Alvarez & A total of 305 individuals from 26 natural populations were Wendel 2003). Although intra-individual ITS polymorphism collected in six geographic regions (from southwest to north of were found in non-hybrid diploid taxa, even in the same gen- China), representing almost the entire distribution range of the ome (Alvarez & Wendel 2003; Zheng et al. 2008), homogenous species in China (Fig. 1 and Table 1). These populations con- nrDNA arrays within individuals were identified in many sisted of 17 landraces and nine wild populations, with 139 and reports (Bailey et al. 2003; Zheng et al. 2008) and successfully 166 individuals, respectively. All the landraces were primarily used in many species (Wissemann & Ritz 2005; Yang et al. domesticated to best-fit local climatic, soil conditions and the 2012), including Malus (Robinson et al. 2001) and Maloideae taste preferences of the consumers over centuries. For each (Campbell et al. 2007). These markers might provide unprece- population, young and healthy leaves were randomly sampled dented opportunities to investigate genetic structure and popu- from 2 to 49 individual trees, based on available population lation history of species, particularly by means of a combined size and reproductive modes. In order to ensure adequate pop- analysis of biparentally inherited nuclear and maternally inher- ulation coverage, samples were randomly taken from about 50 ited organelle ones (Liu et al. 2012; Petit et al. 2005; Schaal et al. to 1000 m intervals in each population. Leaves were individu- 1998; Turchetto-Zolet et al. 2012; Yuan et al. 2010). ally collected in field and silica-dried instantly for subsequent In this study, a total of 26 populations from six geographical DNA extraction. regions (defined based on geographical characteristics and sub- sequent ecological and climatic types, Fig. 1 and Table 1) were DNA isolation, PCR amplification, and sequencing screened and comprehensively analyzed using biparentally inherited nuclear
Recommended publications
  • Characterization of the Complete Chloroplast Genome of the Chinese Cherry Prunus Pseudocerasus (Rosaceae)
    Conservation Genet Resour (2018) 10:85–88 DOI 10.1007/s12686-017-0770-9 TECHNICAL NOTE Characterization of the complete chloroplast genome of the Chinese cherry Prunus pseudocerasus (Rosaceae) Ying Feng1 · Tao Liu1 · Xiao‑Yu Wang1 · Bin‑Bin Li1 · Cheng‑Lin Liang1 · Yu‑Liang Cai1 Received: 3 May 2017 / Accepted: 8 May 2017 / Published online: 18 May 2017 © The Author(s) 2017. This article is an open access publication Abstract The Chinese cherry Prunus pseudocerasus is a 2016; Li and Bartholomew 2003; Li et al. 2009). P. pseu- fruit tree species with high economic and ornamental val- docerasus possesses high economic and ornamental val- ues. Many of its wild populations are under threat or even ues. As a traditional fruit with peculiar flavor, its cultiva- on the verge of extinction. Here, its complete chloroplast tion history can date back to approximately 3000 years ago genome was assembled using next-generation sequenc- in China (Liu and Liu 1993). Its fruit contains a variety of ing technology. The circular genome is 157,834 bp long, nutritional ingredients and trace elements, e.g. carotene, and contains a pair of inverted repeat (IR) regions of vitamin C, proteins, saccharides, iron and phosphorus (Yu 26,398 bp each, separated by a large single-copy (LSC) and Li 1986). It has also long been used as the rootstock for region of 85,954 bp and a small single-copy (SSC) region sweet cherry ever since the latter’s introduction into China of 19,084 bp. It encodes a total of 131 genes, including 86 (Zhang and Gu 2016).
