Figs- 2, 6 Assemblage, Usage of Term Defined, 6 Elbow Canyon Thrust, 40, 45, 47- 52 I Augusta Mountain Formation, 23- 25; Figs

Total Page:16

File Type:pdf, Size:1020Kb

Figs- 2, 6 Assemblage, Usage of Term Defined, 6 Elbow Canyon Thrust, 40, 45, 47- 52 I Augusta Mountain Formation, 23- 25; Figs I n d e x Adelaide thrust, 34, 44, 46- 49, 51; Eastern assemblage of lower and middle Figs. 6—7 ; PI. 2 Paleozoic rocks, 5 Anderson, C. A., 5 East Range, 7, 13, 16- 20, 22- 23, 40- 4I Antler orogeny, 5, 33- 35, 47, 52 46; Figs. 1, 4 ; PI. 2 Antler orogenic belt, 5, 7, 35, 37-38 Edna Formation, 7, 14, 16, 36, 40, 51; Antler Peak Limestone, 16, 35; Figs. 2, 6 Fig. 1; PI. 2 Antler sequence, 14, 16, 35; Figs. 2- 3, Edna Mountain Formation, 16, 35, 7 ; PI 2 52- 53; Figs- 2, 6 Assemblage, usage of term defined, 6 Elbow Canyon thrust, 40, 45, 47- 52 I Augusta Mountain Formation, 23- 25; Figs. 6, 7 Fig. 2 ; PI. 1 Elko County, Nevada, 37 Augusta Mountains, 16, 19, 23; Fig. 1; El Paso Mountains, California, 35-36 PI. 2 Eugene Mountains, 21; Fig. 1 Augusta sequence, 7, 19, 23- 25, 37, 41, Excelsior Formation, 26- 28; Fig. 2 44, 5° - 5 j ; Figs. 2- 3> 7; pls- 1-2 Excelsior Mountains, 27; Fig. 1 Battle Formation, 14, 35; Fig. 2 Favret Formation, 23- 24; Fig. 2 ; PI. 1 Battle Mountain 7, 12, 14, 16- 18, 34, Ferguson, H. G., 3, 5- 7, 13- 14, 16- 18, 36, 40, 47, 51; Fig. 1 ; PI. 2 20, 22- 23, 26- 28, 30- 36, 38, 39, Berry, W. B. N., 12 40- 46, 50 Cameron, E. N., 21 Fish Creek Mountains, 24; Fig. 1; PI. 2 Candelaria Formation, 26, 28; Fig. 2 Gabbs Formation, 28, 31- 32; Figs. 2, 5 Candelaria Hills, 25, 27- 28, 39, 52; F g. 1 Gabbs Valley Range, 26- 27, 30- 32; Cane Spring Formation, 23- 24; Fig. 2 ; Fig. 1 PI. 1 Garden Valley Formation, 52 Carbonate assemblage of lower and Garfield Hills, 26- 27, 3°, 33> Fig. 1 middle Paleozoic rocks, 5, 34 Garlock series, 35-36 Cathcart, S. H., 26, 39 Gillis Range, 27, 31, 33 ; Fig. 1 China Mountain, 16, 19, 23- 24, 36, Gillis sequence 25, 32- 33, 38 ; Figs. 2-3 40-41 ; Fig. 1 ; PI. 2 Gillis thrust, 27, 32- 33, 39; Fig. 3 China Mountain Formation, 24; Fig. 2; Gilluly, James, 3, 5- 7, 12, 14, 17- 18, p:. i 34-35 Clan Alpine Range, 21, 30, 41; Fig. 1 Golconda thrust, 36, 40- 41, 47- 53; Clark, D. L., 38 Figs. 3, 6- 7 ; PI. 2 Grantsville Formation, 28, 3 1 ; Figs. 2, 5 Clear Creek thrust, 40, 44, 47- 52; Grass Valley Formation, 20- 23, 25 J Figs. 6—7 ; PI. 2 Fig. 2 ; PI. 1 Compton, R. R., 3 Harmony Formation, 12- 13; Fig. 6 Comus Formation, 12-13 Hass, W. H., 18 Detrital-volcanic assemblage of lower Havallah Formation, 17; Figs. 2, 4 and middle Paleozoic rocks, 5, 7, 12, Havallah sequence, 7, 16—18, 35—36; 34; Fig. 7; pl- 2 Figs. 2- 3, 6- 7 ; PI. 2 Dewitt thrust, 40, 4 7; PI. 2 Hawthorne quadrangle, 25, 32 38- 39; Diablo Formation, 26, 28, 52; Fig. 2 Fig. 1 Diablo sequence, 25, 26- 28, 35- 36; Henbest, L. G., 