Geochronologic and Isotopic Investigation of the Koipato
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
California Terranes
Geological Society of America Special Paper 338 1999 California terranes Eldridge M. Moores Department of Geology, University of California, Davis, California 95616 Yildirim Dilek Department of Geology, Miami University, Oxford, Ohio 45056 John Wakabayashi 1329 Sheridan Lane, Hayward, California 94544 ...subjected to the principle of least astonishment, geologic science has always tended to adopt the most sta- tic interpretation allowed by the data, and evidence indicating displacements larger than conceivable...has consis- tently met strong resistance. Seeber, 1983, p. 1528 A vital lesson of plate tectonics is that there is no validity to any assumption that the simplest and therefore most acceptable interpretation demands a proximal rather than a distant origin. Coombs, 1997, p. 763 INTRODUCTION been working in ophiolites for some six years, first on the Vouri- nos complex in northern Greece and subsequently on the Troodos Two of this volume’s coeditors persuaded the third into com- complex in Cyprus (Moores and Vine, 1971). At the Penrose con- menting on his own paper. There are three clear alternatives as a ference I reported on the evidence for sea-floor spreading in the “classic paper” on California terranes. In the first of these, Hamil- Troodos complex, although I had not yet made the connection to ton (1969) first mentioned the North American Cordillera as a col- all ophiolites. One of the informal breakout sections at the Pen- lage of exotic terranes and argued that the continental margin of rose conference was devoted to discussion of the problem of North America was built out from the shelf edge by material car- ophiolite emplacement. -
University of Nevada Reno (Jreeology of Paleozoic Basinal Rocks in The
i \ University of Nevada Reno (jreeology of Paleozoic Basinal Rocks in the Northern Fox Range; Washoe County, Nevada A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology. by Mark F. Thiesse V i August 1988 11 MINES LIBRARY The thesis of Mark F. Thiesse is approved: 2H03 Thesis Advisor Department Chairman Dean, Graduate School University of Nevada Reno August 1988 iii ACKNOWLEDGEMENTS I would like to thank Dr. R .A. Schweickert for his help, encouragement and patience throughout this project. Dr. Bruce Wardlaw provided the conodont identification which suggested the Carboniferous (?) age of the metamorphic rocks. Other thanks go to Andy Markos and Bob Strobel for help with the thin sections and interesting discussions. And finally, thanks to Carol for typing and for funding this project. iv ABSTRACT The Fox Range in Northwestern Nevada is a typical Basin and Range fault block mountain range which has been tilted about 30° to the east, accelerating the erosion of Tertiary volcanic rocks along the steep western flanks, and exposing Paleozoic metamorphic rocks. The Paleozoic rocks consist of a very fine grained, siliceous mudstone which was regionally metamorphosed from mid-greenschist to mid-amphibolite facies producing argillite, schist, limestone, quartzite, and gneiss. These Paleozoic rocks exhibit three generations of structures. Di created the schistose and gneissic layering common throughout the range, along with abundant tight to isoclinal folds. D2 structures are dominated by two large, map-scale antiforms and occasional smaller, open to tight, east to northeast trending folds and assorted lineations. D3 structures are limited to a few north-south trending, open to gentle folds which affect all pre-Tertiary lithologies. -
Figs- 2, 6 Assemblage, Usage of Term Defined, 6 Elbow Canyon Thrust, 40, 45, 47- 52 I Augusta Mountain Formation, 23- 25; Figs
I n d e x Adelaide thrust, 34, 44, 46- 49, 51; Eastern assemblage of lower and middle Figs. 6—7 ; PI. 2 Paleozoic rocks, 5 Anderson, C. A., 5 East Range, 7, 13, 16- 20, 22- 23, 40- 4I Antler orogeny, 5, 33- 35, 47, 52 46; Figs. 1, 4 ; PI. 2 Antler orogenic belt, 5, 7, 35, 37-38 Edna Formation, 7, 14, 16, 36, 40, 51; Antler Peak Limestone, 16, 35; Figs. 2, 6 Fig. 1; PI. 2 Antler sequence, 14, 16, 35; Figs. 2- 3, Edna Mountain Formation, 16, 35, 7 ; PI 2 52- 53; Figs- 2, 6 Assemblage, usage of term defined, 6 Elbow Canyon thrust, 40, 45, 47- 52 I Augusta Mountain Formation, 23- 25; Figs. 6, 7 Fig. 2 ; PI. 1 Elko County, Nevada, 37 Augusta Mountains, 16, 19, 23; Fig. 1; El Paso Mountains, California, 35-36 PI. 2 Eugene Mountains, 21; Fig. 1 Augusta sequence, 7, 19, 23- 25, 37, 41, Excelsior Formation, 26- 28; Fig. 2 44, 5° - 5 j ; Figs. 2- 3> 7; pls- 1-2 Excelsior Mountains, 27; Fig. 1 Battle Formation, 14, 35; Fig. 2 Favret Formation, 23- 24; Fig. 2 ; PI. 1 Battle Mountain 7, 12, 14, 16- 18, 34, Ferguson, H. G., 3, 5- 7, 13- 14, 16- 18, 36, 40, 47, 51; Fig. 1 ; PI. 2 20, 22- 23, 26- 28, 30- 36, 38, 39, Berry, W. B. N., 12 40- 46, 50 Cameron, E. N., 21 Fish Creek Mountains, 24; Fig. 1; PI. 2 Candelaria Formation, 26, 28; Fig. 2 Gabbs Formation, 28, 31- 32; Figs. -
