Adenosine Signaling and Function in Glial Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Adenosinergic System a Non-Dopaminergic Target in Parkinson’S Disease
springer.com Biomedicine : Neurosciences Morelli, M., Simola, N., Wardas, J. (Eds.) The Adenosinergic System A Non-Dopaminergic Target in Parkinson’s Disease Comprehensive book that discusses all the aspects of this class of drugs in relation to Parkinson's Disease Includes a review on the history of istradefylline Includes a review on urate as a biomarker and neuroprotectant Adenosine A2A receptor antagonists have shown great promise in the treatment of Parkinson's Disease and alleviation of symptoms. This bookaddresses various aspects of this class of drugs from their chemical development to their clinical use. Among the many insightful chapters contained in this book, there are three unique reviews that have not previously been published in any format: (1) a history of istradefylline, the first A2A antagonist approved for treatment of Parkinson's Disease, (2) an overview of neuroimaging studies in human death and disease and (3) a study of urate as a possible biomarker and neuroprotectant. Springer 1st ed. 2015, XII, 337 p. 41 Order online at springer.com/booksellers 1st illus., 31 illus. in color. Springer Nature Customer Service Center LLC edition 233 Spring Street New York, NY 10013 USA Printed book T: +1-800-SPRINGER NATURE Hardcover (777-4643) or 212-460-1500 [email protected] Printed book Hardcover ISBN 978-3-319-20272-3 $ 199,99 Available Discount group Professional Books (2) Product category Contributed volume Series Current Topics in Neurotoxicity Other renditions Softcover ISBN 978-3-319-37186-3 Softcover ISBN 978-3-319-20274-7 Prices and other details are subject to change without notice. -
Molecular Dissection of G-Protein Coupled Receptor Signaling and Oligomerization
MOLECULAR DISSECTION OF G-PROTEIN COUPLED RECEPTOR SIGNALING AND OLIGOMERIZATION BY MICHAEL RIZZO A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology December, 2019 Winston-Salem, North Carolina Approved By: Erik C. Johnson, Ph.D. Advisor Wayne E. Pratt, Ph.D. Chair Pat C. Lord, Ph.D. Gloria K. Muday, Ph.D. Ke Zhang, Ph.D. ACKNOWLEDGEMENTS I would first like to thank my advisor, Dr. Erik Johnson, for his support, expertise, and leadership during my time in his lab. Without him, the work herein would not be possible. I would also like to thank the members of my committee, Dr. Gloria Muday, Dr. Ke Zhang, Dr. Wayne Pratt, and Dr. Pat Lord, for their guidance and advice that helped improve the quality of the research presented here. I would also like to thank members of the Johnson lab, both past and present, for being valuable colleagues and friends. I would especially like to thank Dr. Jason Braco, Dr. Jon Fisher, Dr. Jake Saunders, and Becky Perry, all of whom spent a great deal of time offering me advice, proofreading grants and manuscripts, and overall supporting me through the ups and downs of the research process. Finally, I would like to thank my family, both for instilling in me a passion for knowledge and education, and for their continued support. In particular, I would like to thank my wife Emerald – I am forever indebted to you for your support throughout this process, and I will never forget the sacrifices you made to help me get to where I am today. -
Caffeine and Adenosine
Journal of Alzheimer’s Disease 20 (2010) S3–S15 S3 DOI 10.3233/JAD-2010-1379 IOS Press Review Article Caffeine and Adenosine Joaquim A. Ribeiro∗ and Ana M. Sebastiao˜ Institute of Pharmacology and Neurosciences, Faculty of Medicine and Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal Abstract. Caffeine causes most of its biological effects via antagonizing all types of adenosine receptors (ARs): A1, A2A, A3, and A2B and, as does adenosine, exerts effects on neurons and glial cells of all brain areas. In consequence, caffeine, when acting as an AR antagonist, is doing the opposite of activation of adenosine receptors due to removal of endogenous adenosinergic tonus. Besides AR antagonism, xanthines, including caffeine, have other biological actions: they inhibit phosphodiesterases (PDEs) (e.g., PDE1, PDE4, PDE5), promote calcium release from intracellular stores, and interfere with GABA-A receptors. Caffeine, through antagonism of ARs, affects brain functions such as sleep, cognition, learning, and memory, and modifies brain dysfunctions and diseases: Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Epilepsy, Pain/Migraine, Depression, Schizophrenia. In conclusion, targeting approaches that involve ARs will enhance the possibilities to correct brain dysfunctions, via the universally consumed substance that is caffeine. Keywords: Adenosine, Alzheimer’s disease, anxiety, caffeine, cognition, Huntington’s disease, migraine, Parkinson’s disease, schizophrenia, sleep INTRODUCTION were considered out of the scope of the present work. For more detailed analysis of the actions of caffeine in Caffeine causes most of its biological effects via humans, namely cognition, dementia, and Alzheimer’s antagonizing all types of adenosine receptors (ARs). -
Effects of Tianeptine on Onset Time of Pentylenetetrazole-Induced Seizures in Mice: Possible Role of Adenosine A1 Receptors
Neuropsychopharmacology (2007) 32, 412–416 & 2007 Nature Publishing Group All rights reserved 0893-133X/07 $30.00 www.neuropsychopharmacology.org Effects of Tianeptine on Onset Time of Pentylenetetrazole-Induced Seizures in Mice: Possible Role of Adenosine A1 Receptors ,1 1 1 Tayfun I Uzbay* , Hakan Kayir and Mert Ceyhan 1Department of Medical Pharmacology, Psychopharmacology Research Unit, Gulhane Military Medical Academy, Ankara, Turkey Depression is a common psychiatric problem in epileptic patients. Thus, it is important that an antidepressant agent has anticonvulsant activity. This study was organized to investigate the effects of tianeptine, an atypical antidepressant, on pentylenetetrazole (PTZ)-induced seizure in mice. A possible contribution of adenosine receptors was also evaluated. Adult male Swiss–Webster mice (25–35 g) were subjects. PTZ (80 mg/kg, i.p.) was injected to mice 30 min after tianeptine (2.5–80 mg/kg, i.p.) or saline administration. The onset times of ‘first myoclonic jerk’ (FMJ) and ‘generalized clonic seizures’ (GCS) were recorded. Duration of 600 s was taken as a cutoff time in calculation of the onset time of the seizures. To evaluate the contribution of adenosine receptors in the effect of tianeptine, a nonspecific adenosine receptor antagonist caffeine, a specific A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a specific A2A receptor antagonist 8-(3-chlorostyryl) caffeine (CSC) or their vehicles were administered to the mice 15 min before tianeptine (80 mg/kg) or saline treatments. Tianeptine (40 and 80 mg/kg) pretreatment significantly delayed the onset time of FMJ and GCS. Caffeine (10–60 mg/kg, i.p.) dose-dependently blocked the retarding effect of tianeptine (80 mg/kg) on the onset times of FMJ and GCS. -
A2B Adenosine Receptors and T Cell Activation 493
Journal of Cell Science 112, 491-502 (1999) 491 Printed in Great Britain © The Company of Biologists Limited 1999 JCS0069 Expression of A2B adenosine receptors in human lymphocytes: their role in T cell activation Maribel Mirabet1, Carolina Herrera1, Oscar J. Cordero2, Josefa Mallol1, Carmen Lluis1 and Rafael Franco1,* 1Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Barcelona, Barcelona, Catalonia, Spain 2Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Santiago de Compostela, Spain *Author for correspondence (e-mail: [email protected]; homepage: www.bq.ub.es/recep/franco.html) Accepted 9 December 1998; published on WWW 25 January 1999 SUMMARY Extracellular adenosine has a key role in the development A2BRs but not of A2A receptors in these human cells. The and function of the cells of the immune system. Many of percentage of A2BR-expressing cells was similar in the the adenosine actions seem to be mediated by specific CD4+ or CD8+ T cell subpopulations. Interestingly surface receptors positively coupled to adenylate cyclase: activation signals delivered by either phytohemagglutinin A2A and A2B. Despite the fact that A2A receptors (A2ARs) or anti-T cell receptor/CD3 complex antibodies led to a can be easily studied due to the availability of the specific significant increase in both the percentage of cells agonist CGS21680, a pharmacological and physiological expressing the receptor and the intensity of the labeling. characterization of adenosine A2B receptors (A2BRs) in These receptors are functional since interleukin-2 lymphocytes has not been possible due to the lack of production in these cells is reduced by NECA but not by R- suitable reagents. -
