bioRxiv preprint doi: https://doi.org/10.1101/329664; this version posted May 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. MTAP loss correlates with an immunosuppressive profile in GBM and its substrate MTA stimulates alternative macrophage polarization Landon J. Hansen1,2,3, Rui Yang1,2, Karolina Woroniecka1,2, Lee Chen1,2, Hai Yan1,2, Yiping He 1,2,* From the 1The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; 2Department of Pathology, Duke University Medical Center, Durham, NC, USA; 3Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA; 4Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA *Corresponding Author: Yiping He, PhD, 203 Research Drive, Medical Science Research Building 1, Room 199A Durham, NC, USA 27710 Phone: (919) 684-4760 E-mail:
[email protected] Keywords: MTAP, GBM, macrophages, M2, MTA, adenosine ABSTRACT INTRODUCTION Glioblastoma (GBM) is a lethal brain cancer known for Immunotherapy possesses enormous potential for treating its potent immunosuppressive effects. Loss of cancer and has reshaped the way we understand and treat Methylthioadenosine Phosphorylase (MTAP) expression, certain cancer types (1,2). Despite recent progress, via gene deletion or epigenetic silencing, is one of the however, the promise of immunotherapy-based most common alterations in GBM. Here, we show that approaches for treating brain tumors, in particular high MTAP loss in GBM cells is correlated with differential grade glioblastoma (GBM), remains to be fully realized expression of immune regulatory genes.