Paleozoic Tectonic Domains of Nevada: an Interpretive Discussion to Accompany the Geologic Map of Nevada

Total Page:16

File Type:pdf, Size:1020Kb

Paleozoic Tectonic Domains of Nevada: an Interpretive Discussion to Accompany the Geologic Map of Nevada Paleozoic tectonic domains of Nevada: An interpretive discussion to accompany the geologic map of Nevada A. Elizabeth Jones Crafford GeoLogic, 9501 Nettleton Drive, Anchorage, Alaska 99507, USA ABSTRACT contain rocks unlike those from the adjacent tectonic domains is to help characterize and dis- margin or other terranes and suggest they are tinguish groups of rocks by the distinct tectonic The Paleozoic geologic history of Nevada far traveled. A change in the plate boundary histories that have (or have not) impacted them. can be viewed in terms of tectonic domains confi guration in the Middle Pennsylvanian Traditional interpretations of Paleozoic tec- derived from the newly interpreted digi- led to the development of a new margin that tonic events in Nevada have primarily relied tal geologic map of Nevada. These domains refl ected the effects of a new plate boundary on pre-plate tectonic or early plate tectonic reveal that Paleozoic tectonic events were farther to the west. Accretion to the margin ideas of displacement of the Earth’s crust that shaped by complex interactions between the of upper Paleozoic oceanic terranes at the do not necessarily address the complexity of continental margin in Nevada and accreted close of the Paleozoic redefi ned the margin structural and stratigraphic evidence that has terranes outboard of the margin. once again as it changed from a transpres- been observed since they were fi rst proposed Ten domains are described. They include sive accretion regime to a true backarc plate (Brueckner and Snyder, 1985; Burchfi el and lower Paleozoic domains based on paleogeo- tectonic setting in the Mesozoic. East-vergent Davis, 1972, 1975; Burchfi el and Royden, 1991; graphic facies, the Carbonate Shelf, Slope and west-vergent, thick-skinned thrusting Miller et al., 1984; Roberts et al., 1958; Speed, and Basin domains; the Nolan Belt domain, and exhumation coupled with signifi cant 1979; Speed and Sleep, 1982). Specifi cally, a structurally complex domain that includes translation of components of Mesozoic and ideas of terrane accretion and displacement have Precambrian and lower Paleozoic slope and older terranes rearranged the Paleozoic only been applied either very generally to the basin facies rocks; the Dutch Flat domain, rocks of the shelf and earlier accreted ter- Paleozoic and Mesozoic rocks within Nevada an Upper Devonian feldspathic sandstone of ranes during Jurassic and Cretaceous time. (Dickinson and Gehrels, 2000; Geissman et exotic origin; an Upper Devonian to Lower Viewing the geologic history of the region al., 1984; Silberling et al., 1987; Silberling et Pennsylvanian siliciclastic Foreland basin in the context of terrane accretion provides al., 1992), or to a few specifi c terranes (Blome domain resting conformably over the Shelf new insight into the complex processes that and Reed, 1995; Darby et al., 2000; Gehrels and domain; the Pennsylvanian and Permian shaped the continental margin of western Dickinson, 2000; Gehrels et al., 2000a; Gehrels siliciclastic and carbonate Antler Overlap North America. et al., 2000b; Gehrels et al., 1995; Harwood domain, which sits unconformably over all of and Murchey, 1990; Jones, 1990; Ketner et al., the older domains; the Golconda domain of Keywords: Nevada, Tectonic, Paleozoic, Ant- 2005; Madden-McGuire and Marsh, 1991a; deformed upper Paleozoic oceanic, carbon- ler, terrane Smith and Gehrels, 1994). The two primary ate and siliciclastic rocks, which is faulted tectonic events of the Paleozoic, the Antler and over the Antler Overlap domain; the upper INTRODUCTION Sonoma orogenies, are discussed in detail in this Paleozoic and Mesozoic volcaniclastic Black paper together with evidence for other less well Rock-Jackson domain; and numerous car- The purpose of this paper is to present a new known Paleozoic tectonic events. The “Antler bonate, siliciclastic, and volcaniclastic Meso- viewpoint of the Paleozoic and Mesozoic geo- Orogeny” (Roberts, 1951) refers to the folding zoic terranes and assemblages that were logic history in Nevada using tectonic domains and faulting of pre-Pennsylvanian rocks that is either accreted to the margin or deposited derived from the newly interpreted digital geo- observed throughout northern Nevada and is unconformably over previously accreted logic map of Nevada (Crafford, 2007). The new generally considered to be Late Devonian and Paleozoic terranes. map provides detailed descriptions of how each Mississippian in age. The “Sonoma Orogeny” Interpretations of these domains defi ne local rock unit or formation was grouped into (Silberling and Roberts, 1962) has been defi ned multiple, distinct, lower Paleozoic tectonic a regional geologic unit. This paper attempts to as a Late Permian to Early Triassic tectonic environments. They suggest that the “Antler group those regional geologic units into tectonic event that deformed Upper Paleozoic oceanic Orogeny” can be