RBMX Family Proteins Connect the Fields of Nuclear RNA Processing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Genome-Wide Association Study of Bisphosphonate-Associated
Calcifed Tissue International (2019) 105:51–67 https://doi.org/10.1007/s00223-019-00546-9 ORIGINAL RESEARCH A Genome‑Wide Association Study of Bisphosphonate‑Associated Atypical Femoral Fracture Mohammad Kharazmi1 · Karl Michaëlsson1 · Jörg Schilcher2 · Niclas Eriksson3,4 · Håkan Melhus3 · Mia Wadelius3 · Pär Hallberg3 Received: 8 January 2019 / Accepted: 8 April 2019 / Published online: 20 April 2019 © The Author(s) 2019 Abstract Atypical femoral fracture is a well-documented adverse reaction to bisphosphonates. It is strongly related to duration of bisphosphonate use, and the risk declines rapidly after drug withdrawal. The mechanism behind bisphosphonate-associated atypical femoral fracture is unclear, but a genetic predisposition has been suggested. With the aim to identify common genetic variants that could be used for preemptive genetic testing, we performed a genome-wide association study. Cases were recruited mainly through reports of adverse drug reactions sent to the Swedish Medical Products Agency on a nation- wide basis. We compared atypical femoral fracture cases (n = 51) with population-based controls (n = 4891), and to reduce the possibility of confounding by indication, we also compared with bisphosphonate-treated controls without a current diagnosis of cancer (n = 324). The total number of single-nucleotide polymorphisms after imputation was 7,585,874. A genome-wide signifcance threshold of p < 5 × 10−8 was used to correct for multiple testing. In addition, we performed candidate gene analyses for a panel of 29 genes previously implicated in atypical femoral fractures (signifcance threshold of p < 5.7 × 10−6). Compared with population controls, bisphosphonate-associated atypical femoral fracture was associated with four isolated, uncommon single-nucleotide polymorphisms. -
Organ Level Protein Networks As a Reference for the Host Effects of the Microbiome
Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Organ level protein networks as a reference for the host effects of the microbiome 2 3 Robert H. Millsa,b,c,d, Jacob M. Wozniaka,b, Alison Vrbanacc, Anaamika Campeaua,b, Benoit 4 Chassainge,f,g,h, Andrew Gewirtze, Rob Knightc,d, and David J. Gonzaleza,b,d,# 5 6 a Department of Pharmacology, University of California, San Diego, California, USA 7 b Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 8 California, USA 9 c Department of Pediatrics, and Department of Computer Science and Engineering, University of 10 California, San Diego California, USA 11 d Center for Microbiome Innovation, University of California, San Diego, California, USA 12 e Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State 13 University, Atlanta, GA, USA 14 f Neuroscience Institute, Georgia State University, Atlanta, GA, USA 15 g INSERM, U1016, Paris, France. 16 h Université de Paris, Paris, France. 17 18 Key words: Microbiota, Tandem Mass Tags, Organ Proteomics, Gnotobiotic Mice, Germ-free Mice, 19 Protein Networks, Proteomics 20 21 # Address Correspondence to: 22 David J. Gonzalez, PhD 23 Department of Pharmacology and Pharmacy 24 University of California, San Diego 25 La Jolla, CA 92093 26 E-mail: [email protected] 27 Phone: 858-822-1218 28 1 Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press 29 Abstract 30 Connections between the microbiome and health are rapidly emerging in a wide range of 31 diseases. -
Anti-RBM3 Antibody [HB9] (ARG23691)
Product datasheet [email protected] ARG23691 Package: 50 μg anti-RBM3 antibody [HB9] Store at: -20°C Summary Product Description Mouse Monoclonal antibody [HB9] recognizes RBM3 Tested Reactivity Hu Tested Application ICC/IF Specificity The antibody reacts against the recombinant human RBM3 full length under oxidative conditions without DTT or under reducing conditions with DTT. Cross reactivity of the antibody with the recombinant human Cold inducible Binding protein (CIRBP, full length 20.5 kDa) could not be detected. The apparent MW of hRBM3 in SDS-PAGE is ~17 kDa. Host Mouse Clonality Monoclonal Clone HB9 Isotype IgG1 Target Name RBM3 Antigen Species Human Immunogen Human RNA-binding protein 3. Conjugation Un-conjugated Alternate Names RNPL; IS1-RNPL; RNA-binding motif protein 3; RNA-binding protein 3 Application Instructions Application table Application Dilution ICC/IF 1:50 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 17 kDa Properties Form Liquid Purification Purification with Protein G. The IgG1 fraction was purified by affinity chromatography. Buffer PBS (pH 7.4) and 0.01% Sodium azide. Preservative 0.01% Sodium azide Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