    [Show full text]
  • Transcriptomic State Defines the Cherry Developmental Phases of Sweet
    From bud formation to flowering: transcriptomic state defines the cherry developmental phases of sweet cherry bud dormancy Noémie Vimont, Mathieu Fouche, José Antonio Campoy, Meixuezi Tong, Mustapha Arkoun, Jean-Claude Yvin, Philip Wigge, Elisabeth Dirlewanger, Sandra Cortijo, Bénédicte Wenden To cite this version: Noémie Vimont, Mathieu Fouche, José Antonio Campoy, Meixuezi Tong, Mustapha Arkoun, et al.. From bud formation to flowering: transcriptomic state defines the cherry developmental phases of sweet cherry bud dormancy. BMC Genomics, BioMed Central, 2019, 20 (1), pp.974. 10.1186/s12864- 019-6348-z. hal-02503665 HAL Id: hal-02503665 https://hal.archives-ouvertes.fr/hal-02503665 Submitted on 10 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Vimont et al. BMC Genomics (2019) 20:974 https://doi.org/10.1186/s12864-019-6348-z RESEARCH ARTICLE Open Access From bud formation to flowering: transcriptomic state defines the cherry developmental phases of sweet cherry bud dormancy Noémie Vimont1,2,3, Mathieu Fouché1, José Antonio Campoy4,5,6, Meixuezi Tong3, Mustapha Arkoun2, Jean-Claude Yvin2, Philip A. Wigge7, Elisabeth Dirlewanger1, Sandra Cortijo3* and Bénédicte Wenden1* Abstract Background: Bud dormancy is a crucial stage in perennial trees and allows survival over winter to ensure optimal flowering and fruit production.
    [Show full text]
  • Occurrence of Canker and Wood Rot Pathogens on Stone Fruit Propagation Material and Nursery Stone Fruit Trees
    OCCURRENCE OF CANKER AND WOOD ROT PATHOGENS ON STONE FRUIT PROPAGATION MATERIAL AND NURSERY STONE FRUIT TREES by RHONA VAN DER MERWE Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in the Faculty of AgriSciences at the University of Stellenbosch Supervisor: Prof L Mostert Co-supervisor: Prof F Halleen April 2019 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 14 February 2019 Sign: Rhona van der Merwe Copyright © 2019 Stellenbosch University All rights reserved II Stellenbosch University https://scholar.sun.ac.za SUMMARY The phytosanitary status of stone fruit propagation material and nursery trees in South Africa are not known. Canker and wood rot pathogens can be present in visibly clean material. Due to stress and other improper cultural practices, symptoms will be expressed and cankers, dieback of parts of the tree and possible death of the trees can be seen. Therefore, the aim of this study was to identify the fungal canker and wood rot pathogens present in propagation material and nursery stone fruit trees. Green scion shoots were collected from three plum and one nectarine cultivars and dormant scion shoots were collected from three plum cultivars.
    [Show full text]
  • Dictionary of Cultivated Plants and Their Regions of Diversity Second Edition Revised Of: A.C
    Dictionary of cultivated plants and their regions of diversity Second edition revised of: A.C. Zeven and P.M. Zhukovsky, 1975, Dictionary of cultivated plants and their centres of diversity 'N -'\:K 1~ Li Dictionary of cultivated plants and their regions of diversity Excluding most ornamentals, forest trees and lower plants A.C. Zeven andJ.M.J, de Wet K pudoc Centre for Agricultural Publishing and Documentation Wageningen - 1982 ~T—^/-/- /+<>?- •/ CIP-GEGEVENS Zeven, A.C. Dictionary ofcultivate d plants andthei rregion so f diversity: excluding mostornamentals ,fores t treesan d lowerplant s/ A.C .Zeve n andJ.M.J ,d eWet .- Wageninge n : Pudoc. -11 1 Herz,uitg . van:Dictionar y of cultivatedplant s andthei r centreso fdiversit y /A.C .Zeve n andP.M . Zhukovsky, 1975.- Me t index,lit .opg . ISBN 90-220-0785-5 SISO63 2UD C63 3 Trefw.:plantenteelt . ISBN 90-220-0785-5 ©Centre forAgricultura l Publishing and Documentation, Wageningen,1982 . Nopar t of thisboo k mayb e reproduced andpublishe d in any form,b y print, photoprint,microfil m or any othermean swithou t written permission from thepublisher . Contents Preface 7 History of thewor k 8 Origins of agriculture anddomesticatio n ofplant s Cradles of agriculture and regions of diversity 21 1 Chinese-Japanese Region 32 2 Indochinese-IndonesianRegio n 48 3 Australian Region 65 4 Hindustani Region 70 5 Central AsianRegio n 81 6 NearEaster n Region 87 7 Mediterranean Region 103 8 African Region 121 9 European-Siberian Region 148 10 South American Region 164 11 CentralAmerica n andMexica n Region 185 12 NorthAmerica n Region 199 Specieswithou t an identified region 207 References 209 Indexo fbotanica l names 228 Preface The aimo f thiswor k ist ogiv e thereade r quick reference toth e regionso f diversity ofcultivate d plants.Fo r important crops,region so fdiversit y of related wild species areals opresented .Wil d species areofte nusefu l sources of genes to improve thevalu eo fcrops .