reinterpreted as a sequence domains and to discuss the signifi cance of those facies rocks and emplaced them over the Upper of tectonic events involving deformation of domains relative to the geodynamic evolution Paleozoic margin of northern Nevada. the margin and the accretion of multiple ter- of the region. The tectonic domains are each The observations derived from viewing the ranes to the margin over an extended period defi ned by a combination of stratigraphic, litho- Paleozoic and Mesozoic geology of Nevada as from the Late Devonian to the Early Penn- logic, facies, and structural characteristics of the regional tectonic domains pose more questions sylvanian in a complex transpressive tec- regional geologic units, and not generally by than they answer, but they also demonstrate tonic regime. Some of the accreted terranes any single feature. The purpose of creating the that early models of tectonic events affecting Geosphere; Month 2008; v. 4; no. 1; p. 260–291; doi: 10.1130/GES00108.1; 13 fi gures; 1 table; supplementary ArcGIS fi les. 260 For permission to copy, contact [email protected] © 2008 Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/4/1/260/3341460/i1553-040X-4-1-260.pdf by guest on 29 September 2021 Paleozoic Tectonic Domains of Nevada Paleozoic rocks in the region can benefi t from history, these assemblages can be recast in the Lower Paleozoic Shelf Domain being analyzed in the context of terrane accre- form of domains that relate in specifi c ways to tion, and that important components of these the tectonic environment where they formed. This domain is defi ned by the sequence of events can be enhanced and updated. Defi ning Domains can be defi ned primarily by the paleo- passive margin carbonate shelf rocks exposed domains helps to provide a spatial context for geographic setting of the rocks (where that can in the eastern half of Nevada (Cook and Cor- the various rock units. How the natures of the be reasonably defi ned), or by groupings of ter- boy, 2004), sitting depositionally on Proterozoic boundaries of the domains are interpreted pro- ranes or assemblages that refl ect a combina- North American basement (Fig. 1). It is dis- vides important constraints on the timing and tion of tectonic setting and specifi c structural tinguished from other tectonic domains by its orientation of tectonic events affecting the dif- history. The pre-Tertiary rocks in Nevada can relative lack of Paleozoic deformation east of ferent domains and the margin. Understanding be grouped into a number of tectonic domains. its western boundary, its well-defi ned carbon- tectonic relations between the various terranes Each domain is defi ned in terms of the rocks ate platform paleogeographic setting, and its and the margin is necessary for the geology included, its spatial extent, the nature of its unequivocal stratigraphic link to the autochtho- to be an effective predictive tool for resource boundaries, and how it was impacted by vari- nous coeval rocks of the Colorado Plateau. exploration and regional tectonic synthesis. ous tectonic events. Ten domains are discussed The terminology “tectonic domain” is below. In this paper, Mesozoic terranes and Rocks explicitly intended to encompass the variety assemblages are grouped into a single domain This domain comprises Devonian through of geologic entities including stratigraphic and are not discussed in detail. Cambrian carbonate shelf facies rocks includ- sequences, assemblages, and terranes, delib- The geologic units described on the new map ing limestone, dolomite, sandstone, shale, and erately utilized and described in detail on (Crafford, 2007) utilize stratigraphic nomen- quartzite. It is very similar to the “eastern assem- the new geologic map (Crafford, 2007); but clature as well as informal assemblages and blage” of Roberts et al. (1958) and the “carbon- it is also meant to distinguish “domains” as terranes. In many cases, there is a one-to-one ate assemblage” of Stewart and Carlson (1978). interpretive groupings derived from the more correlation between an assemblage or terrane The rock units from the map (Crafford, 2007) explicit geologic groupings used on the map. described on the new geologic map, and a tec- that are included in the Lower Paleozoic Shelf On the map, traditional stratigraphic units are tonic “domain” described in this paper. In other domain are the Devonian through Cambrian grouped into sequences; “terrane” is used in cases, a tectonic domain represents a group of units of the Carbonate Shelf Sequence including the classic sense for fault-bounded geologic assemblages or stratigraphic units on the map. the undivided and metamorphosed equivalent entities of regional extent, each characterized The text that accompanies the map describes rocks (Table 1). by a geologic history that is different from the all of the geologic units and their groupings as histories of contiguous terranes (Jones et al., sequences, assemblages, or terranes in detail Extent and Boundaries 1983); and “assemblage” is used for a group (Crafford, 2007), and is not covered in this The extent of the Lower Paleozoic Shelf of related rock units within a terrane, or for paper.