High-Throughput Discovery of Novel Developmental Phenotypes
High-throughput discovery of novel developmental phenotypes The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dickinson, M. E., A. M. Flenniken, X. Ji, L. Teboul, M. D. Wong, J. K. White, T. F. Meehan, et al. 2016. “High-throughput discovery of novel developmental phenotypes.” Nature 537 (7621): 508-514. doi:10.1038/nature19356. http://dx.doi.org/10.1038/nature19356. Published Version doi:10.1038/nature19356 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:32071918 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nature. Manuscript Author Author manuscript; Manuscript Author available in PMC 2017 March 14. Published in final edited form as: Nature. 2016 September 22; 537(7621): 508–514. doi:10.1038/nature19356. High-throughput discovery of novel developmental phenotypes A full list of authors and affiliations appears at the end of the article. Abstract Approximately one third of all mammalian genes are essential for life. Phenotypes resulting from mouse knockouts of these genes have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5000 knockout mouse lines, we have identified 410 Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms #Corresponding author: [email protected]. -
CLK3 Monoclonal Antibody (M04), Clone 5B2
CLK3 monoclonal antibody (M04), clone 5B2 Catalog # : H00001198-M04 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a partial recombinant CLK3. Western Blot (Cell lysate) Description: Immunogen: CLK3 (AAH02555, 36 a.a. ~ 136 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Sequence: YPSRREPPPRRSRSRSHDRLPYQRRYRERRDSDTYRCEERSPSFGED YYGPSRSRHRRRSRERGPYRTRKHAHHCHKRRTRSCSSASSRSQQSS enlarge KRSSRSV Western Blot (Recombinant protein) Host: Mouse Immunohistochemistry Reactivity: Human (Formalin/PFA-fixed paraffin- embedded sections) Isotype: IgG2b Kappa Quality Control Antibody Reactive Against Recombinant Protein. Testing: enlarge Immunofluorescence enlarge Western Blot detection against Immunogen (36.74 KDa) . ELISA Storage Buffer: In 1x PBS, pH 7.4 Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Instruction: MSDS: Download Datasheet: Download Applications Western Blot (Cell lysate) Page 1 of 3 2016/5/20 CLK3 monoclonal antibody (M04), clone 5B2 Western Blot analysis of CLK3 expression in MCF-7 ( Cat # L046V1 ). Protocol Download Western Blot (Recombinant protein) Protocol Download Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) enlarge this image Immunoperoxidase of monoclonal antibody to CLK3 on formalin-fixed paraffin-embedded human testis. [antibody concentration 1.5 ug/ml] Protocol Download Immunofluorescence enlarge this image Immunofluorescence of monoclonal antibody to CLK3 on HeLa cell. [antibody concentration 10 ug/ml] Protocol Download ELISA Gene Information Entrez GeneID: 1198 GeneBank BC002555 Accession#: Protein AAH02555 Accession#: Page 2 of 3 2016/5/20 Gene Name: CLK3 Gene Alias: FLJ22858,PHCLK3,PHCLK3/152 Gene CDC-like kinase 3 Description: Omim ID: 602990 Gene Ontology: Hyperlink Gene Summary: This gene encodes a protein belonging to the serine/threonine type protein kinase family. -
RBMX Is a Novel Hepatic Transcriptional Regulator of SREBP-1C Gene Response to High-Fructose Diet
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 581 (2007) 218–222 RBMX is a novel hepatic transcriptional regulator of SREBP-1c gene response to high-fructose diet Tadashi Takemotoa, Yoshihiko Nishiob,*, Osamu Sekineb, Chikako Ikeuchib, Yoshio Nagaib, Yasuhiro Maenob, Hiroshi Maegawab, Hiroshi Kimuraa, Atsunori Kashiwagib a Division of Molecular Genetics in Medicine, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Shiga 520-2192, Japan b Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan Received 24 October 2006; accepted 1 December 2006 Available online 14 December 2006 Edited by Berend Wieringa nisms by which the high-fructose diet induces SREBP-1c gene Abstract In rodents a high-fructose diet induces metabolic derangements similar to those in metabolic syndrome. Previously expression in the liver. we suggested that in mouse liver an unidentified nuclear protein We previously reported a variation of susceptibility to these binding to the sterol regulatory element (SRE)-binding protein- metabolic disorders after monitoring the effects of high-fruc- 1c (SREBP-1c) promoter region plays a key role for the re- tose diet in different mouse strains [6]. Ten strains of inbred sponse to high-fructose diet. Here, using MALDI-TOF MASS mice were separated into CBA and DBA groups according technique, we identified an X-chromosome-linked RNA binding to their response to high-fructose diet. The hepatic mRNA motif protein (RBMX) as a new candidate molecule. In electro- expression of SREBP-1c in CBA/JN mice was remarkably ele- phoretic mobility shift assay, anti-RBMX antibody displaced the vated by high-fructose diet but not in DBA/2N. -