18 Figs. 2-3 Highway Limestone, 14; Fig. 2 Dibblee, T. W., Jr., 35-36 Hoffman Canyon thrust, 40- 41, 52; Dixie Valley Formation, 23; Fig. 2; PI. 1 PI. 2 Douglass, R. C., 17-18 Hotz, P. E., 3, 5- 7, 12, 14, 17- 18, Duncan, Helen, 13, 26 34-35, 46-47 Dun Glen Formation, 20- 21, 23; Humboldt Range, 18- 23, 395 Fig- 1 Fig. 2 ; PI. 1 Inskip Formation, 12- 14, 4^; Fig. 4 Dunkle, D. H., 19 Jackson Range, 21; Fig. 1 Dunlap Formation, 28; Fig. 2 Jenney, C. P., 19 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/962102/spe72-bm.pdf by guest on 26 September 2021 INDEX 58 Jurassic and Cretaceous orogeny, 34, Shoshone Range, 7, 12, 34; Fig. 1; PI. 2 38-39. 5°~52 Silberling, N. J., 22, 24, 26, 31 Ketchum, Idaho, 18 Sonoma orogeny, 34- 36, 49-53 King, Clarence, 21 Sonoma Range, 7, 12- 14, 16, 19- 22, 34, Koipato Formation or Group, 18; 36, 40, 44- 49; Figs. 1, 6 ; PI. 2 Figs. 2, 4 Sonoma Range Formation, 12; Fig. 6 Koipato sequence, 7, 18—1 g, 36, 51- 53; Sonoma Range quadrangle, 20, 37, Figs. 2- 3, 6- 7 ; PI. 2 39-53; Fig- 1; PI- 2 Knopf, Adolph, 19 Sonoma thrust, 40, 45—49, 51—52; Leach Formation, 12- 14, 46; Fig. 4 F gs. 6- 7 ; PL 2 Luning Embayment, 31-32 Steele, Grant, 52 Luning Formation, 28, 30- 31; Figs. 2, 5 Stillwater Range, 17, 19- 22, 39, 41; Luning sequence 25, 28- 32, 38; Fig. 1; PI. 2 Figs 2- 3, 5 Sunrise Formation, 28, 31- 32; Figs. 2, 5 Merriam, C. W., 5 Tallman Fanglomerate, 16, 44- 45; Monte Cristo Range, 25, 39; Fig. 1 Figs. 2, 6 Monte Cristo thrust, 28, 39 Thomas thrust, 45, 47, 51; Figs. 6 -7 ; Mountain City, Nevada, 18 PI. 2 Mullen Canyon thrust, 40, 44, 47- 52; Thompson, T. L., 37 Figs. 6-7 Tobin Formation, 23, 37—38, 5 1; Muller, S. W., 3, 13- 14, 16, 18, 20- 24, Fig. 2; PI. 1 26- 28, 33, 36- 37, 39- 46, 50 Tobin Range, 16, 19- 20, 22, 41; Fig. 1; Natchez Pass Formation, 20, 23; PI. 2 Fig. 2 ; PI. 1 Tobin thrust, 41, 44, 51- 52; Fig. 3 ; PI. 2 NewPassRange, 16,19 23- 24, 41; F g. 1 Toiyabe Range, 25- 26, 28, 52; Fig. 1 Nielsen, Eigel, 19 Tonopah, Nevada, vicinity of, 25—26 Nolan, T. B., 5 Tonopah quadrangle, 25; Fig. 1 Osgood Mountain Quartzite, 12; F g. 6 Toquima Range, 25; Fig 1 Osgood Mountains, 7, 12- 14, 16, 36, Transitional assemblage of lower and 46; Fig. 1 middle Paleozoic rocks, 5, 7. 12—13; Osobb Formation, 23- 25; Fig. 2 ; PI. 1 Fig. 7 ; PL 2 Overlap assemblage of upper Paleozoic Tyrone Gap, Nevada, 52 rocks, 5, 14, 35 Umpleby, J. B., 18 Pablo Formation, 26- 28; Fig. 2 Valiny Formation, 12; Fig. 6 Panther Canyon Formation, 24—25; Wassuk Range, 27, 3 3 ; Fig. 1 Fig. 2 ; PI. 1 Water Canyon thrust, 40, 45- 49, 51- 52; Paradise Range, 26, 3 1 ; Fig. 1 Figs. 6, 7 Pilot Mountains, 26- 27, 30- 31; Fig. 1 Western assemblage of lower and middle Preble Formation, 12- 13; Fig. 6 Paleozoic rocks, 5 Prida Formation, 20, 22- 23, 25! Fig. 2 Westgate, L. G., 18 Pumpernickel Formation, 17- 18; Fig. 2 West Humboldt Range, 21, 39; Fig. 1 Rasberry Formation, 20- 21; Fig. 2 ; PI. I Wheeler, H. E., 19, 37, 52 Roberts, R. J., 3, 5, 7, 12- 18, 20, 22- 23, Willden, C. R., 3, 21, 34, 39 33_35> 36. 