Final Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Skeletal Development and Mineralization Pattern of The
e Rese tur arc ul h c & a u D q e A v e f l o o Mesa-Rodríguez et al., J Aquac Res Development 2014, 5:6 l p a m n Journal of Aquaculture r e u n o t DOI: 10.4172/2155-9546.1000266 J ISSN: 2155-9546 Research & Development Research Article OpenOpen Access Access Skeletal Development and Mineralization Pattern of the Vertebral Column, Dorsal, Anal and Caudal Fin Complex in Seriola Rivoliana (Valenciennes, 1833) Larvae Mesa-Rodríguez A*, Hernández-Cruz CM, Socorro JA, Fernández-Palacios H, Izquierdo MS and Roo J Aquaculture Research Group, Science and Technology Park, University of Las Palmas de Gran Canaria, P. O. Box 56, 35200 Telde, Canary Islands, Spain Abstract Bone and fins development in Seriola rivoliana were studied from cleared and stained specimens from 3 to 33 days after hatching. The vertebral column began to mineralize in the neural arches at 4.40 ± 0.14 mm Standard Length (SL), continued with the haemal arches and centrums following a cranial-caudal direction. Mineralization of the caudal fin structures started with the caudal rays by 5.12 ± 0.11 mm SL, at the same time that the notochord flexion occurs. The first dorsal and anal fin structures were the hard spines (S), and lepidotrichium (R) by 8.01 ± 0.26 mm SL. The metamorphosis was completed by 11.82 ± 0.4 mm SL. Finally, the fin supports (pterygiophores) and the caudal fins were completely mineralized by 16.1 ± 0.89 mm SL. In addition, the meristic data of 23 structures were provided. -
Skin Injuries Contribute to Nocardiosis in Japanese Amberjack Seriola
魚病研究 Fish Pathology, 54 (3), 64–67, 2019. 9 © 2019 The Japanese Society of Fish Pathology Short communication expected, which is currently in experimental conditions (Kato et al., 2014). For the moment, control of this dis- Skin Injuries Contribute to ease largely depends on the culture techniques to avoid infection. Nocardiosis in Japanese It has long been suspected that Japanese amber- Amberjack Seriola quinqueradiata jack (=yellowtail) Seriola quinqueradiata with skin inju- ries are vulnerable to N. seriolae infection (Kusuda and Nakagawa, 1978). Matsuzato (1978) speculated that Yasuyuki Miyoshi1, Yutaka Fukuda2 injuries of the skin and the gills induced by the monoge- 3* and Kazuo Ogawa neans Benedenia seriolae and Heteraxine heterocerca, 1 respectively, can form a portal of entry by N. seriolae. Oita Prefecture Southern Region Bureau, However, no experimental evidence has been presented Oita 876-0813, Japan on the involvement of injuries and monogenean infesta- 2Fisheries Research Division, Oita Prefectural Agriculture, tions in the N. seriolae infection of amberjacks. In this Forestry and Fisheries Research Center, paper, we examined experimentally 1) if physical injuries Oita 879-2602, Japan of the skin induce N. seriolae infection of Japanese 3Meguro Parasitological Museum, amberjack, and 2) how the infestation of B. seriolae, a Tokyo 153-0064, Japan ubiquitous skin parasite among amberjacks cultured in net cages (Ogawa and Shirakashi, 2017), contributes to (Received July 12, 2019) the progression of nocardiosis. ABSTRACT―We examined how mechanical damages to Materials and Methods the skin and the infestation of the monogenean Benedenia Fish used in the experiments seriolae on the skin affected Nocardia seriolae infection in 0-year-old wild-caught seedlings of Japanese Japanese amberjack Seriola quinqueradiata. -
Notice Calling for Suggestions, Views, Comments Etc from WTO- SPS Committee Members Within a Period of 60 Days on the Draft Noti
Notice Calling for suggestions, views, comments etc from WTO- SPS Committee members within a period of 60 days on the draft notification related to Standards for list of Histamine Forming Fish Species and limits of Histamine level for Fish and Fishery Products. 