    [Show full text]
  • The Nomenclature of Cultivated Japanese Flowering Cherries (Prunus): the Sato-Zakura Group
    The Nomenclature of Cultivated Japanese Flowering Cherries (Prunus): The Sato-zakura Group ^, United States Agricultural National IL§Ji) Department of Research Arboretum ^jgp^ Agriculture Service Contribution Number 5 Historic, archived document Do not assume content reflects current scientific knowledge, policies, or practice Abstract Jefferson, Roland M., and Kay Kazue Wain. 1984. The nomenclature of cultivated Japanese flowering cherries {Prunus): The Sato-zakura group. U.S. Department of Agriculture, National Arboretum Contribution No. 5, 44 pp. Japanese flowering cherries are grown all over the temperate world. Wherever they occur, nomenclature problems exist. Before any serious taxonomical study of this complex plant group can be made, a solution to these problems is necessary. This publication offers a logical way to solve them. For the first time, it brings existing names used for Japanese flowering cherries into conformity with the "International Code of Nomenclature for Cultivated Plants-1980" and separates selections of cultivated origin from all other botanical taxa of Prunus. Further, it provides a means for naming future Japanese flowering cherry introductions of unknown or confused origins so that their status in horticultural nomenclature is clearly established. KEYWORDS: Cherry blossoms, flowering cherries, Japanese flowering cherries, oriental flowering cherries, ornamental cherries, Prunus donarium, Prunus lannesiana, Prunus Sato-zakura group, Prunus serrulata, Sakura, Sato-zakura, Yama-zakura, zakura. The Nomenclature of Cultivated Japanese Flowering Cherries (Prunus): The Sato-zakura Group By Roland M. Jefferson and Kay Kazue Wain \ United States Agricultural National Arboretum |j Department of Research Agriculture Service Contribution Number 5 Foreword Prunus comprises 400 species growing naturally in the Northern Hemisphere. It is the genus in which all of our stone fruits are found—almonds, apricots, cherries, nectarines, peaches, and plums.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,973,216 B2 Espley Et Al
    US007973216 B2 (12) United States Patent (10) Patent No.: US 7,973,216 B2 Espley et al. (45) Date of Patent: Jul. 5, 2011 (54) COMPOSITIONS AND METHODS FOR 6,037,522 A 3/2000 Dong et al. MODULATING PGMENT PRODUCTION IN 6,074,877 A 6/2000 DHalluin et al. 2004.0034.888 A1 2/2004 Liu et al. PLANTS FOREIGN PATENT DOCUMENTS (75) Inventors: Richard Espley, Auckland (NZ); Roger WO WOO1, 59 103 8, 2001 Hellens, Auckland (NZ); Andrew C. WO WO O2/OO894 1, 2002 WO WO O2/O55658 T 2002 Allan, Auckland (NZ) WO WOO3,0843.12 10, 2003 WO WO 2004/096994 11, 2004 (73) Assignee: The New Zealand Institute for Plant WO WO 2005/001050 1, 2005 and food Research Limited, Auckland (NZ) OTHER PUBLICATIONS Bovy et al. (Plant Cell, 14:2509-2526, Published 2002).