Caspase-1-Dependent Inflammatory Signaling in Retinal Müller Cells During the Development of Diabetic Retinopathy
CASPASE-1-DEPENDENT INFLAMMATORY SIGNALING IN RETINAL MüLLER CELLS DURING THE DEVELOPMENT OF DIABETIC RETINOPATHY by KATHERINE EILEEN TRUEBLOOD Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Advisor: Dr. George R. Dubyak Department of Physiology and Biophysics CASE WESTERN RESERVE UNIVERSITY January 2012 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Katherine Eileen Trueblood ______________________________________________________ Doctor of Philosophy candidate for the ________________________________degree *. Dr. Corey Smith (signed)_______________________________________________ (chair of the committee) Dr. George R. Dubyak ________________________________________________ Dr. Thomas McCormick ________________________________________________ Dr. Patrick Wintrode ________________________________________________ Dr. Margaret Chandler ________________________________________________ Dr. Thomas Nosek ________________________________________________ 10/21/11 (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. ii DEDICATION I dedicate this work to my brother, Jonathan Vern Trueblood, as he embarks on his own graduate school career this year. There will be many days where you will want to give up and throw in the towel; but I promise there will be many more to come where you will be glad you didn’t. Rom. 4:18-21 Always “hope against hope!” iii TABLE -
Neuronal Adenosine A2A Receptors Signal Ergogenic Effects of Caffeine
www.nature.com/scientificreports OPEN Neuronal adenosine A2A receptors signal ergogenic efects of cafeine Aderbal S. Aguiar Jr1,2*, Ana Elisa Speck1,2, Paula M. Canas1 & Rodrigo A. Cunha1,3 Cafeine is one of the most used ergogenic aid for physical exercise and sports. However, its mechanism of action is still controversial. The adenosinergic hypothesis is promising due to the pharmacology of cafeine, a nonselective antagonist of adenosine A1 and A2A receptors. We now investigated A2AR as a possible ergogenic mechanism through pharmacological and genetic inactivation. Forty-two adult females (20.0 ± 0.2 g) and 40 male mice (23.9 ± 0.4 g) from a global and forebrain A2AR knockout (KO) colony ran an incremental exercise test with indirect calorimetry (V̇O2 and RER). We administered cafeine (15 mg/kg, i.p., nonselective) and SCH 58261 (1 mg/kg, i.p., selective A2AR antagonist) 15 min before the open feld and exercise tests. We also evaluated the estrous cycle and infrared temperature immediately at the end of the exercise test. Cafeine and SCH 58621 were psychostimulant. Moreover, Cafeine and SCH 58621 were ergogenic, that is, they increased V̇O2max, running power, and critical power, showing that A2AR antagonism is ergogenic. Furthermore, the ergogenic efects of cafeine were abrogated in global and forebrain A2AR KO mice, showing that the antagonism of A2AR in forebrain neurons is responsible for the ergogenic action of cafeine. Furthermore, cafeine modifed the exercising metabolism in an A2AR-dependent manner, and A2AR was paramount for exercise thermoregulation. Te natural plant alkaloid cafeine (1,3,7-trimethylxantine) is one of the most common ergogenic substances for physical activity practitioners and athletes 1–10. -
MTAP Loss Correlates with an Immunosuppressive Profile in GBM and Its Substrate MTA Stimulates Alternative Macrophage Polarization
