AAV-Mediated Gene Augmentation Therapy Restores Critical Functions in Mutant Ipsc
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Organ Level Protein Networks As a Reference for the Host Effects of the Microbiome
Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Organ level protein networks as a reference for the host effects of the microbiome 2 3 Robert H. Millsa,b,c,d, Jacob M. Wozniaka,b, Alison Vrbanacc, Anaamika Campeaua,b, Benoit 4 Chassainge,f,g,h, Andrew Gewirtze, Rob Knightc,d, and David J. Gonzaleza,b,d,# 5 6 a Department of Pharmacology, University of California, San Diego, California, USA 7 b Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 8 California, USA 9 c Department of Pediatrics, and Department of Computer Science and Engineering, University of 10 California, San Diego California, USA 11 d Center for Microbiome Innovation, University of California, San Diego, California, USA 12 e Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State 13 University, Atlanta, GA, USA 14 f Neuroscience Institute, Georgia State University, Atlanta, GA, USA 15 g INSERM, U1016, Paris, France. 16 h Université de Paris, Paris, France. 17 18 Key words: Microbiota, Tandem Mass Tags, Organ Proteomics, Gnotobiotic Mice, Germ-free Mice, 19 Protein Networks, Proteomics 20 21 # Address Correspondence to: 22 David J. Gonzalez, PhD 23 Department of Pharmacology and Pharmacy 24 University of California, San Diego 25 La Jolla, CA 92093 26 E-mail: [email protected] 27 Phone: 858-822-1218 28 1 Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 29 Abstract 30 Connections between the microbiome and health are rapidly emerging in a wide range of 31 diseases. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Molecular Signatures in IASLC/ATS/ERS Classified Growth Patterns of Lung Adenocarcinoma
RESEARCH ARTICLE Molecular signatures in IASLC/ATS/ERS classified growth patterns of lung adenocarcinoma 1 1 1,2 1¤a Heike ZabeckID *, Hendrik Dienemann , Hans Hoffmann , Joachim Pfannschmidt , Arne Warth2,3, Philipp A. Schnabel3¤b, Thomas Muley2,4, Michael Meister2,4, Holger SuÈ ltmann2,5, Holger FroÈ hlich6, Ruprecht Kuner2,5¤c, Felix Lasitschka3 1 Department of Thoracic Surgery, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany, 2 Translational Lung Research Centre Heidelberg (TLRC-H), German Centre for Lung Research (DZL), a1111111111 Heidelberg, Germany, 3 Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany, a1111111111 4 Translational Research Unit (STF), Thoraxklinik, University of Heidelberg, Heidelberg, Germany, 5 Cancer a1111111111 Genome Research (B063), German Cancer Research Center (DKFZ) and German Cancer Consortium a1111111111 (DKTK), Heidelberg, Germany, 6 Institute for Computer Science, c/o Bonn-Aachen International Center for a1111111111 IT, Algorithmic Bioinformatics, University of Bonn, Bonn, Germany ¤a Current address: Department of Thoracic Surgery, Lung Clinic Heckeshorn at HELIOS Hospital Emil von Behring, Berlin, Germany ¤b Current address: Institute of Pathology, Saarland University, Homburg/Saar, Germany ¤c Current address: TRONÐTranslational Oncology at the University Medical Center of Johannes OPEN ACCESS Gutenberg University, Mainz, Germany * [email protected] Citation: Zabeck H, Dienemann H, Hoffmann H, Pfannschmidt J, Warth A, Schnabel PA, et al. (2018) Molecular signatures in IASLC/ATS/ERS classified growth patterns of lung adenocarcinoma. Abstract PLoS ONE 13(10): e0206132. https://doi.org/ 10.1371/journal.pone.0206132 Editor: Stefania Crispi, Institute for Bioscience and Background Biotechnology Research, ITALY The current classification of human lung adenocarcinoma defines five different histological Received: April 4, 2018 growth patterns within the group of conventional invasive adenocarcinomas. -
Nuclear PTEN Safeguards Pre-Mrna Splicing to Link Golgi Apparatus for Its Tumor Suppressive Role
ARTICLE DOI: 10.1038/s41467-018-04760-1 OPEN Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role Shao-Ming Shen1, Yan Ji2, Cheng Zhang1, Shuang-Shu Dong2, Shuo Yang1, Zhong Xiong1, Meng-Kai Ge1, Yun Yu1, Li Xia1, Meng Guo1, Jin-Ke Cheng3, Jun-Ling Liu1,3, Jian-Xiu Yu1,3 & Guo-Qiang Chen1 Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are 1234567890():,; largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers. 1 Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 2 Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China. -
Targeted Exome Capture and Sequencing Identifies Novel
Open Access Research BMJ Open: first published as 10.1136/bmjopen-2013-004030 on 7 November 2013. Downloaded from Targeted exome capture and sequencing identifies novel PRPF31 mutations in autosomal dominant retinitis pigmentosa in Chinese families Liping Yang,1 Xiaobei Yin,2 Lemeng Wu,1 Ningning Chen,1 Huirong Zhang,1 Genlin Li,2 Zhizhong Ma1 To cite: Yang L, Yin X, Wu L, ABSTRACT et al Strengths and limitations of this study . Targeted exome capture Objectives: To identify disease-causing mutations in and sequencing identifies two Chinese families with autosomal dominant retinitis ▪ The HEDEP based on targeted exome capture novel PRPF31 mutations in pigmentosa (adRP). autosomal dominant retinitis technology is an efficient method for molecular pigmentosa in Chinese Design: Prospective analysis. diagnosis in adRP patients. families. BMJ Open 2013;3: Patients: Two Chinese adRP families underwent ▪ Both mutations result in premature termination e004030. doi:10.1136/ genetic diagnosis. A specific hereditary eye disease codons before the last exon, thus insufficient bmjopen-2013-004030 enrichment panel (HEDEP) based on targeted exome functioning due to haploinsufficiency instead of capture technology was used to collect the protein aberrant function of the mutated proteins seems ▸ Prepublication history and coding regions of targeted 371 hereditary eye disease to be the most probably reason in these two additional material for this genes; high throughput sequencing was done with the families. However no experiment was done to paper is available online. To Illumina HiSeq 2000 platform. The identified variants prove it in this study. view these files please visit were confirmed with Sanger sequencing. the journal online Setting: All experiments were performed in a large (http://dx.doi.org/10.1136/ laboratory specialising in genetic studies in the bmjopen-2013-004030). -
The Alter Retina: Alternative Splicing of Retinal Genes in Health and Disease
International Journal of Molecular Sciences Review The Alter Retina: Alternative Splicing of Retinal Genes in Health and Disease Izarbe Aísa-Marín 1,2 , Rocío García-Arroyo 1,3 , Serena Mirra 1,2 and Gemma Marfany 1,2,3,* 1 Departament of Genetics, Microbiology and Statistics, Avda. Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain; [email protected] (I.A.-M.); [email protected] (R.G.-A.); [email protected] (S.M.) 2 Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Universitat de Barcelona, 08028 Barcelona, Spain 3 Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain * Correspondence: [email protected] Abstract: Alternative splicing of mRNA is an essential mechanism to regulate and increase the diversity of the transcriptome and proteome. Alternative splicing frequently occurs in a tissue- or time-specific manner, contributing to differential gene expression between cell types during development. Neural tissues present extremely complex splicing programs and display the highest number of alternative splicing events. As an extension of the central nervous system, the retina constitutes an excellent system to illustrate the high diversity of neural transcripts. The retina expresses retinal specific splicing factors and produces a large number of alternative transcripts, including exclusive tissue-specific exons, which require an exquisite regulation. In fact, a current challenge in the genetic diagnosis of inherited retinal diseases stems from the lack of information regarding alternative splicing of retinal genes, as a considerable percentage of mutations alter splicing Citation: Aísa-Marín, I.; or the relative production of alternative transcripts. Modulation of alternative splicing in the retina García-Arroyo, R.; Mirra, S.; Marfany, is also instrumental in the design of novel therapeutic approaches for retinal dystrophies, since it G. -
Mrna Editing, Processing and Quality Control in Caenorhabditis Elegans
| WORMBOOK mRNA Editing, Processing and Quality Control in Caenorhabditis elegans Joshua A. Arribere,*,1 Hidehito Kuroyanagi,†,1 and Heather A. Hundley‡,1 *Department of MCD Biology, UC Santa Cruz, California 95064, †Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and ‡Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405 ABSTRACT While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes. KEYWORDS Caenorhabditis elegans; splicing; RNA editing; RNA modification; polyadenylation; quality control; WormBook TABLE OF CONTENTS Abstract 531 RNA Editing and Modification 533 Adenosine-to-inosine RNA editing 533 The C. elegans A-to-I editing machinery 534 RNA editing in space and time 535 ADARs regulate the levels and fates of endogenous dsRNA 537 Are other modifications present in C. -
Pumilio Proteins Regulate Translation in Embryonic Stem Cells and Are Essential for Early Embryonic Development Katherine Elizabeth Uyhazi Yale University
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 12-2012 Pumilio Proteins Regulate Translation in Embryonic Stem Cells and are Essential for Early Embryonic Development Katherine Elizabeth Uyhazi Yale University. Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Part of the Medicine and Health Sciences Commons Recommended Citation Uyhazi, Katherine Elizabeth, "Pumilio Proteins Regulate Translation in Embryonic Stem Cells and are Essential for Early Embryonic Development" (2012). Yale Medicine Thesis Digital Library. 2189. http://elischolar.library.yale.edu/ymtdl/2189 This Open Access Dissertation is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. ABSTRACT Pumilio Proteins Regulate Translation in Embryonic Stem Cells and are Essential for Early Embryonic Development Katherine E. Uyhazi 2012 Embryonic stem (ES) cells are defined by their dual abilities to self-renew and to differentiate into any cell type in the body. This vast potential is precisely controlled by spatial and temporal gene regulation at transcriptional, post-transcriptional, and epigenetic levels. Recent studies have revealed several transcription factors that are essential for stem cell self-renewal and pluripotency, but the role of translational control in ES cells is poorly understood. Translational control is a fundamental mechanism of gene regulation during early development, and likely explains the discrepancies between the transcriptome and proteome profiles of stem cells and their differentiated progeny. -
Disrupted Alternative Splicing for Genes Implicated in Splicing and Ciliogenesis Causes PRPF31 Retinitis Pigmentosa
ARTICLE DOI: 10.1038/s41467-018-06448-y OPEN Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa Adriana Buskin et al.# Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non- 1234567890():,; syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31- mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31+/− mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31+/− mouse retinae and RPE. Mis-splicing of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE defects that include disrupted apical – basal polarity, reduced trans-epithelial resistance and phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology also occurred in patient-derived photoreceptors, associated with progressive degeneration and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future therapeutic strategies. Correspondence and requests for materials should be addressed to S.-N.G. (email: [email protected]) or to C.A.J. (email: [email protected]) or to M.L. (email: [email protected]). #A full list of authors and their affliations appears at the end of the paper. NATURE COMMUNICATIONS | (2018) 9:4234 | DOI: 10.1038/s41467-018-06448-y | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06448-y etinitis pigmentosa (RP) is one of the most common c.522_527+10del heterozygous mutation (Supplementary Rinherited forms of retinal blindness with a prevalence of Data 1). -
RBMX Family Proteins Connect the Fields of Nuclear RNA Processing
International Journal of Biochemistry and Cell Biology 108 (2019) 1–6 Contents lists available at ScienceDirect International Journal of Biochemistry and Cell Biology journal homepage: www.elsevier.com/locate/biocel RBMX family proteins connect the fields of nuclear RNA processing, disease and sex chromosome biology T ⁎ David J. Elliott , Caroline Dalgliesh, Gerald Hysenaj, Ingrid Ehrmann Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK ARTICLE INFO ABSTRACT Keywords: RBMX is a ubiquitously expressed nuclear RNA binding protein that is encoded by a gene on the X chromosome. RNA splicing RBMX belongs to a small protein family with additional members encoded by paralogs on the mammalian Y Gene expression chromosome and other chromosomes. These RNA binding proteins are important for normal development, and Brain development also implicated in cancer and viral infection. At the molecular level RBMX family proteins contribute to splicing Testis control, transcription and genome integrity. Establishing what endogenous genes and pathways are controlled by Cancer RBMX and its paralogs will have important implications for understanding chromosome biology, DNA repair and mammalian development. Here we review what is known about this family of RNA binding proteins, and identify important current questions about their functions. 