Orogenic Gold Formation and Tectonic Evolution of the Grass Valley Gold District and Temporal Correlations of Gold Deposits in California
OROGENIC GOLD FORMATION AND TECTONIC EVOLUTION OF THE GRASS VALLEY GOLD DISTRICT AND TEMPORAL CORRELATIONS OF GOLD DEPOSITS IN CALIFORNIA by Ryan D. Taylor A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology). Golden, Colorado Date _____________________ Signed: ________________________ Ryan D. Taylor Signed: ________________________ Dr. Thomas Monecke Thesis Advisor Golden, Colorado Date _____________________ Signed: ________________________ Dr. Paul Santi Professor and Head Department of Geology and Geological Engineering ii ABSTRACT With a total past production of 13 Moz of lode gold, the Grass Valley gold district of the Sierra Nevada foothills province is the historically most productive lode gold source in California. Despite its economic importance, an understanding of the broad processes controlling the gold formation is lacking. Two distinct vein sets are present in Grass Valley: a north-trending set (N-S veins) hosted by the Grass Valley granodiorite and an east-trending set (E-W veins) hosted within mafic-ultramafic rocks. Questions of how these relate to each other and if they are products of the same event or different events remain to be answered. Some of the previously published data are conflicting, and the timing of gold formation for the district seems inconsistent with previous interpretations of orogenic gold formation in the Cordillera of California, particularly when viewed relative to the much better studied Mother Lode belt in the southern Sierra Nevada. A geochemical and geochronological characterization of the ore- hosting granodiorite is also lacking. The present study represents the first detailed modern study on the Grass Valley gold district. -
Paleozoic Tectonic Domains of Nevada: an Interpretive Discussion to Accompany the Geologic Map of Nevada
Paleozoic tectonic domains of Nevada: An interpretive discussion to accompany the geologic map of Nevada A. Elizabeth Jones Crafford GeoLogic, 9501 Nettleton Drive, Anchorage, Alaska 99507, USA ABSTRACT contain rocks unlike those from the adjacent tectonic domains is to help characterize and dis- margin or other terranes and suggest they are tinguish groups of rocks by the distinct tectonic The Paleozoic geologic history of Nevada far traveled. A change in the plate boundary histories that have (or have not) impacted them. can be viewed in terms of tectonic domains confi guration in the Middle Pennsylvanian Traditional interpretations of Paleozoic tec- derived from the newly interpreted digi- led to the development of a new margin that tonic events in Nevada have primarily relied tal geologic map of Nevada. These domains refl ected the effects of a new plate boundary on pre-plate tectonic or early plate tectonic reveal that Paleozoic tectonic events were farther to the west. Accretion to the margin ideas of displacement of the Earth’s crust that shaped by complex interactions between the of upper Paleozoic oceanic terranes at the do not necessarily address the complexity of continental margin in Nevada and accreted close of the Paleozoic redefi ned the margin structural and stratigraphic evidence that has terranes outboard of the margin. once again as it changed from a transpres- been observed since they were fi rst proposed Ten domains are described. They include sive accretion regime to a true backarc plate (Brueckner and Snyder, 1985; Burchfi el and lower Paleozoic domains based on paleogeo- tectonic setting in the Mesozoic. -
Geologic Time Scale with Major Events in Nevada History
Table 1. Geologic time scale with major events in Nevada history. Million years before present ****************************************************************************************************************** CENOZOIC Quaternary Modern earthquakes, mountain building, volcanism, and geothermal activity are expressions of Basin and Range extension that began in the Tertiary Period. The crust is being pulled apart in Nevada, causing valleys to drop relative to mountains. Prior to 10,000 years ago, ice ages caused glaciers to form in the higher mountains and large lakes to develop, in places connecting today's valleys. 1.6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Tertiary Basin and Range extension began about 30 to 40 million years ago. Igneous activity during the Tertiary Period was caused not only by extension but also by subduction (descent of oceanic crust into the Earth's mantle) of oceanic plates beneath the North American Plate and, in northern Nevada, by motion of the crust over the Yellowstone hot spot in the mantle. Numerous Nevada ore deposits, including most major gold and silver deposits and the copper ores near Battle Mountain, formed during this time. Gypsum deposits formed from evaporating lakes in southern Nevada. 65 **************************************************************************************************************** MESOZOIC Cretaceous The Cretaceous Period and -