bioRxiv preprint doi: https://doi.org/10.1101/329664; this version posted May 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. MTAP loss correlates with an immunosuppressive profile in GBM and its substrate MTA stimulates alternative macrophage polarization Landon J. Hansen1,2,3, Rui Yang1,2, Karolina Woroniecka1,2, Lee Chen1,2, Hai Yan1,2, Yiping He 1,2,* From the 1The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; 2Department of Pathology, Duke University Medical Center, Durham, NC, USA; 3Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA; 4Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA *Corresponding Author: Yiping He, PhD, 203 Research Drive, Medical Science Research Building 1, Room 199A Durham, NC, USA 27710 Phone: (919) 684-4760 E-mail: [email protected] Keywords: MTAP, GBM, macrophages, M2, MTA, adenosine ABSTRACT INTRODUCTION Glioblastoma (GBM) is a lethal brain cancer known for Immunotherapy possesses enormous potential for treating its potent immunosuppressive effects. Loss of cancer and has reshaped the way we understand and treat Methylthioadenosine Phosphorylase (MTAP) expression, certain cancer types (1,2). Despite recent progress, via gene deletion or epigenetic silencing, is one of the however, the promise of immunotherapy-based most common alterations in GBM. Here, we show that approaches for treating brain tumors, in particular high MTAP loss in GBM cells is correlated with differential grade glioblastoma (GBM), remains to be fully realized expression of immune regulatory genes. -
A New Drug Design Targeting the Adenosinergic System for Huntington’S Disease
A New Drug Design Targeting the Adenosinergic System for Huntington’s Disease Nai-Kuei Huang1., Jung-Hsin Lin2,3,4., Jiun-Tsai Lin3, Chia-I Lin5, Eric Minwei Liu4, Chun-Jung Lin4, Wan- Ping Chen1, Yuh-Chiang Shen1, Hui-Mei Chen3, Jhih-Bin Chen5, Hsing-Lin Lai3, Chieh-Wen Yang5, Ming- Chang Chiang7, Yu-Shuo Wu3, Chen Chang3, Jiang-Fan Chen8, Jim-Min Fang5,6*, Yun-Lian Lin1*, Yijuang Chern3* 1 National Research Institute of Chinese Medicine, Taipei, Taiwan, 2 Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, 3 Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, 4 School of Pharmacy, National Taiwan University, Taipei, Taiwan, 5 Department of Chemistry, National Taiwan University, Taipei, Taiwan, 6 The Genomics Research Center, Academia Sinica, Taipei, Taiwan, 7 Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan, 8 Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America Abstract Background: Huntington’s disease (HD) is a neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. The expanded CAG repeats are translated into polyglutamine (polyQ), causing aberrant functions as well as aggregate formation of mutant Htt. Effective treatments for HD are yet to be developed. Methodology/Principal Findings: Here, we report a novel dual-function compound, N6-(4-hydroxybenzyl)adenine riboside (designated T1-11) which activates the A2AR and a major adenosine transporter (ENT1). T1-11 was originally isolated from a Chinese medicinal herb. Molecular modeling analyses showed that T1-11 binds to the adenosine pockets of the A2AR and ENT1. Introduction of T1-11 into the striatum significantly enhanced the level of striatal adenosine as determined by a microdialysis technique, demonstrating that T1-11 inhibited adenosine uptake in vivo. -
{PDF} the Adenosinergic System a Non-Dopaminergic Target In
THE ADENOSINERGIC SYSTEM A NON-DOPAMINERGIC TARGET IN PARKINSONS DISEASE 1ST EDITION PDF, EPUB, EBOOK Micaela Morelli | 9783319371863 | | | | | The Adenosinergic System A Non-Dopaminergic Target in Parkinsons Disease 1st edition PDF Book Show less Show more Advertising ON OFF We use cookies to serve you certain types of ads , including ads relevant to your interests on Book Depository and to work with approved third parties in the process of delivering ad content, including ads relevant to your interests, to measure the effectiveness of their ads, and to perform services on behalf of Book Depository. In closing, it stresses the importance of explorig past nursing in order to better grasp present nursing. Neuroscience — Cross-sensitization between caffeine- and L-dopa-induced behaviors in hemiparkinsonian mice. The book will benefit neurologists, pharmacologists, researchers, and biochemists with inical interests. Sci Transl Med ra The role of parkinson's disease-associated receptor gpr37 in the hippocampus: functional interplay