* (*) Notice: Subject to any disclaimer, the term of this Wells (Biochemistry 29:8509-8517, 1990).* patent is extended or adjusted under 35 Guo et al. (PNAS, 101: 9205-9210, 2004).* U.S.C. 154(b) by 0 days. Keskinet al. (Protein Science, 13:1043-1055, 2004).* Thornton et al. (Nature structural Biology, structural genomics (21) Appl. No.: 12/065,251 supplement, Nov. 2000).* Ngo et al., (The Protein Folding Problem and Tertiary Structure (22) PCT Filed: Aug. 30, 2006 Prediction, K. Merz., and S. Le Grand (eds.) pp. 492-495, 1994).* Doerks et al., (TIG, 14:248-250, 1998).* (86). PCT No.: Smith et al. (Nature Biotechnology, 15:1222-1223, 1997).* Bork et al. (TIG, 12:425-427, 1996).* S371 (c)(1), Vom Endt et al.
    [Show full text]
  • Genetic Relationships Among 10 Prunus Rootstock Species from China, Based on Simple Sequence Repeat Markers
    J. AMER.SOC.HORT.SCI. 141(5):520–526. 2016. doi: 10.21273/JASHS03827-16 Genetic Relationships among 10 Prunus Rootstock Species from China, Based on Simple Sequence Repeat Markers Qijing Zhang and Dajun Gu1 Liaoning Institute of Pomology, Yingkou, Liaoning 115009, People’s Republic of China ADDITIONAL INDEX WORDS. microsatellite markers, banding patterns, phylogenetic analysis, subgenus classification, rootstock breeding ABSTRACT. To improve the efficiency of breeding programs for Prunus rootstock hybrids in China, we analyzed the subgenus status and relationship of 10 Chinese rootstock species, by using 24 sets of simple sequence repeat (SSR) primers. The SSR banding patterns and phylogenetic analysis indicated that subgenus Cerasus is more closely related to subgenus Prunophora than to subgenus Amygdalus, and that subgenus Lithocerasus is more closely related to subgenus Prunophora and subgenus Amygdalus than to subgenus Cerasus. In addition, Prunus triloba was more closely related to Prunus tomentosa than to the members of subgenus Amygdalus. Therefore, we suggest that P. tomentosa and P. triloba should be assigned to the same group, either to subgenus Lithocerasus or Prunophora, and we also propose potential parent combinations for future Prunus rootstock breeding. Prunus (Rosaceae) is a large genus with significant eco- peach, whereas Prunus salicina and Prunus sibirica can be nomic importance, since it includes a variety of popular stone used as a rootstock for cherry, plum, apricot, and peach. fruit species [e.g., peach (Prunus persica), apricot (Prunus Hybridization among Prunus species has been successful and armeniaca), almond (Prunus dulcis), and sweet cherry (Prunus has been taken up as an effective strategy for improving avium)].