Recommended publications
  • MULE DEER Unit 032
    Nevada Hunter Information Sheet MULE DEER Unit 032 LOCATION: Unit 032 is located northwest of the town of Winnemucca. The unit is bounded on the north by the Oregon state line, on the east by State Route 140/291, on the south by Unit 034 and on the west by the Sheldon NWR boundary. ELEVATION: The elevations range from a high of 9,458 feet at Duffer Peak in the Pine Forest Range to 4,000 feet along the Black Rock Desert or the base of the Pine Forest Range. TERRAIN: The Pine Forest Range runs north and south with steep canyons draining into the flats. The valley floors have some agricultural development. VEGETATION: The majority of the basins and slopes up to 6,500-foot elevation. Above this elevation, sites are typically characterized by aspens in the drainages, mahogany groves and dense stands of brush and grass. There are some limber pine stands at the higher elevations around Duffer Peak. LAND STATUS: Approximately 85% of the unit is public-owned. Private land is mostly associated with agriculture or mining. HUNTER ACCESS: From Winnemucca drive north on Highway 95 and west on Highway 140. Primary and secondary road access is relatively good. Four-wheel drive (high clearance) vehicles are recommended to access most of the unit for hunting purposes. The Blue Lakes Wilderness Study Area covers 24,000 acres the Duffer Peak area and is closed to all motorized travel. Access on some roads may be restricted by private landowners in the Leonard Creek drainage. Ask permission before accessing private parcels in this area.
    [Show full text]
  • Ecoregions of Nevada Ecoregion 5 Is a Mountainous, Deeply Dissected, and Westerly Tilting Fault Block
    5 . S i e r r a N e v a d a Ecoregions of Nevada Ecoregion 5 is a mountainous, deeply dissected, and westerly tilting fault block. It is largely composed of granitic rocks that are lithologically distinct from the sedimentary rocks of the Klamath Mountains (78) and the volcanic rocks of the Cascades (4). A Ecoregions denote areas of general similarity in ecosystems and in the type, quality, Vegas, Reno, and Carson City areas. Most of the state is internally drained and lies Literature Cited: high fault scarp divides the Sierra Nevada (5) from the Northern Basin and Range (80) and Central Basin and Range (13) to the 2 2 . A r i z o n a / N e w M e x i c o P l a t e a u east. Near this eastern fault scarp, the Sierra Nevada (5) reaches its highest elevations. Here, moraines, cirques, and small lakes and quantity of environmental resources. They are designed to serve as a spatial within the Great Basin; rivers in the southeast are part of the Colorado River system Bailey, R.G., Avers, P.E., King, T., and McNab, W.H., eds., 1994, Ecoregions and subregions of the Ecoregion 22 is a high dissected plateau underlain by horizontal beds of limestone, sandstone, and shale, cut by canyons, and United States (map): Washington, D.C., USFS, scale 1:7,500,000. are especially common and are products of Pleistocene alpine glaciation. Large areas are above timberline, including Mt. Whitney framework for the research, assessment, management, and monitoring of ecosystems and those in the northeast drain to the Snake River.
    [Show full text]
  • Mule Deer and Antelope Staff Specialist Peregrine Wolff, Wildlife Health Specialist
    STATE OF NEVADA Steve Sisolak, Governor DEPARTMENT OF WILDLIFE Tony Wasley, Director GAME DIVISION Brian F. Wakeling, Chief Mike Cox, Bighorn Sheep and Mountain Goat Staff Specialist Pat Jackson, Predator Management Staff Specialist Cody McKee, Elk Staff Biologist Cody Schroeder, Mule Deer and Antelope Staff Specialist Peregrine Wolff, Wildlife Health Specialist Western Region Southern Region Eastern Region Regional Supervisors Mike Scott Steve Kimble Tom Donham Big Game Biologists Chris Hampson Joe Bennett Travis Allen Carl Lackey Pat Cummings Clint Garrett Kyle Neill Cooper Munson Sarah Hale Ed Partee Kari Huebner Jason Salisbury Matt Jeffress Kody Menghini Tyler Nall Scott Roberts This publication will be made available in an alternative format upon request. Nevada Department of Wildlife receives funding through the Federal Aid in Wildlife Restoration. Federal Laws prohibit discrimination on the basis of race, color, national origin, age, sex, or disability. If you believe you’ve been discriminated against in any NDOW program, activity, or facility, please write to the following: Diversity Program Manager or Director U.S. Fish and Wildlife Service Nevada Department of Wildlife 4401 North Fairfax Drive, Mailstop: 7072-43 6980 Sierra Center Parkway, Suite 120 Arlington, VA 22203 Reno, Nevada 8911-2237 Individuals with hearing impairments may contact the Department via telecommunications device at our Headquarters at 775-688-1500 via a text telephone (TTY) telecommunications device by first calling the State of Nevada Relay Operator at 1-800-326-6868. NEVADA DEPARTMENT OF WILDLIFE 2018-2019 BIG GAME STATUS This program is supported by Federal financial assistance titled “Statewide Game Management” submitted to the U.S.
    [Show full text]
  • HISTORY of the TOIYABE NATIONAL FOREST a Compilation
    HISTORY OF THE TOIYABE NATIONAL FOREST A Compilation Posting the Toiyabe National Forest Boundary, 1924 Table of Contents Introduction ..................................................................................................................................... 3 Chronology ..................................................................................................................................... 4 Bridgeport and Carson Ranger District Centennial .................................................................... 126 Forest Histories ........................................................................................................................... 127 Toiyabe National Reserve: March 1, 1907 to Present ............................................................ 127 Toquima National Forest: April 15, 1907 – July 2, 1908 ....................................................... 128 Monitor National Forest: April 15, 1907 – July 2, 1908 ........................................................ 128 Vegas National Forest: December 12, 1907 – July 2, 1908 .................................................... 128 Mount Charleston Forest Reserve: November 5, 1906 – July 2, 1908 ................................... 128 Moapa National Forest: July 2, 1908 – 1915 .......................................................................... 128 Nevada National Forest: February 10, 1909 – August 9, 1957 .............................................. 128 Ruby Mountain Forest Reserve: March 3, 1908 – June 19, 1916 ..........................................
    [Show full text]
  • Josie Pearl, Prospector on Nevada's Black Rock Desert
    JUNE, 1962 40c • • • • . Author's car crossing the playa of Black Rock Desert in northwestern Nevada. On Black Rock Desert Trails When Dora Tucker and Nell Murbarger first began exploring the Black Rock country in northwestern Nevada they did not realize what a high, wide and wild country it was. On the Black Rock a hundred miles doesn't mean a thing. In the 10,000 square miles of this desert wasteland there isn't a foot of pavement nor a mile of railroad— neither gasoline station nor postoffice. Antelopes out-number human beings fifty to one. There's plenty of room here for exploring. By NELL MURBARGER Photographs by the author Map by Norton Allen S AN illustration of what the want to! Ain't nothin' there!" is known as "the Black Rock country," Black Rock country affords Thanking him, we accepted his re- the desert from which it derives its in the way of variety and con- port as a favorable omen and headed name actually is a stark white alkali trast, we made a J 50-mile loop trip out into the desert. Almost invariably playa, averaging a dozen miles in out of Gerlach last June. Our previous we find our best prowling in places width and stretching for 100 miles exploring of the region had been mostly where folks have told us there "ain't from Gerlach to Kings River. Merging in the northern and eastern sections, nothin'." imperceptibly with the Black Rock on so we hadn't the slightest idea of what Rising precipitously from the dead the southwest is the section known as we might find in the southern part.
    [Show full text]
  • Preliminary Geologic Map of the Galena Canyon Quadrangle, Lander County, Nevada
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY To accompany the Preliminary Geologic Map of the Galena Canyon Quadrangle, Lander County, Nevada by JeffL.Doebrich1 Open-File Report 94-664 Prepared in cooperation with Santa Fe Pacific Mining Inc. under Cooperative Research and Development Agreement 9300-1-94 1994 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North America Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. !U.S. Geological Survey, Reno Field Office, MS-176, Mackay School of Mines, University of Nevada, Reno, Nevada, 89557-0047 DESCRIPTION OF MAP UNITS Qd Mine dump (Holocene) Present around active and abandoned mining operations in the Copper Canyon, Iron Canyon, an Copper Basin areas Qfp Flood plain deposits (Quaternary) Includes sand, silt, and clay deposits in the flood plain of the Reese River in the southeast corner of the quadrangle. Contacts approximately located using large-scale color aerial photographs Qaf Younger alluvium and fanglomerate deposits (Quaternary) Clay, silt, sand, and gravel primarily in active stream channels but also covering outwash fans at the mouth of major drainages emanating from the range. Contacts of outwash fans approximately located using large-scale color aerial photographs Qc Colluvium (Quaternary) Includes talus, slope wash, and other colluvial deposits Qls Landslide deposits (Quaternary) Qoa Older alluvium (Quaternary) Poorly sorted gravel deposits with a silty to sandy matrix. Includes terrace and valley-fill deposits at higher elevations; dissected by stream channels containing younger alluvium (Qaf).
    [Show full text]
  • Lahontan Cutthroat Trout Species Management Plan for the Upper Humboldt River Drainage Basin
    STATE OF NEVADA DEPARTMENT OF WILDLIFE LAHONTAN CUTTHROAT TROUT SPECIES MANAGEMENT PLAN FOR THE UPPER HUMBOLDT RIVER DRAINAGE BASIN Prepared by John Elliott SPECIES MANAGEMENT PLAN December 2004 LAHONTAN CUTTHROAT TROUT SPECIES MANAGEMENT PLAN FOR THE UPPER HUMBOLDT RIVER DRAINAGE BASIN SUBMITTED BY: _______________________________________ __________ John Elliott, Supervising Fisheries Biologist Date Nevada Department of Wildlife, Eastern Region APPROVED BY: _______________________________________ __________ Richard L. Haskins II, Fisheries Bureau Chief Date Nevada Department of Wildlife _______________________________________ __________ Kenneth E. Mayer, Director Date Nevada Department of Wildlife REVIEWED BY: _______________________________________ __________ Robert Williams, Field Supervisor Date Nevada Fish and Wildlife Office U.S.D.I. Fish and Wildlife Service _______________________________________ __________ Ron Wenker, State Director Date U.S.D.I. Bureau of Land Management _______________________________________ __________ Edward C. Monnig, Forest Supervisor Date Humboldt-Toiyabe National Forest U.S.D.A. Forest Service TABLE OF CONTENTS Contents EXECUTIVE SUMMARY ……………………………………………………………………..1 INTRODUCTION……………………………………………………………………………….…2 AGENCY RESPONSIBILITIES……………………………………………………………….…4 CURRENT STATUS……………………………………………………………………………..6 RECOVERY OBJECTIVES……………………………………………………………………19 RECOVERY ACTIONS…………………………………………………………………………21 RECOVERY ACTION PRIORITIES BY SUBBASIN………………………………………….33 IMPLEMENTATION SCHEDULE……………………………………………………………..47
    [Show full text]
  • Central Nevada
    University of Nevada Reno LATE CENOZOIC GEOLOGY AND TECTONICS OF STEWART AND MONTE CRISTO VALLEYS, WEST - CENTRAL NEVADA A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science .I by Mark Philip Molinari fit ; December, 1984 ii ABSTRACT Discontinuous right-normal-slip faults comprise the N30 0W trending, 45 kilometer long Stewart - Monte Cristo fault zone (SMCFZ). Initiation of the SMCFZ postdates the 15.5 to 11.0 m.y. Esmeralda Formation. Right-normal-slip >1 meter occurred on the southern segment of the SMCFZ during the 1932 Cedar Mountain earthquake (Ms= 7.2-7.3). Geomor- phic evidence supports at least three and possibly five or six surface faulting events on the southern segment during the latest Pleistocene and Holocene. Gentle folds in the Esmeralda Formation east of and sub-parallel to the SMCFZ are coeval with and genetically related to faulting. Structural development of the SMCFZ is similar to other right-lateral wrench faults and is consistent with labora- tory wrench fault models. The SMCFZ is the youngest and southeasternmost fault of a system of major late Cenozoic, left-stepping, en echelon right-slip faults in the central Walker Lane. - .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ iii TABLE OF CONTENTS page ABSTRACT .................. S S ii INTRODUCTION . 0 0 1 0 * I Location and Extent of Study Area . S S S S 1 Regional Tectonic and Geologic Setting. S. S a * 0 1 Purpose and Scope ...... a a * a 5 Methodology . 6 Previous Work . 8 Physiography. 10 MESOZOIC STRATIGRAPHY. 13 Sedimentary Rocks . & 13 Mina Formation . 13 Luning Formation . 13 Plutonic Rocks .
    [Show full text]
  • Burning Man Geology Black Rock Desert.Pdf
    GEOLOGY OF THE BLACK ROCK DESERT By Cathy Busby Professor of Geology University of California Santa Barbara http://www.geol.ucsb.edu/faculty/busby BURNING MAN EARTH GUARDIANS PAVILION 2012 LEAVE NO TRACE Please come find me and Iʼll give you a personal tour of the posters! You are here! In one of the most amazing geologic wonderlands in the world! Fantastic rock exposure, spectacular geomorphic features, and a long history, including: 1. PreCambrian loss of our Australian neighbors by continental rifting, * 2. Paleozoic accretion of island volcanic chains like Japan (twice!), 3. Mesozoic compression and emplacement of a batholith, 4. Cenozoic stretching and volcanism, plus a mantle plume torching the base of the continent! Let’s start with what you can see on the playa and from the playa: the Neogene to Recent geology, which is the past ~23 million years (= Ma). Note: Recent = past 15,000 years http://www.terragalleria.com Then we’ll “build” the terrane you are standing on, beginning with a BILLION years ago, moving through the Paleozoic (old life, ~540-253 Ma), Mesozoic (age of dinosaurs, ~253-65 Ma)) and Cenozoic (age of mammals, ~65 -0 Ma). Neogene to Recent geology Black Rock Playa extends 100 miles, from Gerlach to the Jackson Mountains. The Black Rock Desert is divided into two arms by the Black Rock Range, and covers 1,000 square miles. Empire (south of Gerlach)has the U.S. Gypsum mine and drywall factory (brand name “Sheetrock”), and thereʼs an opal mine at base of Calico Mtns. Neogene to Recent geology BRP = The largest playa in North America “Playa” = a flat-bottomed depression, usually a dry lake bed 3,500ʼ asl in SW, 4,000ʼ asl in N Land speed record: 1997 - supersonic car, 766 MPH Runoff mainly from the Quinn River, which heads in Oregon ~150 miles north.
    [Show full text]
  • Eocene–Early Miocene Paleotopography of the Sierra Nevada–Great Basin–Nevadaplano Based on Widespread Ash-Flow Tuffs and P
    Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Eocene–Early Miocene paleotopography of the Sierra Nevada–Great Basin–Nevadaplano based on widespread ash-fl ow tuffs and paleovalleys Christopher D. Henry1, Nicholas H. Hinz1, James E. Faulds1, Joseph P. Colgan2, David A. John2, Elwood R. Brooks3, Elizabeth J. Cassel4, Larry J. Garside1, David A. Davis1, and Steven B. Castor1 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2U.S. Geological Survey, Menlo Park, California 94025, USA 3California State University, Hayward, California 94542, USA 4Department of Earth and Environment, Franklin & Marshall College, Lancaster, Pennsylvania 17604, USA ABSTRACT the great volume of erupted tuff and its erup- eruption fl owed similar distances as the mid- tion after ~3 Ma of nearly continuous, major Cenozoic tuffs at average gradients of ~2.5–8 The distribution of Cenozoic ash-fl ow tuffs pyroclastic eruptions near its caldera that m/km. Extrapolated 200–300 km (pre-exten- in the Great Basin and the Sierra Nevada of probably fi lled in nearby topography. sion) from the Pacifi c Ocean to the central eastern California (United States) demon- Distribution of the tuff of Campbell Creek Nevada caldera belt, the lower gradient strates that the region, commonly referred and other ash-fl ow tuffs and continuity of would require elevations of only 0.5 km for to as the Nevadaplano, was an erosional paleovalleys demonstrates that (1) the Basin valley fl oors and 1.5 km for interfl uves. The highland that was drained by major west- and Range–Sierra Nevada structural and great eastward, upvalley fl ow is consistent and east-trending rivers, with a north-south topographic boundary did not exist before with recent stable isotope data that indicate paleodivide through eastern Nevada.
    [Show full text]
  • Paleozoic Geology of the Dobbin Summit-Clear Creek Area, Monitor
    AN ABSTRACT OF THE THESIS OF DIANE CAROL WISE for the degree of MASTER OF SCIENCE in Geology presented on August 13, 1976 Title: PALEOZOIC GEOLOGY OF THE DOBBIN SUMMIT- CLEAR CREEK AREA, MONITOR RANGE, NYiE COUNTY, NEVADA Abstract approved: Redacted for Privacy son Paleozoic limestones, dolomites, quartz arenites, and other clastic rocks were mapped in the vicinity of Dobbin Summit and Clear Creek in the central Monitor Range. Sedimentary rock units present in this area represent the shallow-shelf eastern assemblage and basin and also the basin-slope facies of the traditional limestone- clastic assemblage. The four oldest, Ordovician, units were deposited in shallow shelf environments. The Lower Ordovician Goodwin Formation is composed of about 1200 feet of calcareous shales and thin-bedded limestones. The overlying Antelope Valley Limestone is about 500 feet thick and consists of wackestones, packstones, and rare algal grainstones.The Copenhagen Formation (135 feet thick) is the highest regressive deposit of sandstone, siltstone, and limestone below the transgressive Eureka Quartzite.The Eureka is a quartz arenite 181 feet thick, with an intercalated shallow marine dolomite member. The transition from shallow to deep water conditions can be seen in the change from algal boundstones to laminated lime mud- stones in the Hanson Creek Formation (190 feet thick).The super- jacent Roberts Mountains Formation (285 feet thick) is composed of lime mudstones and allodapic beds deposited in basinal, deep water conditions.During earliest Devonian
    [Show full text]
  • Tectonic Evolution of the Northern Sierra Nevada
    TECTONIC EVOLUTION OF THE NORTHERN SIERRA NEVADA BATHOLITH A DISSERTATION SUBMITTED TO THE DEPARTMENT OF GEOLOGICAL AND ENVIRONMENTAL SCIENCES AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Nicholas James Van Buer December 2011 © 2011 by Nicholas James Van Buer. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/xb187vq0064 Includes supplemental files: 1. Plate 1. Geologic Map of the Jayhawk Well 7.5' Quadrangle, Pershing County, Nevada (jayhawkwell.pdf) 2. Plate 2. Geologic Map of the Juniper Pass 7.5' Quadrangle, Pershing County, Nevada (Juniperpass.pdf) 3. Plate 3. Geologic Map of the Tohakum Peak NE 7.5' Quadrangle, Pershing County, Nevada (TohakumpkNE.pdf) 4. Plate 4. Geologic Map of the Tunnel Spring 7.5' Quadrangle, Pershing County, Nevada (tunnelspr.pdf) 5. Plate 5. Geologic Map of the Bob Spring 7.5' Quadrangle, Pershing County, Nevada (bobspring.pdf) 6. Plate 6. Geologic Map of the Tohakum Peak SE 7.5' Quadrangle, Pershing County, Nevada (TohakumpkSE.pdf) 7. Plate 7. Geologic Map of the Sage Hen Spring 7.5' Quadrangle, Pershing County, Nevada (SageHenSpr.pdf) 8. Plate 8. Geologic Map of the Bluewing Spring 7.5' Quadrangle, Pershing County, Nevada (BluewingSpr.pdf) ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]