A Study of the Lake Lahontan Sediments in The
A STUDY OF THE LAKE LAHONTAN SEDIMENTS IN THE WINITEUUCCA AREA, NEVADA A thesis submitted to the faculty of the University of Nevada in partial fulfillment of the requirements for the degree of Master of Science Keros Cartwright Reno, Nevada January 30, 1961 Director of Thesis Approved Chairman of graduate committee i i TABLE OF CONTE:ITS PAGE ABSTRACT................. .................... vi INTRODUCTION................................. 1 ACKNOWLEDGEMENTS............................. 3 -PHYSIOGRAPHY................................. if REGIONAL GEOLOGY............................. 6 METHODS OF INVESTIGATIONS .HID RESULTS...... 10 Field Procedures......................... 10 11 Structure..... ........................... + 20 STRATIGRAPHY................................. 20 Ea.rlv Lahontan............................ Medial Gravels............................ 23 Upper Lahontan 28 Post Lahontan. 3? Paleontology.. 37 SEDIMENTARY PETROGRAPHY..................... 39 LATE QUATERNARY GEOLOGIC IISTORY............ ^3 ECONOMIC GEOLOGY............................. *+7 SUMMARY AND CONCLUSIONS..................... 1+8 BIBLIOGRAPHY................................. 1+9 APPENDIX 52 ILLUSTRATIONS p a g e Figure 1. Index map............... ......... 2 2. Difference between lake and fan sediments, southern Paradise Valley...... ..................... 15 3. Clear Creek flood, ala in.......... 17 *+. Formation of bluff on the east side of Clear Creek flood nlair.. 19 5. Sonoma Ranch well................ 22 6. Basal gravel on Sonoma and Thomas Creek fans................... -
Humboldt River Chronology Part III—Twentieth and Twenty-First Centuries
Humboldt River Chronology Part III—Twentieth and Twenty-First Centuries 1900 (February 8) It soon became evident that the plea presented in the Reese River Reveille (Austin) in September 1898 to eliminate the carp from the Humboldt River had met with little success. The Silver State (Winnemucca) reported in a very long article that there was no apparent use for carp: “Before the carp were placed in the river, the Humboldt was one of the best trout streams in the State; now the carp have overstocked the river, taken all the feed and destroyed the spawn of the other fish, so today you can catch nothing but carp…”1 1900 (February 27) In an early reference to the eventual construction of Rye Patch Reservoir, the Tuscarora Times-Review reported that “The ranchers in the vicinity of Lovelocks [Lovelock] have spent over $100,000 in litigation and this has not settled the water question and has not added a drop to the present supply. This [same] sum spent in storage reservoirs would have settled the water question in short order, but possibly the ranchers didn’t think of so simple a scheme as that.”2 1900 It was around this time that the annual cheatgrass began to replace the depleted climax perennial grass-forb understory and out-compete sagebrush that had been thinned or eliminated by range wildfires or excessive grazing by cattle and sheep throughout the Humboldt River Basin. This cheatgrass “invasion” would have extensive effects on trends in future wildfires as well as the habitats of animal species. For example, sharp-tail grouse and sage -
Notes on Some Mining Districts in Humboldt County, Neyada
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOE 4:14: NOTES ON SOME MINING DISTRICTS IN HUMBOLDT COUNTY, NEYADA BY FREDERICK LESLIE RANSOME WASHINGTON GOVERNMENT PRINTING OFFICE 1909 CONTENTS. Page. Introduction.............................................................. 7 Itinerary.................................................................. 9 General history of mining development..................................... 10 Literature................................................................. 13 Seven Troughs district..................................................... 14 Introduction.......................................................... 14 General geology........................................................ 15 Topography....................................................... 15 Early exploration................................................. 16 Pre-Tertiary rocks.................................................. 16 Tertiary volcanic rocks............................................. 18 Distribution and development of the mines............................. 20 Character of the deposits.............................................. 22 Outlook for the district................................................. 25 Rosebud district.......................................................... 25 Situation and history.......................... ; ........................ 25 General geology........................................................ 26 Ore deposits......................................................... -
University of Nevada Reno Geology and Mineral Deposits of The