1. In the Food Safety and Standards (Contaminants, toxins and Residues) Regulations, 2011, in regulation 2.5, relating to “Other Contaminants”, after sub-regulation 2.5.1 the following sub-regulation shall be inserted, namely:- “2.5.2 Histamine in Fish and Fishery Products contaminants, Toxins and Residues 1. Fish species having potential to cause histamine poisoning Sl.No. Family Scientific Name Common Name 1. Carangidae Alectis indica Indian Threadfish Alepes spp. Scad Atropus atropos Cleftbelly trevally Carangoides Yellow Jack bartholomaei Carangoides spp. Trevally Caranx crysos Blue runner Caranx spp. Jack/Trevally Decapterus koheru Koheru Decapterus russelli Indian scad Decapterus spp. Scad Elagatis bipinnulata Rainbow Runner Megalaspis cordyla Horse Mackerel/Torpedo Scad Nematistius pectoralis Roosterfish Oligoplites saurus Leather Jacket Pseudocaranx dentex White trevally Sl.No. Family Scientific Name Common Name Scomberoides Talang queenfish commersonnianus Scomberoides spp. Leather Jacket/Queen Fish Selene spp. Moonfish Seriola dumerili Greater/Japanese Amberjack or Rudder Fish Seriola lalandi Yellowtail Amberjack Seriola quinqueradiata Japanese Amberjack Seriola rivoliana Longfin Yellowtail Seriola spp. Amberjack or Yellowtail Trachurus capensis Cape Horse Mackerel Trachurus japonicas Japanese Jack Mackerel Trachurus murphyi Chilean Jack Mackerel Trachurus Yellowtail Horse Mackerel novaezelandiae Trachurus spp. Jack Mackerel/Horse Mackerel Trachurus trachurus Atlantic Horse Mackerel Uraspis secunda Cottonmouth jack 2. Chanidae Chanos chanos Milkfish 3. Clupeidae Alosa pseudoharengus Alewife Alosa spp. Herring Amblygaster sirm Spotted Sardinella Anodontostoma chacunda Chacunda gizzard shad Brevoortia patronus Gulf Menhaden Brevoortia spp. -
Bibliography Review on Reproduction of the Most Important Fish Species of the Genus Seriola
BIBLIOGRAPHY REVIEW ON REPRODUCTION OF THE MOST IMPORTANT FISH SPECIES OF THE GENUS SERIOLA Final Degree Work of Degree in Marine Sciences Author: Nuria Esther Marrero Sánchez Academic Tutor: José Manuel Vergara Martin Cotutor: Hipólito Fernández-Palacios Barber Course 2016/2017 BIBLIOGRAPHY REVIEW ON REPRODUCTION OF THE MOST IMPORTANT FISH SPECIES OF THE GENUS SERIOLA. Nuria Esther Marrero Sánchez The title of the work is: BIBLIOGRAPHY REVIEW ON REPRODUCTION OF THE MOST IMPORTANT FISH SPECIES OF THE GENUS SERIOLA The student author of the work is Nuria Esther Marrero Sánchez, student of Degree in Marine Sciences at the University of Las Palmas de Gran Canaria. The academic tutor is José Manuel Vergara Martín, teacher at the University of Las Palmas de Gran Canaria. The cotutor is Hipólito Fernández-Palacios Barber, researcher at ECOAQUA -ULPGC institution. ~ 2 ~ BIBLIOGRAPHY REVIEW ON REPRODUCTION OF THE MOST IMPORTANT FISH SPECIES OF THE GENUS SERIOLA. Nuria Esther Marrero Sánchez Index Pages 1. Introduction ........................................................................................................ 4 2. Characteristics of the Genus Seriola................................................................... 5 2.1. Description of Seriola dumerili.................................................................... 6 2.2. Description of Seriola lalandi...................................................................... 7 2.3. Description of Seriola quinqueradiata......................................................... 8 2.4. -
Parasitic Copepods of Marine Fish Cultured in Japan: a Review Kazuya Nagasawa*
Journal of Natural History, 2015 Vol. 49, Nos. 45–48, 2891–2903, http://dx.doi.org/10.1080/00222933.2015.1022615 Parasitic copepods of marine fish cultured in Japan: a review Kazuya Nagasawa* Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan (Received 22 September 2014; accepted 4 February 2015; first published online 29 June 2015) This paper reviews aspects of the biology of copepods infecting marine fish commer- cially cultured at fish farms or held as broodstock at governmental hatcheries in Japan. In total, 20 species of parasitic copepods have been reported from these fish: they are mostly caligids (12 spp.), followed by lernaeopodids (4 spp.), pennellid (1 sp.), chondracanthid (1 sp.), taeniacanthid (1 sp.), and unidentified species (1 sp.). The identified copepods are: Caligus fugu, C. lagocephalus, C. lalandei, C. latigenitalis, C. longipedis, C. macarovi, C. orientalis, C. sclerotinosus, C. spinosus, Lepeophtheirus longiventralis, L. paralichthydis, L. salmonis (Caligidae); Alella macrotrachelus, Clavella parva, Parabrachiella hugu, P. seriolae (Lernaeopodidae); Peniculus minuti- caudae (Pennellidae); Acanthochondria priacanthi (Chondracanthidae); and Biacanthus pleuronichthydis (Taeniacanthidae). The fish recorded as hosts include carangids (4 spp.), sparids (2 spp.), monacanthids (2 spp.), salmonids (2 spp.), scom- brid (1 sp.), tetraodontid (1 sp.), pleuronectid (1 sp.), paralichthyid (1 sp.), and trichodontid (1 sp.). Only five species (C. orientalis, L. longiventralis, L. salmonis, C. parva and A. priacanthi) parasitize farmed fish in subarctic waters, while all other species (15 spp.) infect farmed fish in temperate waters. No information is yet avail- able on copepods from fish farmed in subtropical waters. Three species of Caligus (C. fugu, C. sclerotinosus and C. -