40-47. 5° Williams, J. S., 16, 52 Roberts Mountains thrust, 5, 34, 40, 47 Willow Creek thrust, 40, 46, 49, 52; Ross, C. P., 18 Fig. 4; Pl. 2 Ross, D. C., 27, 33 Ross, R. J., Jr., 12 Winnemucca, Nevada, hills northeast of, Sand Springs Range, 27, 33, 39; Fig. 1 20, 21 Scott, W. F., 37 Winnemucca Formation, 20- 21; Fig. 2; Scott Canyon Formation, 12 Pis. 1-2 Sequence, usage of term defined, 6-7 Winnemucca sequence, 7, 19- 25, 37, 41, Shoshone Mountains, 25- 26, 30- 32 ; 44, 47. 5°; Figs. 2- 4, 6- 7 ; Pl. 1 Fig. 1 Wood River Formation, 18 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/962102/spe72-bm.pdf by guest on 26 September 2021.
Recommended publications
  • North American Coral Recovery After the End-Triassic Mass Extinction, New York Canyon, Nevada, USA
    North American coral recovery after the end-Triassic mass extinction, New York Canyon, Nevada, USA Montana S. Hodges* and George D. Stanley Jr., University of INTRODUCTION Montana Paleontology Center, 32 Campus Drive, Missoula, Mass extinction events punctuate the evolution of marine envi- Montana 59812, USA ronments, and recovery biotas paved the way for major biotic changes. Understanding the responses of marine organisms in the ABSTRACT post-extinction recovery phase is paramount to gaining insight A Triassic-Jurassic (T/J) mass extinction boundary is well repre- into the dynamics of these changes, many of which brought sented stratigraphically in west-central Nevada, USA, near New sweeping biotic reorganizations. One of the five biggest mass York Canyon, where the Gabbs and Sunrise Formations contain a extinctions was that of the end-Triassic, which was quickly continuous depositional section from the Luning Embayment. followed by phases of recovery in the Early Jurassic. The earliest The well-exposed marine sediments at the T/J section have been Jurassic witnessed the loss of conodonts, severe reductions in extensively studied and reveal a sedimentological and paleonto- ammonoids, and reductions in brachiopods, bivalves, gastropods, logical record of intense environmental change and biotic turn- and foraminifers. Reef ecosystems nearly collapsed with a reduc- over, which has been compared globally. Unlike the former Tethys tion in deposition of CaCO3. Extensive volcanism in the Central region, Early Jurassic scleractinian corals surviving the end- Atlantic Magmatic Province and release of gas hydrates and other Triassic mass extinction are not well-represented in the Americas. greenhouse gases escalated CO2 and led to ocean acidification of Here we illustrate corals of Early Sinemurian age from Nevada the end-Triassic (Hautmann et al., 2008).