University of Nevada Reno Geology and Mineral Deposits of the Northern Half of the Mt. Tobin Mining District, ✓ Pershing County, Nevada P thesis submitted in partial fulfillment of the requirements for the degree of Master of Science, by Richard Michael Perry Ppri 1, MINES UBRAJUC T K e & m The thesis of Richard Michael Perry is approved; University of Nevada Reno April, 1385 ii ABSTRACT The Northern half of the Mt. Tobin Mining District, 45 miles south of Winnernucca in the Tobin Range, produced 1073 flasks of mercury and minor silver and gold from deposits located near the northern margin of a late Tertiary vo1cano-tect oni c g ra ben. This graben is bounded to the north by a fault which juxtaposes complexly deformed sediments of the late Paleozoic Havallah sequence with Triassic sediments and Tertiary volcanics which fill the graben. Two types of mineralization are present; <1) Tertiary epithermal mercury—gold-siIver mineralization which is structurally controlled by the graben-bounding fault and <£> stratiform volcanogenic silver mineralization in the Havallah sequence. Analyses of 171 samples of Tertiary mineralized rocks indicate a vertical zoning of gold, silver, arsenic, antimony and mercury in vein and fossil hot springs deposits. i i i ACKNOWLEDGEMENTS The author is indebted to Larry Larson, Rich Schweickert and Dan Taylor for their critical reviews of this thesis. The not so subtle humor and threats of Dr. Larson were an inspiration to the author during the writing of this manuscript. Appreciation is also extended to Thomas Cudzilo, District Manager of Nicor Mineral Ventures, Inc., Sparks, Nevada, for approving funding for this thesis project. -
Environmental Assessment Tobin Range Herd Management Area And
BLM Environmental Assessment DOI-BLM-NV-WO10-2009-0007-EA Tobin Range Herd Management Area and Sonoma Herd Area Wild Horse Capture Plan Winnemucca District Office/Nevada District Winnemucca Wild horse herd in the Tobin Range HMA, August 2008. October 2009 Prepared by: U.S. Bureau of Land Management Winnemucca District Office 5100 E. Winnemucca Blvd. Winnemucca NV 89445-2921 It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM/NV/WN/EA-GI-09/22+8300 DOI-BLM-NV-WO10-2009-0007-EA 2 TABLE OF CONTENTS 1.0 INTRODUCTION............................................................................................................. 1 1.1 Background Information.............................................................................................. 1 1.2 Purpose and Need ......................................................................................................... 2 1.3 Land Use Plan Conformance ....................................................................................... 3 1.4 Relationship to Laws, Regulations, and Other Plans ................................................ 3 1.5 Conformance with Rangeland Health Standards ...................................................... 3 1.6 Identification of Issues .................................................................................................. 3 2.0 PROPOSED ACTION AND ALTERNATIVES ........................................................... -
Mineralassmtrprt.Pdf
EXECUTIVE SUMMARY The Bureau of Land Management (BLM) Winnemucca Field Office (WFO) is in the process of preparing an overall Resource Management Plan (RMP) for the Field Office (FO). As part of the RMP revision process, the BLM is required to prepare a Mineral Assessment Report providing information regarding mineral occurrences and potential within the WFO RMP Planning Area (Planning Area). This report provides an intermediate level of detail for mineral assessment as prescribed in BLM Manual 3060 (BLM 1994). The information presented in this report will be summarized and incorporated into an Environmental Impact Statement (EIS) for the proposed RMP and into the final RMP. The geologic history of northern Nevada and the Winnemucca FO Planning Area (Planning Area) is very complex, and includes two major cycles of sedimentation (western and eastern facies sources), episodic thrust faulting, mountain building and associated intrusive and igneous activity. More recent geologic history includes a period of crustal extension that was accompanied by bimodal (rhyolite-basalt) volcanism, basin and range block-faulting, resulting in high-levels of shallow crustal heat flow. The regional and local geologic setting has been instrumental in the location of and significant potential for the numerous economic metallic mineral deposits in the Planning Area, as well as the significant potential for the development of economic geothermal resources. LOCATABLE MINERALS The Planning Area has a long history of mineral development dating back to the 1860s and contains some of the most famous gold and silver metal mining districts in the US, including: Battle Mountain, Potosi, Marigold, Lone Tree, Getchell, Pinson, Seven Troughs, Awakening, and Hog Ranch (Davis and Tingley, 1999; Peters and others, 1996; and Wallace and others, 2004).