Vanadiocarpholite, Mn2+V3+Al(Si2o6)(OH)4, A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Krásno Sn-W Ore District Near Horní Slavkov: Mining History, Geological and Mineralogical Characteristics
Journal of the Czech Geological Society 51/12(2006) 3 The Krásno Sn-W ore district near Horní Slavkov: mining history, geological and mineralogical characteristics Sn-W rudní revír Krásno u Horního Slavkova historie tìby, geologická a mineralogická charakteristika (47 figs, 1 tab) PAVEL BERAN1 JIØÍ SEJKORA2 1 Regional Museum Sokolov, Zámecká 1, Sokolov, CZ-356 00, Czech Republic 2 Department of Mineralogy and Petrology, National Museum, Václavské nám. 68, Prague 1, CZ-115 79, Czech Republic The tin-tungsten Krásno ore district near Horní Slavkov (Slavkovský les area, western Bohemia) belongs to the most important areas of ancient mining in the Czech Republic. The exceptionally rich and variable mineral associations, and the high number of mineral species, make this area one of the most remarkable mineralogical localities on a worldwide scale. The present paper reviews the data on geological setting of the ore district, individual ore deposits and mining history. Horní Slavkov and Krásno were known as a rich source of exquisite quality mineral specimens stored in numerous museum collections throughout Europe. The old museum specimens are often known under the German locality names of Schlaggenwald (= Horní Slavkov) and Schönfeld (=Krásno). The megascopic properties and paragenetic position of selected mineral classics are reviewed which include arsenopyrite, fluorapatite, fluorite, hübnerite, chalcopyrite, carpholite, cassiterite, quartz, molybdenite, rhodochrosite, sphalerite, topaz and scheelite. Key words: Sn-W ores; tin-tungsten mineralization; mining history; ore geology; mineralogy; Slavkovský les; Krásno, Horní Slavkov ore district; Czech Republic. Introduction valleys dissected parts of the area. In the ore district area, the detailed surface morphology is modified by large de- In the mining history of Central Europe, Bohemia and pressions caused by the collapse of old underground Moravia are known as important source of gold, silver, workings and by extensive dumps. -
Heat Capacity of High Pressure Minerals and Phase Equilibria of Cretan Blueschists
Heat capacity of high pressure minerals and phase equilibria of Cretan blueschists by Matthew Rahn Manon A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in The University of Michigan 2008 Doctoral Committee: Professor Eric J. Essene, Chair Professor Rebecca Ann Lange Professor Youxue Zhang Associate Professor Steven M. Yalisove Matthew Rahn Manon 2008 Acknowledgments Cheers to all the grad students who have gone and come through CC-Little over the years. Zeb, Steven, Jim, Chris, Katy, Phillip, Franek, Eric, Tom, Darius, Sarah, Sara, Abir, Laura, Casey, Sam, John and anyone else I’ve been to learned something from, or argued something with. From early nights at Dominicks for subductology “seminars” through to the FWC, Michigan has been a fun place to live. Thanks to Anne Hudon, whos made sure I haven’t been able to place myself in inextricable holes. Thanks also to those from earlier in my life. College professors like Ken Hess or Barbara Nimmersheim who, in their very different ways inspired me to explore what it is I know. I’ll always remember time spent with Bob Wiebe who introduced me to the wild unknown of geology. Immeasurable thanks go to Eric Essene. The fieldtrips we took the first few years were good adventures. He’s always put aside his own issues to be there for me to talk to, especially when I didn’t deserve it. Eric’s scientific curiosity, and mental rigor are deservedly well known. His patience with me may be one of his great, unsung virtues. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Volborthite Cu3v2o7(OH)2 • 2H2O C 2001-2005 Mineral Data Publishing, Version 1