    [Show full text]
  • Oregon Geology
    ORECiON CiEOLOCiY published by the Oregon Department of Geology and Mineral Industries VOLUME 44 , NUMBER 5 MAY 1982 OREGON GEOLOGY OIL AND GAS NEWS (ISSN 0164-3304) Columbia County: Reichhold Energy Corporation continues to carry out ex­ VOLUME 44, NUMBER 5 MAY 1982 ploratory drilling in Columbia County, most recently spudding Crown Zellerbach 32-26 about 11 mi southeast of production Published monthly by the State of Oregon Department of Geology and Mineral Industries (Volumes 1 through 40 were en­ at the Mist Field. This well, projected for 6,500 ft, is located in titled The Ore Bin). sec. 26, T. 5 N., R. 4 W. The company also anticipates redrilling two existing wells at Mist: Columbia County 4 and 13-1. Governing Board C. Stanley Rasmussen . .. Baker Douglas County: Allen P. Stinchfield ........................ North Bend Florida Exploration Company of Houston has begun Donald A. Haagensen ....................... " Portland drilling northwest of Roseburg in Douglas County. A Mont­ State Geologist. .. Donald A. Hull gomery rig from California spudded the well, Florida Explora­ tion Company 1-4, on April 6 and is drilling toward a pro­ Deputy State Geologist ..................... John D. Beaulieu posed depth of 10,000 ft. The well is in sec. 4, T. 21 S., R. 6 W. The operator has also applied to drill a second well in Editor ................................... Beverly F. Vogt Douglas County (see table below). Main Office: 1005 State Office Building, Portland 97201, phone Malheur County: (503) 229-5580. It has been over 20 years since an oil and gas well has been drilled in northern Malheur County, although several of the Baker Field Office: 2033 First Street, Baker 97814, phone (503) earlier wells had shows of gas.
    [Show full text]
  • C:\A Projects\AAA IBLA Decs\061IBLA\L370-375.Wpd
    CHURCHILL COUNTY BOARD OF COMMISSIONERS IBLA 81-539 Decided February 17, 1982 Appeal from a decision of the Nevada State Director, Bureau of Land Management, denying a protest of wilderness study area designations. 8500 (N-932.6). Affirmed. 1. Federal Land Policy and Management Act of 1976: Wilderness--Wilderness Act--Words and Phrases. "Roadless." H.R. Rep. No. 94-1163, 94th Cong., 2d Sess. 17 (1976), provides a definition of "roadless" adopted by the Bureau of Land Management in its Wilderness Inventory Handbook. The word "roadless" refers to the absence of roads which have been improved and maintained by mechanical means to insure relatively regular and continuous use. A way maintained solely by the passage of vehicles does not constitute a road. 2. Federal Land Policy and Management Act of 1976: Wilderness--Wilderness Act Sights and sounds outside a wilderness study area will be considered during the study phase of the wilderness review process absent a finding by BLM during the inventory phase that such impacts are adjacent to the unit and are so extremely imposing that they cannot be ignored, and and if not considered, reasonable application of inventory guidelines would be questioned. 3. Federal Land Policy and Management Act of 1976: Wilderness--Wilderness Act The requirement in section 2(c) of the Wilderness Act of 1964, 16 U.S.C. § 1131(c) (1976), that a wilderness possess, inter alia, outstanding opportunities for solitude or a primitive and unconfined type of 61 IBLA 370 IBLA 81-539 recreation is properly construed to require outstanding opportunities for either solitude or a primitive and unconfined type of recreation; both need not be present in an inventory unit to allow the unit to enter the study phase of the wilderness review process.