Identification of the Rna Binding Protein Rbm3 As a Novel Effector of Β-Catenin Signaling and Colon Cancer Stem Cells
IDENTIFICATION OF THE RNA BINDING PROTEIN RBM3 AS A NOVEL EFFECTOR OF β-CATENIN SIGNALING AND COLON CANCER STEM CELLS By Anand Venugopal Submitted to the graduate degree program in Molecular and Integrative Physiology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________ Chairperson Shrikant Anant, Ph.D. ________________________________ Roy Jensen, M.D. ________________________________ Andrew Godwin, Ph.D. ________________________________ Danny Welch, Ph.D. ________________________________ John Wood, Ph.D. Date Defended: ________________________________March 14, 2014 The Dissertation Committee for Anand Venugopal certifies that this is the approved version of the following dissertation: IDENTIFICATION OF THE RNA BINDING PROTEIN RBM3 AS A NOVEL EFFECTOR OF β-CATENIN SIGNALING AND COLON CANCER STEM CELLS ________________________________ Chairperson Shrikant Anant, Ph.D. Date approved: ________________________________March 14, 2014 ii Abstract The intestinal epithelium is one of the fastest renewing tissues within the adult. This renewal is primarily driven by the intestinal epithelial stem cell compartment and homeostasis of this compartment needs to be strictly maintained. Loss of regulation can lead to hyperplasia and subsequent malignant transformation. Moreover, cancers are also thought to contain a stem cell population which maintains long term tumor viability and recurrence following therapy. Therefore, a thorough understanding of the molecular machinery that governs stem cell homeostasis can further our understanding of colon cancer initiation and progression. The RNA binding protein RBM3 is upregulated in many solid tumors including colon, prostate and breast. It also serves as a proto-oncogene inducing the malignant transformation of normal cells when overexpressed. To further characterize the mechanism, we overexpressed RBM3 in DLD-1 and HCT 116 colon cancer cell lines. -
Accepted By:- Signature Redacted Department of Biology Graduate Co-Chair: Michael T
EXPLORING THE FUNCTIONAL CONSERVATION OF MUSCLEBLIND (MBL) PROTEINS by MASSACH USETTS INSTITUTE Julia C. Oddo d o ECHNOLOGY B.S. Molecular, Cellular, and Developmental Biology, SE 1 7 2015 Minor Biochemistry 2011 LIB RARIES SUBMITTED TO THE DEPARTMENT OF BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE IN BIOLOGY AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY SEPTEMBER 2015 C 2015 Massachusetts Institute of Technology. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature redacted Signature of Auth or:_ Department of Biology May 22, 2015 Certified by: Signature redacte Thesis Supervisor: Chris B. Burge Professor of Biology and Biological Engineering Director Program CSB Certified by: Signature redactec Thesis Co-Supervisor: Eric T. Wang Research Fellow Accepted by:- Signature redacted Department of Biology Graduate Co-Chair: Michael T. Hemann Associate Professor of Biology 1 EXPLORING THE FUNCTIONAL CONSERVATION OF MUSCLEBLIND (MBL) PROTEINS by Julia C. Oddo Submitted to the Department of Biology on September 8th, 2015 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology ABSTRACT Muscleblind (Mbl) is an evolutionarily conserved family of proteins involved in many aspects of RNA metabolism, including alternative splicing. Disruption of Muscleblind in several animals lends to a variety of defects and disease, including the multi-systemic disorder Myotonic Dystrophy (DM). Though much is known about the involvement of Muscleblind in DM, there is much basic knowledge of the protein's function to be discovered. -
CLK3 Antibody A