Volborthite Cu3V2O7(OH)2 • 2H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic, pseudohexagonal. Point Group: 2/m. Typically as rosettelike aggregates of scaly crystals, which may have a hexagonal or triangular outline, to 5 mm. Physical Properties: Cleavage: One, perfect. Hardness = 3.5 D(meas.) = 3.5–3.8 D(calc.) = 3.52 Optical Properties: Semitransparent. Color: Dark olive-green, green, yellowish green; green to yellowish green in transmitted light. Luster: Vitreous, oily, resinous, waxy, pearly on the cleavage. Optical Class: Biaxial (–) or biaxial (+). Pleochroism: Faint. Dispersion: r<v,r>v, inclined. α = 1.820–2.01 β = 1.835–2.05 γ = 1.92–2.07 2V(meas.) = 63◦–83◦ Cell Data: Space Group: C2/m. a = 10.610(2) b = 5.866(1) c = 7.208(1) β =95.04(2)◦ Z=2 X-ray Powder Pattern: Monument No. 1 mine, Arizona, USA. 7.16 (10), 2.643 (7), 2.571 (7), 2.389 (7), 4.103 (5), 3.090 (5), 2.998 (5) Chemistry: (1) (2) (1) (2) V2O5 36.65 38.32 CuO 48.79 50.29 SiO2 1.37 H2O [11.49] 11.39 V2O3 1.70 Total [100.00] 100.00 (1) Scrava mine, Italy; by electron microprobe; V2O3 assumed for charge balance, H2Oby 5+ 3+ • • difference; corresponds to Cu2.89V1.90V0.11Si0.11O7(OH)2 2H2O. (2) Cu3V2O7(OH)2 2H2O. Occurrence: An uncommon secondary mineral in the oxidized zone of vanadium-bearing hydrothermal mineral deposits. Association: Brochantite, malachite, atacamite, tangeite, chrysocolla, barite, gypsum. Distribution: In Russia, originally from an unknown locality; later identified at the Sofronovskii copper mine, near Perm, and at Syssersk and Nizhni Tagil, Ural Mountains. -
Arxiv:2103.13254V2 [Cond-Mat.Str-El] 20 May 2021
Magnetic ordering of the distorted kagome antiferromagnet Y3Cu9(OH)18[Cl8(OH)] prepared via optimal synthesis W. Sun,1 T. Arh,2, 3 M. Gomilˇsek,2 P. Koˇzelj,2, 3 S. Vrtnik,2 M. Herak,4 J.-X. Mi,1 and A. Zorko2, 3, ∗ 1Fujian Provincial Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, People’s Republic of China 2JoˇzefStefan Institute, Jamova c. 39, SI-1000 Ljubljana, Slovenia 3Faculty of Mathematics and Physics, University of Ljubljana, Jadranska u. 19, SI-1000 Ljubljana, Slovenia 4Institute of Physics, Bijeniˇckac. 46, HR-10000 Zagreb, Croatia (Dated: May 21, 2021) Experimental studies of high-purity kagome-lattice antiferromagnets (KAFM) are of great impor- tance in attempting to better understand the predicted enigmatic quantum spin-liquid ground state of the KAFM model. However, realizations of this model can rarely evade magnetic ordering at low temperatures due to various perturbations to its dominant isotropic exchange interactions. Such a situation is for example encountered due to sizable Dzyaloshinskii-Moriya magnetic anisotropy in YCu3(OH)6Cl3, which stands out from other KAFM materials by its perfect crystal structure. We find evidence of magnetic ordering also in the distorted sibling compound Y3Cu9(OH)18[Cl8(OH)], which has recently been proposed to feature a spin-liquid ground state arising from a spatially anisotropic kagome lattice. Our findings are based on a combination of bulk susceptibility, specific heat, and magnetic torque measurements that disclose a N´eeltransition temperature of TN = 11 K in this material, which might feature a coexistence of magnetic order and persistent spin dynamics as previously found in YCu3(OH)6Cl3. -
L'leve~Th List of New Mineral Na~Es. ~
556 L'leve~th list of new mineral na~es. ~ By L. J. SPENCER, M.A., Sc.D., F.R.S. Keeper of Minerals ia the British Museum (Natural History). [Communicated June 12~ 1928.] Ajkaite. (L. Zeehmeister, Math. Termdszettud. ~:rtesitS, Badapest, 1926, vol. 43, p. 332 (ajkait); L. Zechmeister and V. Vrab~ly, Per. Deutsch. Chem. Gesell., 1926, vol. 59, Abt. B, p. 1426). The same as ajkite (Bull. Soc. Min. France, 1878, vol. 1, p. 126 ; abstract from... ?). A fossil resin containing 1-5 ~ sulphur and no succinic acid, from Ajka, com. Veszpr~m, Hungary. [M.A. 3-362.] Albiclase. A. N. Winchell, 1925. Journ. Geol. Chicago, vol. 83, p. 726 ; Elements of optical mineralogy, 2nd edit., 1927, pt. 2, p. 319. P. Niggli, Lehrbuch Min., 1926, vol. 2, p. 536 (Albiklas). A contrac- tion of albite-oligoclase for felspars of the plagioclase series ranging in composition from Ab~Anlo to AbsoAn~o. Allite. tL Harrassowitz, 1926. Laterit, Material und Versuch erdgesehichtlicher Auswertung, Berlin 1926, p. 255 (Allit, plur. Allite). A rock-name to include both bauxite and laterite. Later (Metall und Erz, Halle, ]927, vol. 24, p. 589) bauxite with A1208. H~O is distinguished as monohydrallite (Monohydrallit) and laterite with Al~0s.3H20 as trihydrallite (Trihydrallit). These, although suggestive of mineral- names (and given so i~ error in Chem. Zentr., 1926, vol. 1, p. 671), are proposed as rock-names ; from aluminium and M~o~. Similarly, siallites (1926, p. 252, Siallit, from Si, A1, M0o~), to include kaolinite and allo- phanite, are rocks composed of the aluminium silicates kaolin and allophane. -