    [Show full text]
  • GEOLOGY of the SOUTHERN PART of the SAND SPRINGS RANGE, CHURCHILL COUNTY, NEVADA by S. K. M. Abdullah a Thesis Submitted in Part
    GEOLOGY OF THE SOUTHERN PART OF THE SAND SPRINGS RANGE, CHURCHILL COUNTY, NEVADA By S. K. M. Abdullah A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Mackay School of Mines University of Nevada January, 1966 a. Approved by M. ,r Thesis Director Approved by j^T- \ Department Head Approved by Graduate Dean CONTENTS Page LIST OF ILLUSTRATIONS........................................ vi ABSTRACT . ................................................ 1 INTRODUCTION ................................................ 2 Location and Accessibility ................................ 2 Scope and Method of Investigation.......................... 2 Previous Investigations ...................... 5 Acknowledgments ............................................ 5 GEOLOGIC SETTING ............................................ 7 GRANITIC ROCKS ................................... 8 Introduction .............................................. 8 The Pluton ................................................ 8 Porphyritic Quartz Monzonite ............................ Granodiorite ................................. 11- Contacts and Minor Structures ............................... 12 Origin ...................................... 12 A g e ......................................................... 12 The Dike Rocks .......... - ................................ 18 Aplite-Pegmatite Dikes ..................................... 18 Andesite Dikes ............................................. 1^ Rhyolite Dikes ............................................
    [Show full text]
  • Geology and Paleontology of the Southwest Quarter of the Big Bend Quadrangle Shasta County, California
    GEOLOGY AND PALEONTOLOGY OF THE SOUTHWEST QUARTER OF THE BIG BEND QUADRANGLE SHASTA COUNTY, CALIFORNIA By ALBERT F. SANBORN Geologist, Standard Oil Company of California Salt Lake City, Utah Special Report 63 CALIFORNIA DIVISION OF MINES FERRY BUILDING, SAN FRANCISCO, 1960 STATE OF CALIFORNIA EDMUND G. BROWN, Governor DEPARTMENT OF NATURAL RESOURCES eWITT NELSON, Director DIVISION OF MINES IAN CAMPBELL, Chief Special Report 63 Price 75$ , GEOLOGY AND PALEONTOLOGY OF THE SOUTHWEST QUARTER OF THE BIG BEND QUADRANGLE SHASTA COUNTY, CALIFORNIA By Albert F. Sandorn * OUTLINE OF REPORT ABSTRACT Abstract 3 The area covered by this report is the southwest quarter of the Big Bend quadrangle in the vicinity of lntroductu.il 3 the town of Big Bendj Shasta County) California. General stratigraphy 5 This region, which has been geologically unknown, contains sedimentary volcanic strata of Triassic system _ 5 and Mesozoic an( Pit formation (Middle and Upper Triassic) 5 * Cenozoic ages. Hosselkus limestone (Upper Triassic) 7 The Mesozoic deposits are composed of pyroclastic Brock shale (Upper Triassic) 7 rocks, lava flows, tuffaceous sandstone, argillite, and Modin formation (Upper Triassic) 8 limestone. The Mesozoic formations, from the oldest Hawkins Creek member T0 the youngest, are the Pit formation of Middle and I Devils Canyon member 10 jate Triassic age ; the Hosselkus limestone, the Brock Kosk member ll shale, and the Modin formation of Late Triassic age; . the Arvison formation of Early Jurassic age ; and the s sy em -—- -- - --- Bagley andesite and Potem formation of Early and Arvison formation (Lower Jurassic) 11 „•,,, T . ,-.., ., e ,. , ' „ , . .. .. __ . , T 1( Middle Jurassic age. Or the seven formations mapped,rr Nature of the contact of the Triassic and Jurassic svstems 14 ,.