Opportunities for Sustainable Fisheries in Japan
OPPORTUNITIES FOR SUSTAINABLE FISHERIES IN JAPAN O2 REPORT: OPPORTUNITIES FOR SUSTAINABLE FISHERIES IN JAPAN JANUARY 2016 THIS REPORT OFFERS PRACTICAL RECOMMENDATIONS TO HELP RESTORE FISHERIES AND COASTAL FISHING COMMUNITIES ACROSS THE JAPANESE ARCHIPELAGO © Ana Chang 2 CONTENT Introduction/Summary 4 State of Japanese Fisheries 5 The Japanese Seafood Supply Chain 8 Seafood Supply Chain - Upstream 8 Seafood Supply Chain - Downstream 9 Seafood Imports/Exports 11 Species in Focus: Tuna Supply Chain 12 Policy/Management 14 Sustainable Seafood in Japan 17 Survey of Japanese Consumers 17 Survey of Japanese Fishermen/Managers 18 Recommendations 19 References 21 Addendum: Rapid Assessments of Eleven Japanese Fisheries 3 Introduction/Summary If you want to witness a display of marine abundance and diversity unrivaled nearly anywhere on planet earth, don’t go to the Coral Triangle. Instead, head straight to the heart of Tokyo, grab your rubber boots and take a stroll through the cavernous Tsukiji fish market. From wild Kamchatka sockeye salmon to giant tuna from the Mediterranean to Maine lobster, Tsukiji sells it all in the largest seafood market in the world. The freshest and highest quality seafood in Tsukiji still comes from waters sur- rounding the Japanese archipelago, which hold some of the most productive fishing grounds on the planet. But domestic fisheries have been in decline for decades, due to overfishing, degraded ecosystems, and negative socio-economic factors. For the average Japanese consumer, this decline has caused higher prices at the market and increasing difficulties in enjoying traditional “washoku” food items. “Unagi” (eel), for example, went from a peak commercial catch of 232 metric tons in 1963 to a measly 5 tons by 2011.1 Meanwhile, the price quadrupled in the last decade alone. -
Montreal: Complete List of Seafood Samples
Montreal: complete list of seafood samples Sold as Identified As Common name Mislabelled Purchase (label/menu/server) (Acceptable location CFIA Fish List market names) Yellowtail Rhomboplites Vermillion Snapper Yes Restaurant aurorubens Sea Bass Dicentrarchus labrax Sea Bass No Restaurant Snapper Rachycentron canadum Cobia Yes Restaurant Loup de mer Dicentrarchus labrax Sea Bass Yes Restaurant Cod, Wild Atlantic Gadus morhua Atlantic Cod No Grocery store Cod, Pacific Gadus macrocephalus Pacific Cod, Grey Cod, No Grocery store Cod Snapper/Vivaneau rouge Pristipomoides Not on the CFIA Fish List Yes Grocery store filamentosus Salmon, Fresh Sockeye Oncorhynchus nerka Sockeye Salmon No Grocery store Cod, Fresh Pacific Gadus macrocephalus Pacific Cod, Grey Cod, No Grocery store Cod Salmon, Chinook Pacific Oncorhynchus Chinook Salmon No Grocery store tshawytscha Dover Sole Hippoglossoides Flounder, Sole, Flathead Yes Grocery store elassodon Sole Lavraki, Mediterranean Dicentrarchus labrax Sea Bass Yes Restaurant Lithrinin Pagellus erythrinus Not on the CFIA Fish List Yes Restaurant Sole, Wild, Fresh Hippoglossoides Sole No Grocery store elassodon Cod, Wild, Fresh Atlantic Gadus morhua Atlantic Cod No Grocery store Seabass, European Dicentrarchus labrax Sea Bass No Restaurant Snapper, red (Tai/vivaneau) Oreochromis niloticus Nile Tilapia Yes Restaurant Cod/Morue Gadus macrocephalus Pacific Cod, Grey Cod, No Grocery store Cod Striped bass Dicentrarchus labrax Sea Bass Yes Restaurant Crevette Boréale, Crevette, Crevette Rose, Crevette D'eau Crevettes -
Training Manual Series No.15/2018
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”. -
Increased Parasite Resistance of Greater Amberjack (Seriola Dumerili