with the adenosinergic system Journal of neurochemistry, FEBS Lett. Rosin D. J Physiol — Based on these data, we focused on after transfection. In , US Food and Drug Administration issued a non- approvable letter to the use of Istradefylline in humans based in the concern if the efficacy findings support clinical utility of Istradefylline in patients with PD. Bonan, cbonan pucrs. The ongoing degeneration of this peculiar pathway causes the characteristic motor symptoms such as resting tremor, rigidity, bradykinesia and postural instability [ 1 , 2 ]. Studies with PET in the human brain showed the increased binding of a D 2 DR antagonist, after the administration of caffeine, a nonselective antagonist of adenosine receptors Volkow et al. -
Programme and Abstract
Official programme & abstracts for the Joint 11th International and 9th European Symposium on Purines and Pyrimidines in Man (PP’03) 9-13 June 2003 Hotel Zuiderduin, Egmond aan Zee, the Netherlands Editor-in-chief: Prof. Dr. G.J. Peters Published by: Drukkerij Peters in alliance with VU University Medical Center, Amsterdam, the Netherlands May 2003 2 Contents Welcome 4 Organising committee 5 Contact addresses 6 Support 7 Young Investigator Award 7 Registration fee 8 Venue Hotel Zuiderduin 8 Plan Hotel Zuiderduin floor 0 9 Plan Hotel Zuiderduin floor 1 10 Programme PP’03 11 Invited presentations (I01 – I24) 22 Oral presentations (O01 – 046) 50 Poster presentations (P01 – P95) 92 Author index 189 Overview International and European Symposia on Purine and Pyrimidine Metabolism 192 3 Welcome to the Netherlands This series of congresses on Purine and Pyrimidine metabolism started 30 years ago in Tel Aviv and has since then moved around the world. It is now coming back to places which have been visited before. Three years ago the meeting was in Tel Aviv for the second time. The meeting has also been held twice in Austria. You can find an overview of the meetings on the last page of this abstract book. Twenty-one years ago the meeting was held in the most southern part of the Netherlands, Maastricht. Now we welcome the international meeting for the 2nd time in the Netherlands but at the other site with an excellent view on the sea. Usually the weather conditions permit to go to the beach. Alternatively you can take a walk through the dunes during the afternoon break. -
Specific Labeling of Synaptic Schwann Cells Reveals Unique Cellular And
RESEARCH ARTICLE Specific labeling of synaptic schwann cells reveals unique cellular and molecular features Ryan Castro1,2,3, Thomas Taetzsch1,2, Sydney K Vaughan1,2, Kerilyn Godbe4, John Chappell4, Robert E Settlage5, Gregorio Valdez1,2,6* 1Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, United States; 2Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, United States; 3Neuroscience Graduate Program, Brown University, Providence, United States; 4Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, United States; 5Department of Advanced Research Computing, Virginia Tech, Blacksburg, United States; 6Department of Neurology, Warren Alpert Medical School of Brown University, Providence, United States Abstract Perisynaptic Schwann cells (PSCs) are specialized, non-myelinating, synaptic glia of the neuromuscular junction (NMJ), that participate in synapse development, function, maintenance, and repair. The study of PSCs has relied on an anatomy-based approach, as the identities of cell-specific PSC molecular markers have remained elusive. This limited approach has precluded our ability to isolate and genetically manipulate PSCs in a cell specific manner. We have identified neuron-glia antigen 2 (NG2) as a unique molecular marker of S100b+ PSCs in skeletal muscle. NG2 is expressed in Schwann cells already associated with the NMJ, indicating that it is a marker of differentiated PSCs. Using a newly generated transgenic mouse in which PSCs are specifically labeled, we show that PSCs have a unique molecular signature that includes genes known to play critical roles in *For correspondence: PSCs and synapses. These findings will serve as a springboard for revealing drivers of PSC [email protected] differentiation and function.