    [Show full text]
  • Title Functional and Expressional Analyses of Apple FLC-Like In
    Functional and expressional analyses of apple FLC-like in Title relation to dormancy progress and flower bud development. Nishiyama, Soichiro; Matsushita, Miwako Cecile; Yamane, Author(s) Hisayo; Honda, Chikako; Okada, Kazuma; Tamada, Yosuke; Moriya, Shigeki; Tao, Ryutaro Citation Tree physiology (2021), 41(4): 562-570 Issue Date 2021-04 URL http://hdl.handle.net/2433/263150 This is a pre-copyedited, author-produced PDF of an article accepted for publication in 'Tree physiology' following peer review. The version of record “Nishiyama S, Matsushita MC, Yamane H, Honda C, Okada K, Tamada Y, Moriya S, Tao R ; unctional and expressional analyses of apple FLC-like in relation to dormancy progress and flower bud Right development.Tree Physiology, 41 (4) 562‒570” is available online at: https://doi.org/10.1093/treephys/tpz111; The full-text file will be made open to the public on 14 November 2020 in accordance with publisher's 'Terms and Conditions for Self- Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。 引用の際には出版社版をご確認ご利用ください。 Type Journal Article Textversion author Kyoto University 1 Functional and expressional analyses of apple FLC-like in relation to dormancy progress and 2 flower bud development 3 4 Soichiro Nishiyama1,6, Miwako Cecile Matsushita1,6, Hisayo Yamane1, Chikako Honda2, Kazuma 5 Okada3, Yosuke Tamada4,5, Shigeki Moriya3, Ryutaro Tao1 6 1 Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan 7 2 Graduate School of Agricultural and Life Science,
    [Show full text]
  • Response of Young Sour Cherry Trees to Woodchip Mulch and Drip Irrigation
    ISSN 1691-5402 ISBN 978-9984-44-071-2 Environment. Technology. Resources Proceedings of the 8th International Scientific and Practical Conference. Volume I1 © Rēzeknes Augstskola, Rēzekne, RA Izdevniecība, 2011 RESPONSE OF YOUNG SOUR CHERRY TREES TO WOODCHIP MULCH AND DRIP IRRIGATION Daina Feldmane Latvia State Institute of Fruit Growing 1 Graudu St, Dobele, LV 3701, Latvia Ph.: +(371)26439025, e-mail: [email protected] Abstract. The productivity of sour cherries grown in Latvia is insufficient. Yielding of sour cherries can be advanced providing appropriate soil moisture and control of diseases. Cherry leaf spot as well as spur and twig blight are the most important sour cherry diseases which cause economical losses of the yield. The influence of woodchip mulch and drip irrigation on sour cherry yielding and resistance to the diseases is investigated. The drip irrigation and woodchip mulch increased the yield of cherries. The cultivar ‘Bulatnikovskaya’ was the most productive. Drip irrigation slightly improved resistance to cherry leaf spot for the cultivars ‘Zentenes’, ‘Orlica’ and ‘Tamaris’. Keywords: sour cherries, woodchip mulch, drip irrigation, spur and twig blight, cherry leaf spot. Introduction Sour cherries are distributed fruit plants in Latvia. Productivity of the sour cherries is about 5 – 7 t/ha in the countries where they are grown intensively [16]. Sour cherries often are less productive in Latvia conditions. The diseases of sour cherries are one of the factors decreasing productivity. Cherry leaf spot as well as spur and twig blight cause significant losses of the yield [1, 11]. Spur and twig blight can be caused by fungus Monilinia spp.
    [Show full text]
  • International Conference on Virus and Other Trandmissible Diseases of Fruit Crops” (ICVF)
    22nd “International Conference on Virus and Other Trandmissible Diseases of Fruit Crops” (ICVF) Rome, June 3-8, 2012 Patronage Sponsor Welcome to the 22nd “International Conference on Virus and Other Trandmissible Diseases of Fruit Crops” (ICVF) Dear Colleagues, We are very happy and honored to welcome you for the second time in Rome in 18 years to attend and par- ticipate in the 22nd International Conference on Virus and Other Graft Transmissible Diseases of Fruit Crops. Some of you (the “youngest” ones!) remember that in 1994 the Plant Pathology Research Institute hosted the 16th Symposium on Fruit Tree Virus Diseases and the 7th Symposium on Small Fruit Virus Diseases. The Meeting was a great success and we hope to offer to you the same warm hospitality as we did 18 years ago! More than 150 participants from different countries where fruit crops are economically important are here to present their most relevant scientific results obtained during the last three years. In addition to the paper and poster presentations, we have organized a round table discussion on “Diagnosis of relevant pathogens: role of National and International organizations in the frame of harmonization”. The round table, chaired by Ms Francoise Petter, EPPO assistant Director, will have the participation of scientists actively involved in this specific scientific field. Moreover, a workshop is planned to update all the Conference participants on the European Certification of fruit tree and small fruit crops. It will have the active participation of invited experts from different countries who are deeply involved in the establishment of legal, scientific and operative aspects aimed at improving the phytosanitary quality of fruit tree and small fruit propagative material and at reducing the risk of pest spread- ing through the commercialization of infected germplasm.