Fish and Shellfish Immunology 86 (2019) 35–45 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Increased parasite resistance of greater amberjack (Seriola dumerili Risso 1810) juveniles fed a cMOS supplemented diet is associated with T upregulation of a discrete set of immune genes in mucosal tissues ∗ Álvaro Fernández-Monteroa, , Silvia Torrecillasa, Marisol Izquierdoa, María José Caballeroa, Douglas John Milneb, Christopher John Secombesb, John Sweetmanc, Polyana Da Silvad, Félix Acostaa, Daniel Monteroa a Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214, Telde, Las Palmas, Canary Islands, Spain b Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, Scotland, AB24 2TZ,UK c Alltech Aqua, Cephalonia, Greece d Skretting, Stavanger, Norway ARTICLE INFO ABSTRACT Keywords: The main objective of this study was to determine the effect of two forms of mannan oligosaccharides (MOS: Bio- ® ® MOS Mos and cMOS: Actigen , Alltech Inc, USA) and their combination on greater amberjack (Seriola dumerili) Prebiotics growth performance and feed efficiency, immune parameters and resistance against ectoparasite (Neobenedenia − − MALT girellae) infection. Fish were fed for 90 days with 5 g kg 1 MOS, 2 g kg 1 cMOS or a combination of both pre- Amberjack biotics, in a Seriola commercial base diet (Skretting, Norway). At the end of the feeding period, no differences Ectoparasites were found in growth performance or feed efficiency. Inclusion of MOS also had no effect on lysozyme activity in Cytokines skin mucus and serum, but the supplementation of diets with cMOS induced a significant increase of serum bactericidal activity. -
The Japanese Market for Seafood
GLOBEFISH RESEARCH PROGRAMME Food and Agriculture Organization of the United Nations Fisheries and Aquaculture Policy and Economics Division The Japanese market for Products, Trade and Marketing Branch Viale delle Terme di Caracalla 00153 Rome, Italy seafood Tel.: +39 06 5705 2884 Fax: +39 06 5705 3020 www.globefish.org Volume 117 GRP117coverB5.indd 1 04/02/2015 11:39:02 The Japanese market for seafood by Andreas Kamoey (January, 2015) The GLOBEFISH Research Programme is an activity initiated by FAO's Products, Trade and Marketing Branch, Fisheries and Aquaculture Policy and Economics Division, Rome, Italy and it is partly financed by its Partners and Associate Members. For further information please refer to www.globefish.org The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. Andreas KAMOEY, GLOBEFISH intern. THE JAPANESE MARKET FOR SEAFOOD. GLOBEFISH Research Programme, Vol. 117, Rome, FAO 2015. 45p. Japan remains one of the world’s largest consumers of fish and seafood products, with considerable dependence on foreign fisheries resources, initially through the operation of its distant water fishing fleets, and later through imports. -
Australia: Reconstructing Estimates of Total Fisheries Removal, 1950-2010
Fisheries Centre The University of British Columbia Working Paper Series Working Paper #2015 - 02 Australia: Reconstructing estimates of total fisheries removal, 1950-2010 Kristin Kleisner, Ciara Brennan, Anna Garland, Stephanie Lingard, Sean Tracey, Phil Sahlqvist, Angelo Tsolos, Daniel Pauly, and Dirk Zeller Year: 2015 Email: [email protected] ; [email protected] This working paper is made available by the Fisheries Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. Australia - Kleisner et al. 1 AUSTRALIA: RECONSTRUCTING ESTIMATES OF TOTAL FISHERIES REMOVALS 1950-2010 Kristin Kleisnera, Ciara Brennana, Anna Garlandb, Stephanie Lingarda, Sean Traceyc, Phil Sahlqvistd, Angelo Tsolose, Daniel Paulya, and Dirk Zellera a Sea Around Us, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, V6T 1Z4, Canada b Fisheries Queensland, Department of Agriculture, Fisheries and Forestry, GPO Box 46, Brisbane, Qld 4001, Australia c Institute for Marine and Antarctic Studies, University of Tasmania, Private bag 49, Hobart, Tasmania 7001, Australia d Fisheries and Risk Analysis Branch, ABARES, GPO Box 1563, Canberra ACT 2601, Australia e SARDI SA Aquatic Sciences Centre, Fisheries – Information Services, PO Box 120, Henley Beach, SA 5022 Australia [email protected]; kristen.kleisner @noaa.gov; c [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] ; [email protected] ABSTRACT Australia’s commercial fisheries are of significant value to the Australian economy, with the twenty Commonwealth fisheries alone worth around AUD$320 million in production value. -
Intrinsic Vulnerability in the Global Fish Catch
The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae