Molecular Signatures in IASLC/ATS/ERS Classified Growth Patterns of Lung Adenocarcinoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Nuclear PTEN Safeguards Pre-Mrna Splicing to Link Golgi Apparatus for Its Tumor Suppressive Role
ARTICLE DOI: 10.1038/s41467-018-04760-1 OPEN Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role Shao-Ming Shen1, Yan Ji2, Cheng Zhang1, Shuang-Shu Dong2, Shuo Yang1, Zhong Xiong1, Meng-Kai Ge1, Yun Yu1, Li Xia1, Meng Guo1, Jin-Ke Cheng3, Jun-Ling Liu1,3, Jian-Xiu Yu1,3 & Guo-Qiang Chen1 Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are 1234567890():,; largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers. 1 Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China. 2 Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China. -
The Alter Retina: Alternative Splicing of Retinal Genes in Health and Disease
International Journal of Molecular Sciences Review The Alter Retina: Alternative Splicing of Retinal Genes in Health and Disease Izarbe Aísa-Marín 1,2 , Rocío García-Arroyo 1,3 , Serena Mirra 1,2 and Gemma Marfany 1,2,3,* 1 Departament of Genetics, Microbiology and Statistics, Avda. Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain; [email protected] (I.A.-M.); [email protected] (R.G.-A.); [email protected] (S.M.) 2 Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Universitat de Barcelona, 08028 Barcelona, Spain 3 Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain * Correspondence: [email protected] Abstract: Alternative splicing of mRNA is an essential mechanism to regulate and increase the diversity of the transcriptome and proteome. Alternative splicing frequently occurs in a tissue- or time-specific manner, contributing to differential gene expression between cell types during development. Neural tissues present extremely complex splicing programs and display the highest number of alternative splicing events. As an extension of the central nervous system, the retina constitutes an excellent system to illustrate the high diversity of neural transcripts. The retina expresses retinal specific splicing factors and produces a large number of alternative transcripts, including exclusive tissue-specific exons, which require an exquisite regulation. In fact, a current challenge in the genetic diagnosis of inherited retinal diseases stems from the lack of information regarding alternative splicing of retinal genes, as a considerable percentage of mutations alter splicing Citation: Aísa-Marín, I.; or the relative production of alternative transcripts. Modulation of alternative splicing in the retina García-Arroyo, R.; Mirra, S.; Marfany, is also instrumental in the design of novel therapeutic approaches for retinal dystrophies, since it G. -
Mrna Editing, Processing and Quality Control in Caenorhabditis Elegans
| WORMBOOK mRNA Editing, Processing and Quality Control in Caenorhabditis elegans Joshua A. Arribere,*,1 Hidehito Kuroyanagi,†,1 and Heather A. Hundley‡,1 *Department of MCD Biology, UC Santa Cruz, California 95064, †Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and ‡Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405 ABSTRACT While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes. KEYWORDS Caenorhabditis elegans; splicing; RNA editing; RNA modification; polyadenylation; quality control; WormBook TABLE OF CONTENTS Abstract 531 RNA Editing and Modification 533 Adenosine-to-inosine RNA editing 533 The C. elegans A-to-I editing machinery 534 RNA editing in space and time 535 ADARs regulate the levels and fates of endogenous dsRNA 537 Are other modifications present in C. -
Pumilio Proteins Regulate Translation in Embryonic Stem Cells and Are Essential for Early Embryonic Development Katherine Elizabeth Uyhazi Yale University
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 12-2012 Pumilio Proteins Regulate Translation in Embryonic Stem Cells and are Essential for Early Embryonic Development Katherine Elizabeth Uyhazi Yale University. Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Part of the Medicine and Health Sciences Commons Recommended Citation Uyhazi, Katherine Elizabeth, "Pumilio Proteins Regulate Translation in Embryonic Stem Cells and are Essential for Early Embryonic Development" (2012). Yale Medicine Thesis Digital Library. 2189. http://elischolar.library.yale.edu/ymtdl/2189 This Open Access Dissertation is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. ABSTRACT Pumilio Proteins Regulate Translation in Embryonic Stem Cells and are Essential for Early Embryonic Development Katherine E. Uyhazi 2012 Embryonic stem (ES) cells are defined by their dual abilities to self-renew and to differentiate into any cell type in the body. This vast potential is precisely controlled by spatial and temporal gene regulation at transcriptional, post-transcriptional, and epigenetic levels. Recent studies have revealed several transcription factors that are essential for stem cell self-renewal and pluripotency, but the role of translational control in ES cells is poorly understood. Translational control is a fundamental mechanism of gene regulation during early development, and likely explains the discrepancies between the transcriptome and proteome profiles of stem cells and their differentiated progeny. -
Disrupted Alternative Splicing for Genes Implicated in Splicing and Ciliogenesis Causes PRPF31 Retinitis Pigmentosa
ARTICLE DOI: 10.1038/s41467-018-06448-y OPEN Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa Adriana Buskin et al.# Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non- 1234567890():,; syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31- mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31+/− mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31+/− mouse retinae and RPE. Mis-splicing of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE defects that include disrupted apical – basal polarity, reduced trans-epithelial resistance and phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology also occurred in patient-derived photoreceptors, associated with progressive degeneration and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future therapeutic strategies. Correspondence and requests for materials should be addressed to S.-N.G. (email: [email protected]) or to C.A.J. (email: [email protected]) or to M.L. (email: [email protected]). #A full list of authors and their affliations appears at the end of the paper. NATURE COMMUNICATIONS | (2018) 9:4234 | DOI: 10.1038/s41467-018-06448-y | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06448-y etinitis pigmentosa (RP) is one of the most common c.522_527+10del heterozygous mutation (Supplementary Rinherited forms of retinal blindness with a prevalence of Data 1). -
AAV-Mediated Gene Augmentation Therapy Restores Critical Functions in Mutant Ipsc
bioRxiv preprint doi: https://doi.org/10.1101/729160; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: AAV-mediated gene augmentation therapy restores critical functions in mutant iPSC- derived PRPF31+/- cells. Short title: Gene therapy for PRPF31-linked retinopathy. Authors: Elizabeth M. Brydon1*, Revital Bronstein1*, Adriana Buskin2, Majlinda Lako2, Eric A. Pierce1, and Rosario Fernandez-Godino1. * These authors contributed equally to this work. Affiliations 1. Ocular Genomics Institute at Mass Eye and Ear-Harvard Medical School. Department of Ophthalmology. 2. Institute of Genetic Medicine, Newcastle University, UK Correspondence should be addressed to Rosario Fernandez-Godino: [email protected] 243 Charles St. Boston, MA 02114 Tel. +1 617-573-6787 Fax. +1 617-573-6901 1 bioRxiv preprint doi: https://doi.org/10.1101/729160; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Retinitis pigmentosa (RP) is the most common form of inherited vision loss and is characterized by degeneration of retinal photoreceptor cells and the retinal pigment epithelium (RPE). Mutations in pre- mRNA processing factor 31 (PRPF31) cause dominant RP via haploinsufficiency with incomplete penetrance. There is good evidence that the diverse severity of this disease is a result of differing levels of expression of the wild type allele among patients. Thus, we hypothesize that PRPF31-related RP will be amenable to treatment by adeno-associated virus (AAV)-mediated gene augmentation therapy. -
Biology of the Mrna Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities
International Journal of Molecular Sciences Review Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities Maxime Blijlevens †, Jing Li † and Victor W. van Beusechem * Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; [email protected] (M.B.); [email protected] (J.L.) * Correspondence: [email protected]; Tel.: +31-2044-421-62 † Shared first author. Abstract: Dysregulation of messenger RNA (mRNA) processing—in particular mRNA splicing—is a hallmark of cancer. Compared to normal cells, cancer cells frequently present aberrant mRNA splicing, which promotes cancer progression and treatment resistance. This hallmark provides opportunities for developing new targeted cancer treatments. Splicing of precursor mRNA into mature mRNA is executed by a dynamic complex of proteins and small RNAs called the spliceosome. Spliceosomes are part of the supraspliceosome, a macromolecular structure where all co-transcriptional mRNA processing activities in the cell nucleus are coordinated. Here we review the biology of the mRNA splicing machinery in the context of other mRNA processing activities in the supraspliceosome and present current knowledge of its dysregulation in lung cancer. In addition, we review investigations to discover therapeutic targets in the spliceosome and give an overview of inhibitors and modulators of the mRNA splicing process identified so far. Together, this provides insight into the value of targeting the spliceosome as a possible new treatment for lung cancer. Citation: Blijlevens, M.; Li, J.; van Beusechem, V.W. Biology of the Keywords: alternative splicing; splicing dysregulation; splicing factors; NSCLC mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. -
Structural and Functional Insights Into Human Nuclear Cyclophilins
biomolecules Review Structural and Functional Insights into Human Nuclear Cyclophilins Caroline Rajiv 1,2 and Tara L. Davis 1,3,* 1 Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; [email protected] 2 Janssen Pharmaceuticals Inc., 22-21062, 1400 McKean Rd, Spring House, PA 19477, USA 3 FORMA Therapeutics, 550 Arsenal St. Ste. 100, Boston, MA 02472, USA * Correspondence: [email protected]; Tel.: +1-857-209-2342 Received: 31 October 2018; Accepted: 22 November 2018; Published: 4 December 2018 Abstract: The peptidyl prolyl isomerases (PPI) of the cyclophilin type are distributed throughout human cells, including eight found solely in the nucleus. Nuclear cyclophilins are involved in complexes that regulate chromatin modification, transcription, and pre-mRNA splicing. This review collects what is known about the eight human nuclear cyclophilins: peptidyl prolyl isomerase H (PPIH), peptidyl prolyl isomerase E (PPIE), peptidyl prolyl isomerase-like 1 (PPIL1), peptidyl prolyl isomerase-like 2 (PPIL2), peptidyl prolyl isomerase-like 3 (PPIL3), peptidyl prolyl isomerase G (PPIG), spliceosome-associated protein CWC27 homolog (CWC27), and peptidyl prolyl isomerase domain and WD repeat-containing protein 1 (PPWD1). Each “spliceophilin” is evaluated in relation to the spliceosomal complex in which it has been studied, and current work studying the biological roles of these cyclophilins in the nucleus are discussed. The eight human splicing complexes available in the Protein Data Bank (PDB) are analyzed from the viewpoint of the human spliceophilins. Future directions in structural and cellular biology, and the importance of developing spliceophilin-specific inhibitors, are considered. Keywords: peptidyl prolyl isomerases; nuclear cyclophilins; spliceophilins; alternative splicing; spliceosomes; NMR; X-ray crystallography 1. -
YBX1 and Its Interactors Derived from Unihi, Metamatched and TRRUST Databases
Supplementary 1: YBX1 and its Interactors derived from UniHi, Metamatched and TRRUST databases. Gene_Id Description ABCB1|5243 ATP binding cassette subfamily B member 1 ACTB|60 actin beta AFF4|27125 AF4/FMR2 family member 4 AGT|183 angiotensinogen AKT1|207 AKT serine/threonine kinase 1 AMOTL1|154810 angiomotin like 1 ANAPC4|29945 anaphase promoting complex subunit 4 ANKRD2|26287 ankyrin repeat domain 2 APBB1|322 amyloid beta precursor protein binding family B member 1 APEX1|328 apurinic/apyrimidinic endodeoxyribonuclease 1 AR|367 androgen receptor ARID1A|8289 AT-rich interaction domain 1A ARRB1|408 arrestin beta 1 ARRB2|409 arrestin beta 2 ATF1|466 activating transcription factor 1 ATF2|1386 activating transcription factor 2 ATP6V1E1|529 ATPase H+ transporting V1 subunit E1 BARD1|580 BRCA1 associated RING domain 1 BCL6|604 B-cell CLL/lymphoma 6 BRCA1|672 BRCA1, DNA repair associated C19orf2|8725 URI1, prefoldin like chaperone C1QBP|708 complement C1q binding protein carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and CAD|790 dihydroorotase CALM1|801 calmodulin 1 CAND1|55832 cullin associated and neddylation dissociated 1 CBX8|57332 chromobox 8 CCAR1|55749 cell division cycle and apoptosis regulator 1 CCDC40|55036 coiled-coil domain containing 40 CCNB1|891 cyclin B1 CCNC|892 cyclin C CD2BP2|10421 CD2 cytoplasmic tail binding protein 2 CDC20|991 cell division cycle 20 CDH1|999 cadherin 1 CDK9|1025 cyclin dependent kinase 9 CDKN3|1033 cyclin dependent kinase inhibitor 3 CHD1|1105 chromodomain helicase DNA binding protein 1 CHTF18|63922 -
Principles of RNA Processing from Analysis of Enhanced CLIP Maps for 150 RNA Binding Proteins Eric L
Van Nostrand et al. Genome Biology (2020) 21:90 https://doi.org/10.1186/s13059-020-01982-9 RESEARCH Open Access Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins Eric L. Van Nostrand1,2, Gabriel A. Pratt1,2, Brian A. Yee1,2, Emily C. Wheeler1,2, Steven M. Blue1,2, Jasmine Mueller1,2, Samuel S. Park1,2, Keri E. Garcia1,2, Chelsea Gelboin-Burkhart1,2, Thai B. Nguyen1,2, Ines Rabano1,2, Rebecca Stanton1,2, Balaji Sundararaman1,2, Ruth Wang1,2, Xiang-Dong Fu1,2, Brenton R. Graveley3* and Gene W. Yeo1,2* Abstract Background: A critical step in uncovering rules of RNA processing is to study the in vivo regulatory networks of RNA binding proteins (RBPs). Crosslinking and immunoprecipitation (CLIP) methods enable mapping RBP targets transcriptome-wide, but methodological differences present challenges to large-scale analysis across datasets. The development of enhanced CLIP (eCLIP) enabled the mapping of targets for 150 RBPs in K562 and HepG2, creating a unique resource of RBP interactomes profiled with a standardized methodology in the same cell types. Results: Our analysis of 223 eCLIP datasets reveals a range of binding modalities, including highly resolved positioning around splicing signals and mRNA untranslated regions that associate with distinct RBP functions. Quantification of enrichment for repetitive and abundant multicopy elements reveals 70% of RBPs have enrichment for non-mRNA element classes, enables identification of novel ribosomal RNA processing factors and sites, and suggests that association with retrotransposable elements reflects multiple RBP mechanisms of action. Analysis of spliceosomal RBPs indicates that eCLIP resolves AQR association after intronic lariat formation, enabling identification of branch points with single-nucleotide resolution, and provides genome-wide validation for a branch point-based scanning model for 3′ splice site recognition. -
A Novel Mutation in PRPF31, Causative of Autosomal Dominant Retinitis Pigmentosa, Using the BGISEQ-500 Sequencer
Int J Ophthalmol, Vol. 11, No. 1, Jan.18, 2018 www.ijo.cn Tel:8629-82245172 8629-82210956 Email:[email protected] ·Basic Research· A novel mutation in PRPF31, causative of autosomal dominant retinitis pigmentosa, using the BGISEQ-500 sequencer Yu Zheng1,2,3, Hai-Lin Wang4, Jian-Kang Li2,3, Li Xu4, Laurent Tellier2,3, Xiao-Lin Li4, Xiao-Yan Huang1,2,3, Wei Li2,3, Tong-Tong Niu4, Huan-Ming Yang2,5, Jian-Guo Zhang2,3, Dong-Ning Liu4 1BGI Education Center, University of Chinese Academy of probands, as well as upon other family members. This Sciences, Shenzhen 518083, China novel, pathogenic genotype co-segregated with retinitis 2 BGI-Shenzhen, Shenzhen 518083, China pigmentosa phenotype in these two families. 3 China National GeneBank, BGI-Shenzhen, Shenzhen 518120, ● CONCLUSION: ADRP is a subtype of retinitis pigmentosa, China defined by its genotype, which accounts for 20%-40% 4 The Fourth People's Hospital of Shenyang, Shenyang 110031, of the retinitis pigmentosa patients. Our study thus Liaoning Province, China expands the spectrum of PRPF31 mutations known to 5 James D. Watson Institute of Genome Sciences, Hangzhou occur in ADRP, and provides further demonstration of the 310058, China applicability of the BGISEQ500 sequencer for genomics Co-first authors: Yu Zheng and Hai-Lin Wang research. Correspondence to: Dong-Ning Liu. The Fourth People's ● KEYWORDS: retinitis pigmentosa; PRPF31; BGISEQ-500 Hospital of Shenyang, Shenyang 110031, Liaoning Province, DOI:10.18240/ijo.2018.01.06 China. [email protected]; Jian-Guo Zhang. China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China. Citation: Zheng Y, Wang HL, Li JK, Xu L, Tellier L, Li XL, Huang [email protected] XY, Li W, Niu TT, Yang HM, Zhang JG, Liu DN.