    [Show full text]
  • Growth and Fruit Bearing of the Sweet Cherry (Prunus Avium L
    African Journal of Biotechnology Vol. 10(24), pp. 4901-4906, 6 June, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.278 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Growth and yield of the sweet cherry (Prunus avium L.) as affected by training system Mira Radunić1*, Anamarija Jazbec2, Marija Pecina3, Tomislav Čosić3 and Nikola Pavičić3 1Institute for Adriatic Crops and Karst Reclamation Split, Put Duilova 11, 21000 Split, Croatia. 2Faculty of Forestry, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia. 3Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia. Accepted 9 March, 2011 Modern intensive production of sweet cherry (Prunus avium L.) tends to planting of high quality cultivars on the dwarfing rootstocks in high density orchards. The most productive training system is used, providing an ideal condition for undisturbed growth and yield. The main objective of this study was to determine the best training system of sweet cherry, considering regular and high yields and fruit quality. The three-year study was carried out on a 4-years old sweet cherry orchard with cultivar summit grafted on the dwarfing rootstock Tabel ® Edabriz. Three different training systems (Spanish bush, Spindle bush and "V") were compared. The smaller vegetative growth, expressed as trunk cross- sectional area (TCSA) was recorded in Spanish bush (34.68 cm2) when compared to Spindle bush (40.11 cm2) and "V" (40.82 cm2). The largest cumulative yield per hectare was gotten by the training system "V" (41.65 t/ha), followed by Spindle bush (21.12 t/ha) and Spanish bush (11.30 t/ha).
    [Show full text]
  • Omics Studies of Citrus, Grape and Rosaceae Fruit Trees
    Breeding Science 66: 122–138 (2016) doi:10.1270/jsbbs.66.122 Review Omics studies of citrus, grape and rosaceae fruit trees Katsuhiro Shiratake*1) and Mami Suzuki1,2) 1) Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan 2) Present address: Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo, Habikino, Osaka 583-0862, Japan Recent advance of bioinformatics and analytical apparatuses such as next generation DNA sequencer (NGS) and mass spectrometer (MS) has brought a big wave of comprehensive study to biology. Comprehensive study targeting all genes, transcripts (RNAs), proteins, metabolites, hormones, ions or phenotypes is called geno- mics, transcriptomics, proteomics, metabolomics, hormonomics, ionomics or phenomics, respectively. These omics are powerful approaches to identify key genes for important traits, to clarify events of physiological mechanisms and to reveal unknown metabolic pathways in crops. Recently, the use of omics approach has increased dramatically in fruit tree research. Although the most reported omics studies on fruit trees are tran- scriptomics, proteomics and metabolomics, and a few is reported on hormonomics and ionomics. In this arti- cle, we reviewed recent omics studies of major fruit trees, i.e. citrus, grapevine and rosaceae fruit trees. The effectiveness and prospects of omics in fruit tree research will as well be highlighted. Key Words: citrus, grapevine, metabolomics, omics, proteomics, rosaceae fruit tree, transcriptomics. Introduction have been identified by these approaches. For the model plant, Arabidopsis, a precise genome se- In the last two decades, comprehensive studies called om- quence data and gene prediction with substantial anno- ics, have been applied on model plant study and has contrib- tations are provided and a vast omics data, especially uted enormously in plant science.
    [Show full text]