3F, a New Apatite-Group Mineral and the Novel Natural Ternary Solid
2 3 4 Pliniusite, Ca5(VO4)3F, a new apatite-group mineral and the novel natural ternary solid- 5 solution system pliniusite–svabite–fluorapatite 6 7 Igor V. Pekov1*, Natalia N. Koshlyakova1, Natalia V. Zubkova1, Arkadiusz Krzątała2, Dmitry I. 8 Belakovskiy3, Irina O. Galuskina2, Evgeny V. Galuskin2, Sergey N. Britvin4, Evgeny G. 9 Sidorov5†, Yevgeny Vapnik6 and Dmitry Yu. Pushcharovsky1 10 11 1Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia 12 2Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 13 41-200 Sosnowiec, Poland 14 3Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 15 119071 Moscow, Russia 16 4Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. 17 Petersburg, Russia 18 5Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, 19 Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia 20 6Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 21 653, Beer-Sheva 84105, Israel 22 23 † Deceased 20 March 2021 24 25 *Corresponding author: [email protected] 26 2 28 ABSTRACT 29 The new apatite-group mineral pliniusite, ideally Ca5(VO4)3F, was found in fumarole deposits at the 30 Tolbachik volcano (Kamchatka, Russia) and in a pyrometamorphic rock of the Hatrurim Complex 31 (Israel). Pliniusite, together with fluorapatite and svabite, forms a novel and almost continuous 32 ternary solid-solution system characterized by wide variations of T5+ = P, As and V. In paleo- 33 fumarolic deposits at Mountain 1004 (Tolbachik), members of this system, including the holotype 34 pliniusite, are associated with hematite, tenorite, diopside, andradite, kainotropite, baryte and 35 supergene volborthite, brochantite, gypsum and opal. -
Articles Devoted to Silicate Minerals from Fumaroles of the Tol- Bachik Volcano (Kamchatka, Russia)
Eur. J. Mineral., 32, 101–119, 2020 https://doi.org/10.5194/ejm-32-101-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 1: Neso-, cyclo-, ino- and phyllosilicates Nadezhda V. Shchipalkina1, Igor V. Pekov1, Natalia N. Koshlyakova1, Sergey N. Britvin2,3, Natalia V. Zubkova1, Dmitry A. Varlamov4, and Eugeny G. Sidorov5 1Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia 2Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia 3Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184200 Apatity, Russia 4Institute of Experimental Mineralogy, Russian Academy of Sciences, Academica Osypyana ul., 4, 142432 Chernogolovka, Russia 5Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia Correspondence: Nadezhda V. Shchipalkina ([email protected]) Received: 19 June 2019 – Accepted: 1 November 2019 – Published: 29 January 2020 Abstract. This is the initial paper in a pair of articles devoted to silicate minerals from fumaroles of the Tol- bachik volcano (Kamchatka, Russia). These papers contain the first systematic data on silicate mineralization of fumarolic genesis. In this article nesosilicates (forsterite, andradite and titanite), cyclosilicate (a Cu,Zn- rich analogue of roedderite), inosilicates (enstatite, clinoenstatite, diopside, aegirine, aegirine-augite, esseneite, “Cu,Mg-pyroxene”, wollastonite, potassic-fluoro-magnesio-arfvedsonite, potassic-fluoro-richterite and litidion- ite) and phyllosilicates (fluorophlogopite, yanzhuminite, “fluoreastonite” and the Sn analogue of dalyite) are characterized with a focus on chemistry, crystal-chemical features and occurrence. -
Potassic-Carpholite, a New Mineral Species from the Sawtooth Batholith, Boise County, Idaho, U.S.A