    [Show full text]
  • The Timing and Evolution of Cenozoic Extensional Normal Faulting in The
    AN ABSTRACT OF THE THESIS OF Zachary J. Gonsior for the degree of Master of Science in Geology presented on March 13, 2006. Title: The Timing and Evolution of Cenozoic Extensional Normal Faulting in the Southern Tobin Range, Pershing County, Nevada. Abstract approved:______________________________________________________ John H. Dilles The Tobin Range of central Nevada lies in the Basin and Range extensional province near the transition between more extended terrane (>50%) to the south and east, and generally less extended terrane to the north and west. Geologic mapping, 40Ar/39Ar dating and whole-rock geochemical analysis were employed to establish the Cenozoic stratigraphy, geometry and timing of normal faults, and magnitude of extension in the vicinity of Golconda Canyon in the southern Tobin Range. The Golconda Canyon area lies near the westernmost extent of a major east- west trending paleo-valley that likely predates Basin and Range extension in that region. In-filling and over-topping the paleo-valley are a series of Oligocene to Miocene volcanic rocks. Confined to the paleo-valley is a series of thin basaltic lava flows above which lies the rhyolitic Caetano Tuff (~34 Ma). Units also present in the Golconda Canyon area, but not confined to the paleo-valley include, from bottom to top, a ~700m-thick sequence of andesite lavas, lahars, and ignimbrites (~33 Ma); four late Oligocene-early Miocene rhyolite ignimbrites; a unit of syn-tectonic landslide breccia and sedimentary rock; and a sequence of fluvial and lacustrine tuffaceous sedimentary rocks intercalated in the center of the section with a 60m-thick series of basaltic lavas (~14 Ma).
    [Show full text]
  • UNIVERSITY of NEVADA-RENO Nevada Bureau of Mines and Geology Un~Vrrsiryof Nevada-8.Eno Reno, Nevada 89557-0088 (702) 784-6691 FAX: (7G2j 784-1709
    UNIVERSITY OF NEVADA-RENO Nevada Bureau of Mines and Geology Un~vrrsiryof Nevada-8.eno Reno, Nevada 89557-0088 (702) 784-6691 FAX: (7G2j 784-1709 NBMG OPEN-FILE REPORT 90-1 MINERAL RESOURCE INVENTORY BUREAU OF LAND MANAGEMENT, CARSON CITY DISTRICT, NEVADA Joseph V. Tingley This information should be considered preliminary. It has not been edited or checked for completeness or accuracy. Mineral Resource Inventory Bureau of Land Management, Carson City District, Nevada Prepared by: Joseph V. Tingley Prepared for: UNITED STATES DEPARTMENT OF E INTERIOR '\\ !\ BUREAU OF LAND MANAGEMENT Carson City Office Carson City, Nevada Under Cooperative Agreement 14-08-0001-A-0586 with the U.S. GEOLOGICAL SURVEY NEVADA BUREAU OF MINES AND GEOLOGY UNIVERSITY OF NEVADA, RENO January 1990 TABLE OF CONTENTS INTRODUCTION ........................ 3 LOCATION .......................... 4 MINERAL RESOURCES ...................... 4 MINING DISTRICTS AND AREAS .................. 6 ALLEN HOT SPRINGS AREA ................. 6 ALPINE DISTRICT .................... 7 AURORA DISTRICT .................... 10 BELL DISTRICT ..................... 13 BELLMOUNTAIN DISTRICT ................. 16 BENWAY DISTRICT .................... 19 BERNICE DISTRICT .................... 21 BOVARDDISTRICT .............23 BROKENHILLS DISTRICT ................. 27 BRUNERDISTRICT .................. 30 BUCKLEYDISTRICT ................. 32 BUCKSKINDISTRICT ............... 35 CALICO HILLS AREA ................... 39 CANDELARIA DISTRICT ................. 41 CARSON CITY DISTRICT .................. 44
    [Show full text]
  • Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada
    Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 Pre-Tertiary Stratigraphy and Upper Triassic Paleontology of the Union District Shoshone Mountains Nevada By N. J. SILBERLING GEOLOGICAL SURVEY PROFESSIONAL PAPER 322 A study of upper Paleozoic and lower Mesozoic marine sedimentary and volcanic rocks, with descriptions of Upper Triassic cephalopods and pelecypods UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Page Abstract_ ________________________________________ 1 Paleontology Continued Introduction _______________________________________ 1 Systematic descriptions-------------------------- 38 Class Cephalopoda___--_----_---_-_-_-_-_--_ 38 Location and description of the area ______________ 2 Order Ammonoidea__-__-_______________ 38 Previous work__________________________________ 2 Genus Klamathites Smith, 1927_ __ 38 Fieldwork and acknowledgments________________ 4 Genus Mojsisovicsites Gemmellaro, 1904 _ 39 Stratigraphy _______________________________________ 4 Genus Tropites Mojsisovics, 1875_____ 42 Genus Tropiceltites Mojsisovics, 1893_ 51 Cambrian (?) dolomite and quartzite units__ ______ 4 Genus Guembelites Mojsisovics, 1896__ 52 Pablo formation (Permian?)____________________ 6 Genus Discophyllites Hyatt,
    [Show full text]
  • Field Guide to Oligocene-Miocene Ash-Flows and Source Calderas in the Great Basin of Nevada
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY FIELD GUIDE TO OLIGOCENE-MIOCENE ASH-FLOWS AND SOURCE CALDERAS IN THE GREAT BASIN OF NEVADA David A. John1, editor Open-File Report 94-193 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. .S. Geological Survey, Menlo Park, CA INTRODUCTION This field guide was prepared for a field trip to be held in conjunction with the Eighth International Conference on Geochronology, Cosmochronology and Isotopic Geology (ICOG8) scheduled for June 1994 in Berkeley, California. The road log and field guide covers the area between Caliente and Fallen, Nevada, and includes a stop near Soda Springs, California. The trip is 5 days long. Days 1 to 3 are covered in Part 1, which describes the Indian Peak and Central Nevada caldera complexes and exposures in White River Narrows and includes a road log between Caliente and Austin, Nevada. Part 2 describes day 4 and the morning of day 5. Included in this section are descriptions of the Stillwater caldera complex and its distal eruptive products and a road log from Austin to Fallen, Nevada. The afternoon of day 5 is covered in Part 3 which describes exposures of the Nine Hill Tuff near Soda Springs, California. PART 1. INDIAN PEAK CALDERA COMPLEX, WHITE RIVER NARROWS ("OUTFLOW ALLEY"), THE CENTRAL NEVADA CALDERA COMPLEX, AND ROAD LOG FROM CALIENTE TO AUSTIN, NEVADA Myron G.
    [Show full text]
  • 3.2 Land Use
    3.2 Land Use No Action Alternative Under the No Action Alternative, the 1999 Congressional land withdrawal of 201,933 acres from public domain (Public Law 106-65) would expire on November 5, 2021, and military training activities requiring the use of these public lands would cease. Expiration of the land withdrawal would terminate the Navy’s authority to use nearly all of the Fallon Range Training Complex’s (FRTC’s) bombing ranges, affecting nearly 62 percent of the land area currently available for military aviation and ground training activities in the FRTC. Alternative 1 – Modernization of the Fallon Range Training Complex Under Alternative 1, the Navy would request Congressional renewal of the 1999 Public Land Withdrawal of 202,864 acres, which is scheduled to expire in November 2021. The Navy would request that Congress withdraw and reserve for military use approximately 618,727 acres of additional Federal land and acquire approximately 65,153 acres of non-federal land. Range infrastructure would be constructed to support modernization, including new target areas, and expand and reconfigured existing Special Use Airspace (SUA) to accommodate the expanded bombing ranges. Implementation of Alternative 1 would potentially require the reroute of State Route 839 and the relocation of a portion of the Paiute Pipeline. Public access to B-16, B-17, and B-20 would be restricted for security and to safeguard against potential hazards associated with military activities. The Navy would not allow mining or geothermal development within the proposed bombing ranges or the Dixie Valley Training Area (DVTA). Under Alternative 1, the Navy would use the modernized FRTC to conduct aviation and ground training of the same general types and at the same tempos as analyzed in Alternative 2 of the 2015 Military Readiness Activities at Fallon Range Training Complex, Nevada, Final Environmental Impact Statement (EIS).
    [Show full text]
  • Paleozoic Tectonic Domains of Nevada: an Interpretive Discussion to Accompany the Geologic Map of Nevada
    Paleozoic tectonic domains of Nevada: An interpretive discussion to accompany the geologic map of Nevada A. Elizabeth Jones Crafford GeoLogic, 9501 Nettleton Drive, Anchorage, Alaska 99507, USA ABSTRACT contain rocks unlike those from the adjacent tectonic domains is to help characterize and dis- margin or other terranes and suggest they are tinguish groups of rocks by the distinct tectonic The Paleozoic geologic history of Nevada far traveled. A change in the plate boundary histories that have (or have not) impacted them. can be viewed in terms of tectonic domains confi guration in the Middle Pennsylvanian Traditional interpretations of Paleozoic tec- derived from the newly interpreted digi- led to the development of a new margin that tonic events in Nevada have primarily relied tal geologic map of Nevada. These domains refl ected the effects of a new plate boundary on pre-plate tectonic or early plate tectonic reveal that Paleozoic tectonic events were farther to the west. Accretion to the margin ideas of displacement of the Earth’s crust that shaped by complex interactions between the of upper Paleozoic oceanic terranes at the do not necessarily address the complexity of continental margin in Nevada and accreted close of the Paleozoic redefi ned the margin structural and stratigraphic evidence that has terranes outboard of the margin. once again as it changed from a transpres- been observed since they were fi rst proposed Ten domains are described. They include sive accretion regime to a true backarc plate (Brueckner and Snyder, 1985; Burchfi el and lower Paleozoic domains based on paleogeo- tectonic setting in the Mesozoic.
    [Show full text]
  • Geochronologic and Isotopic Investigation of the Koipato
    GEOCHRONOLOGIC AND ISOTOPIC INVESTIGATION OF THE KOIPATO FORMATION, NORTHWESTERN GREAT BASIN, NEVADA: IMPLICATIONS FOR LATE PERMIAN-EARLY TRIASSIC TECTONICS ALONG THE WESTERN U.S. CORDILLERA By Nicholas Quentin Vetz A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology Boise State University August 2011 © 2011 Nicholas Quentin Vetz ALL RIGHTS RESERVED BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Nicholas Quentin Vetz Thesis Title: Geochronologic and Isotopic Investigation of the Koipato Formation, Northwestern Great Basin, Nevada: Implications for Late Permian-Early Triassic Tectonics along the Western U.S. Cordillera Date of Final Oral Examination: 04 March 2011 The following individuals read and discussed the thesis submitted by student Nicholas Quentin Vetz, and they evaluated his presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. Walter S. Snyder, Ph.D. Chair, Supervisory Committee Clyde J. Northrup, Ph.D. Member, Supervisory Committee Craig M. White, Ph.D. Member, Supervisory Committee Mark D. Schmitz, Ph.D. Member, Supervisory Committee The final reading approval of the thesis was granted by Walter S. Snyder, Ph.D., Chair of the Supervisory Committee. The thesis was approved for the Graduate College by John R. Pelton, Ph.D., Dean of the Graduate College. ACKNOWLEDGEMENTS First, I would like to thank my advisor, Dr. Walter Snyder, for affording me with this opportunity, and for providing the support and help I required over the course of this thesis to finally complete my research.
    [Show full text]