Revision 1 C 0 2 - t CLK3 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 6 5 Web: [email protected] 2 www.cellsignal.com 3 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB, IF-IC H M R Mk Endogenous 59, 17 Rabbit P49761 1198 Product Usage Information 7. Becker, W. et al. (1996) Biochim. Biophys. Acta 1312, 63-67. 8. Duncan, P.I. et al. (1998) Exp. Cell Res. 241, 300-308. Application Dilution Western Blotting 1:1000 Immunofluorescence (Immunocytochemistry) 1:25 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity CLK3 Antibody detects endogenous levels of full-length and truncated forms of CLK3 protein. Species Reactivity: Human, Mouse, Rat, Monkey Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Tyr61 of human CLK3 (P49761-1). Antibodies were purified by protein A and peptide affinity chromatography. Background The cdc2-like kinase (CLK) family contains at least four highly conserved isoforms: CLK1, CLK2, CLK3 and CLK4 (1,2). CLKs are dual specificity kinases that autophosphorylate on serine, threonine and tyrosine residues and phosphorylate exogenous substrates on serine and threonine residues (2). CLK family members exist as both a full-length catalytically active form and an alternatively-spliced, inactive truncated form (1). -
Mapping of Diabetes Susceptibility Loci in a Domestic Cat Breed with an Unusually High Incidence of Diabetes Mellitus
G C A T T A C G G C A T genes Article Mapping of Diabetes Susceptibility Loci in a Domestic Cat Breed with an Unusually High Incidence of Diabetes Mellitus 1,2, 3, 4 5 Lois Balmer y , Caroline Ann O’Leary y, Marilyn Menotti-Raymond , Victor David , Stephen O’Brien 6,7, Belinda Penglis 8, Sher Hendrickson 9, Mia Reeves-Johnson 3, 3 10 3 3,11, Susan Gottlieb , Linda Fleeman , Dianne Vankan , Jacquie Rand z and 1, , Grant Morahan * z 1 Centre for Diabetes Research, Harry Perkins Institute for Medical Research, University of Western Australia, Nedlands 6009, Australia; [email protected] 2 School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth 6027, Australia 3 School of Veterinary Science, the University of Queensland, Gottan 4343, Australia; [email protected] (C.A.O.); [email protected] (M.R.-J.); [email protected] (S.G.); [email protected] (D.V.); [email protected] (J.R.) 4 Laboratory of Genomic Diversity, Center for Cancer Research (FNLCR), Frederick, MD 21702, USA; [email protected] 5 Laboratory of Basic Research, Center for Cancer Research (FNLCR), National Cancer Institute, Frederick, MD 21702, USA; [email protected] 6 Laboratory of Genomics Diversity, Center for Computer Technologies, ITMO University, 197101 St. Petersburg, Russia; [email protected] 7 Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, Nova Southeastern University, Ft Lauderdale, FL 33004, USA 8 IDEXX Laboratories, East Brisbane 4169, Australia; [email protected] 9 Department of Biology, Shepherd University, Shepherdstown, WV 25443, USA; [email protected] 10 Animal Diabetes Australia, Melbourne 3155, Australia; l.fl[email protected] 11 American College of Veterinary Internal Medicine, University of Zurich, 8006 Zurich, Switzerland * Correspondence: [email protected] These authors contributed equally to this work. -
Human RBM3 ELISA Kit (ARG81349)
Product datasheet [email protected] ARG81349 Package: 96 wells Human RBM3 ELISA Kit Store at: 4°C Summary Product Description ARG81349 Human RBM3 ELISA Kit is an Enzyme Immunoassay kit for the quantification of Human RBM3 in serum and plasma. Tested Reactivity Hu Tested Application ELISA Specificity No significant cross reactivity to Cold inducible Binding protein (CIRBP), human. Target Name RBM3 Conjugation HRP Conjugation Note Substrate: TMB and read at 450 nm. Sensitivity 10 pg/ml Sample Type Serum and plasma. Standard Range 31.25 - 2000 pg/ml Sample Volume 50 µl Alternate Names RNPL; IS1-RNPL; RNA-binding motif protein 3; RNA-binding protein 3 Application Instructions Assay Time ~ 2.5 hours Properties Form 96 well Storage instruction Store the kit at 2-8°C. Keep microplate wells sealed in a dry bag with desiccants. Do not expose test reagents to heat, sun or strong light during storage and usage. Please refer to the product user manual for detail temperatures of the components. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol RBM3 Gene Full Name RNA binding motif (RNP1, RRM) protein 3 Background This gene is a member of the glycine-rich RNA-binding protein family and encodes a protein with one RNA recognition motif (RRM) domain. Expression of this gene is induced by cold shock and low oxygen tension. A pseudogene exists on chromosome 1. Multiple alternatively spliced transcript variants that are predicted to encode different isoforms have been characterized although some of these variants fit nonsense-mediated decay (NMD) criteria.