121 The Canadian Mineralogist Vol. 42, pp. 121-124 (2004) POTASSIC-CARPHOLITE, A NEW MINERAL SPECIES FROM THE SAWTOOTH BATHOLITH, BOISE COUNTY, IDAHO, U.S.A. KIMBERLY T. TAIT AND FRANK C. HAWTHORNE§ Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada JOEL D. GRICE Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada JOHN L. JAMBOR Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada WILLIAM W. PINCH 19 Stonebridge Lane, Pittsford, New York 14534, U.S.A. ABSTRACT 2+ Potassic-carpholite, ideally (K,Ⅺ) (Li,Mn )2 Al4 Si4 O12 (OH)4 (F,OH)4, is a new mineral species from the Sawtooth batholith, an anorogenic Tertiary granite pluton near Centerville, Boise County, Idaho, U.S.A. It occurs as irregular tufts (up to 2 mm across) of radiating acicular-to-fibrous crystals in miarolitic cavities in the granite, associated with quartz, microcline, albite, beryl, topaz, bertrandite, hellandite, zinnwaldite, fluorite, hematite and apatite. Individual crystals of potassic-carpholite are white to straw yellow with a white streak and a vitreous luster, and are non-fluorescent in ultraviolet light. Crystals are generally 20–40 m across and approximately 500 m long and elongate along [100]. Potassic-carpholite is brittle with an irregular fracture on ends of the acicular crystals, and has a perfect cleavage parallel to {010}. Twinning was not observed. The Mohs hardness is ~5, and the observed and calculated densities are 3.08(2) and 3.06 g/cm3, respectively. -
List of Abbreviations
List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote -
Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
SpColl £2' 1 Energy I TEl 334 Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus ~ By A. D. Weeks and M. E. Thompson ~ I"\ ~ ~ Trace Elements Investigations Report 334 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25, D. C. AUG 12 1953 Dr. PhilUp L. Merritt, Assistant Director Division of Ra1'r Materials U. S. AtoTILic Energy Commission. P. 0. Box 30, Ansonia Station New· York 23, Nei< York Dear Phil~ Transmitted herewith are six copies oi' TEI-334, "Identification and occurrence oi' uranium and vanadium minerals i'rom the Colorado Plateaus," by A , D. Weeks and M. E. Thompson, April 1953 • We are asking !41'. Hosted to approve our plan to publish this re:por t as a C.i.rcular .. Sincerely yours, Ak~f777.~ W. H. ~radley Chief' Geologist UNCLASSIFIED Geology and Mineralogy This document consists or 69 pages. Series A. UNITED STATES DEPARTMENT OF TEE INTERIOR GEOLOGICAL SURVEY IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM TEE COLORADO PLATEAUS* By A• D. Weeks and M. E. Thompson April 1953 Trace Elements Investigations Report 334 This preliminary report is distributed without editorial and technical review for conformity with ofricial standards and nomenclature. It is not for public inspection or guotation. *This report concerns work done on behalf of the Division of Raw Materials of the u. s. Atomic Energy Commission 2 USGS GEOLOGY AllU MINEFALOGY Distribution (Series A) No. of copies American Cyanamid Company, Winchester 1 Argulllle National La:boratory ., ., ....... -
Geology, Geochemistry, and Mineralogy of the Ridenour Mine Breccia Pipe, Arizona
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Geology, Geochemistry, and Mineralogy of the Ridenour Mine Breccia Pipe, Arizona by Karen J. Wenrich1 , Earl R. Verbeek 1 , Hoyt B. Sutphin2 , Peter J. Modreski 1 , Bradley S. Van Gosen 11, and David E. Detra Open-File Report 90-0504 This study was funded by the Bureau of Indian Affairs in cooperation with the Hualapai Tribe. 1990 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. U.S. Geological Survey 2U.S. Pollution Control, Inc. Denver, Colorado Boulder, Colorado CONTENTS Page Abstract ................................................................... 1 Introduction ............................................................... 2 Geology and structure of the Ridenour mine ................................. 5 Structural control of the Ridenour and similar pipes ....................... 7 Mine workings ............................................................. 11 Geochemistry .............................................................. 11 Metals strongly enriched at the Ridenour pipe ......................... 23 Vanadium ......................................................... 23 Silver ........................................................... 30 Copper ........................................................... 30 Gallium .......................................................... 30 Isotopic studies ...................................................... 30 Mineralogy ...............................................................