1. Introduction et al., 1993). While RBMX is expressed ubiquitously through the body, RBMY genes are specifically expressed in germ cells (cells that even- RBMX (an acronym of RNA Binding Motif protein, X-linked) was tually develop into sperm). Multiple RBMY genes are present on the originally identified as one of a functionally diverse group of nuclear long arm of the human Y chromosome, each encoding 496 amino acid proteins that bind to polyadenylated RNA. -
Premature Termination Codons in PRPF31 Cause Retinitis Pigmentosa Via Haploinsufficiency Due to Nonsense-Mediated Mrna Decay Thomas Rio Frio,1 Nicholas M
Research article Premature termination codons in PRPF31 cause retinitis pigmentosa via haploinsufficiency due to nonsense-mediated mRNA decay Thomas Rio Frio,1 Nicholas M. Wade,1 Adriana Ransijn,1 Eliot L. Berson,2 Jacques S. Beckmann,1,3 and Carlo Rivolta1 1Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland. 2Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Boston, Massachusetts, USA. 3Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland. Dominant mutations in the gene encoding the mRNA splicing factor PRPF31 cause retinitis pigmentosa, a hereditary form of retinal degeneration. Most of these mutations are characterized by DNA changes that lead to premature termination codons. We investigated 6 different PRPF31 mutations, represented by single-base substitutions or microdeletions, in cell lines derived from 9 patients with dominant retinitis pigmentosa. Five of these mutations lead to premature termination codons, and 1 leads to the skipping of exon 2. Allele-specific measurement of PRPF31 transcripts revealed a strong reduction in the expression of mutant alleles. As a conse- quence, total PRPF31 protein abundance was decreased, and no truncated proteins were detected. Subnuclear localization of the full-length PRPF31 that was present remained unaffected. Blocking nonsense-mediated mRNA decay significantly restored the amount of mutant PRPF31 mRNA but did not restore the synthesis of mutant proteins, even in conjunction with inhibitors of protein degradation pathways. Our results indicate that most PRPF31 mutations ultimately result in null alleles through the activation of surveillance mechanisms that inactivate mutant mRNA and, possibly, proteins. Furthermore, these data provide compelling evidence that the pathogenic effect of PRPF31 mutations is likely due to haploinsufficiency rather than to gain of function. -
Transmitimijeni Vector Kits Identified Vector???? Hits ?? ???? ???? ???? ?? ?? ?? ?????Identified ??? : : ??? ?? ? 900000 I
US 20190255192A1 ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2019 /0255192 A1 KIRN et al. (43 ) Pub. Date : Aug . 22, 2019 ( 54 ) ADENO - ASSOCIATED VIRUS VARIANT CO7K 14 /005 ( 2006 .01 ) CAPSIDS AND METHODS OF USE THEREOF A61P 27/ 02 (2006 .01 ) (71 ) Applicant : 4D MOLECULAR THERAPEUTICS A61K 9 / 00 (2006 . 01) INC . , Emeryville, CA (US ) 2 ) U . S . CI. CPC . .. .. A61K 48 / 0016 ( 2013 .01 ) ; C12N 15 /86 (72 ) Inventors : David H . KIRN , Emeryville , CA (US ) ; (2013 .01 ) ; CO7K 14 / 005 ( 2013 .01 ) ; A61K Melissa KOTTERMAN , Emeryville , 48 / 0025 ( 2013 .01 ) ; A61K 9 /0048 (2013 . 01 ) ; CA (US ) ; David SCHAFFER , A61K 48 / 0075 ( 2013. 01 ) ; A61P 27 /02 Emeryville , CA (US ) ( 2018. 01 ) ; A61K 9 / 0019 ( 2013 .01 ) ; A61K (73 ) Assignee : 4D MOLECULAR THERAPEUTICS 48 / 0058 ( 2013 .01 ) INC . , Emeryville , CA ( US ) (21 ) Appl . No. : 16 /300 ,446 ( 57 ) ABSTRACT ( 22 ) PCT Filed : May 12 , 2017 Provided herein are variant adeno - associated virus (AAV ) ( 86 ) PCT No. : PCT/ US17 / 32542 capsid proteins having one or more modifications in amino $ 371 ( c )( 1 ) , acid sequence relative to a parental AAV capsid protein , ( 2 ) Date : Nov. 9 , 2018 which , when present in an AAV virion , confer increased infectivity of one or more types of retinal cells as compared Related U . S . Application Data to the infectivity of the retinal cells by an AA V virion (60 ) Provisional application No .62 /336 ,441 , filed on May comprising the unmodified parental capsid protein . Also 13 , 2016 , provisional application No . 62 /378 , 106 , provided are recombinant AAV virions and pharmaceutical filed on Aug.