Icao Eur Doc Xxx
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High-Resolution Simulations of Freezing Drizzle and Freezing Rain and Comparisons to Observations
High-resolution simulations of freezing drizzle and freezing rain and comparisons to observations Greg Thompson Research Applications Laboratory National Center for Atmospheric Research additional contributions by: Roy Rasmussen, Trude Eidhammer, Kyoko Ikeda, Changhai Liu, Pedro Jimenez, Mei Xu, Stan Benjamin Winterwind 7 Feb 2017, Skelleftea, Sweden Outline • Brief History • High-Resolution Forecasts o Supercooled water drops aloft o Ground icing • Verification o Weather Research & Forecasting, WRF o High Resolution Rapid Refresh, HRRR • Next steps o Time-lag ensemble average o Making clouds better o WISLINE project and AROME model With respect to Numerical Weather Prediction The microphysics scheme is a component in a weather model responsible for: • Condensing water vapor into droplets • Model collisions with other droplets to become drizzle/rain • Creating ice crystals via droplet freezing or vapor-to-ice conversion • Growing ice crystals to snow size • Letting snow collect cloud water droplets (riming or accretion) • Large drops freeze into hail, snow rimes heavily to create graupel • Making rain, snow, and graupel fall to earth • etc. The treatment of processes going between water vapor, liquid water, and ice. Cloud physics & precipitation NCAR-RAL microphysics scheme Scheme version/generation Research or operational model Reisner, Rasmussen, Bruintjes (1998MWR) MM5 Rapid Update Cycle (RUC) Thompson, Rasmussen, Manning (2004MWR) MM5 WRF RUC Thompson, Field, Rasmussen, Hall (2008MWR) MM5 WRF & HWRF RUC Rapid Refresh (RAP) High-Res -
FAA Advisory Circular AC 91-74B
U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Pilot Guide: Flight in Icing Conditions Date:10/8/15 AC No: 91-74B Initiated by: AFS-800 Change: This advisory circular (AC) contains updated and additional information for the pilots of airplanes under Title 14 of the Code of Federal Regulations (14 CFR) parts 91, 121, 125, and 135. The purpose of this AC is to provide pilots with a convenient reference guide on the principal factors related to flight in icing conditions and the location of additional information in related publications. As a result of these updates and consolidating of information, AC 91-74A, Pilot Guide: Flight in Icing Conditions, dated December 31, 2007, and AC 91-51A, Effect of Icing on Aircraft Control and Airplane Deice and Anti-Ice Systems, dated July 19, 1996, are cancelled. This AC does not authorize deviations from established company procedures or regulatory requirements. John Barbagallo Deputy Director, Flight Standards Service 10/8/15 AC 91-74B CONTENTS Paragraph Page CHAPTER 1. INTRODUCTION 1-1. Purpose ..............................................................................................................................1 1-2. Cancellation ......................................................................................................................1 1-3. Definitions.........................................................................................................................1 1-4. Discussion .........................................................................................................................6 -
METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR)
U.S. DEPARTMENT OF TRANSPORTATION N JO 7900.11 NOTICE FEDERAL AVIATION ADMINISTRATION Effective Date: Air Traffic Organization Policy September 1, 2018 Cancellation Date: September 1, 2019 SUBJ: METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR) 1. Purpose of this Notice. This Notice coincides with a revision to the Federal Meteorological Handbook (FMH-1) that was effective on November 30, 2017. The Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) approved the changes to the reporting requirements of small hail and snow pellets in weather observations (METAR/SPECI) to assist commercial operators in deicing operations. 2. Audience. This order applies to all FAA and FAA-contract weather observers, Limited Aviation Weather Reporting Stations (LAWRS) personnel, and Non-Federal Observation (NF- OBS) Program personnel. 3. Where can I Find This Notice? This order is available on the FAA Web site at http://faa.gov/air_traffic/publications and http://employees.faa.gov/tools_resources/orders_notices/. 4. Cancellation. This notice will be cancelled with the publication of the next available change to FAA Order 7900.5D. 5. Procedures/Responsibilities/Action. This Notice amends the following paragraphs and tables in FAA Order 7900.5. Table 3-2: Remarks Section of Observation Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Volcanic eruptions must be reported whenever first noted. Pre-eruption activity must not be reported. (Use Volcanic Eruptions 14.20 X X PIREPs to report pre-eruption activity.) Encode volcanic eruptions as described in Chapter 14. Distribution: Electronic 1 Initiated By: AJT-2 09/01/2018 N JO 7900.11 Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Whenever tornadoes, funnel clouds, or waterspouts begin, are in progress, end, or disappear from sight, the event should be described directly after the "RMK" element. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Development and Demonstration of a Freezing Drizzle Algorithm for Roadway Environmental Sensing Systems
Development and Demonstration of a Freezing Drizzle Algorithm for Roadway Environmental Sensing Systems http://aurora-program.org Aurora Project 2007-04 Final Report October 2012 About Aurora Aurora is an international program of collaborative research, development and deployment in the field of road and weather information systems (RWIS), serving the interests and needs of public agencies. The Aurora vision is to deploy RWIS to integrate state-of-the-art road and weather forecasting technologies with coordinated, multi-agency weather monitoring infrastructures. It is hoped this will facilitate advanced road condition and weather monitoring and forecasting capabilities for efficient highway maintenance, and the provision of real-time information to travelers. Disclaimer Notice The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors. The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation. The sponsors do not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. Non-Discrimination Statement Iowa State University does not discriminate on the basis of race, color, age, religion, national origin, sexual orientation, gender identity, genetic information, sex, marital status, disability, or status as a U.S. veteran. Inquiries can be directed to the Director of Equal Opportunity and Compliance, 3280 Beardshear Hall, (515) 294-7612. -
ICA Vol. 1 (1956 Edition)
·wMo o '-" I q Sb 10 c. v. i. J c.. A INTERNATIONAL CLOUD ATLAS Volume I WORLD METEOROLOGICAL ORGANIZATION 1956 c....._/ O,-/ - 1~ L ) I TABLE OF CONTENTS Pages Preface to the 1939 edition . IX Preface to the present edition . xv PART I - CLOUDS CHAPTER I Introduction 1. Definition of a cloud . 3 2. Appearance of clouds . 3 (1) Luminance . 3 (2) Colour .... 4 3. Classification of clouds 5 (1) Genera . 5 (2) Species . 5 (3) Varieties . 5 ( 4) Supplementary features and accessory clouds 6 (5) Mother-clouds . 6 4. Table of classification of clouds . 7 5. Table of abbreviations and symbols of clouds . 8 CHAPTER II Definitions I. Some useful concepts . 9 (1) Height, altitude, vertical extent 9 (2) Etages .... .... 9 2. Observational conditions to which definitions of clouds apply. 10 3. Definitions of clouds 10 (1) Genera . 10 (2) Species . 11 (3) Varieties 14 (4) Supplementary features and accessory clouds 16 CHAPTER III Descriptions of clouds 1. Cirrus . .. 19 2. Cirrocumulus . 21 3. Cirrostratus 23 4. Altocumulus . 25 5. Altostratus . 28 6. Nimbostratus . 30 " IV TABLE OF CONTENTS Pages 7. Stratoculllulus 32 8. Stratus 35 9. Culllulus . 37 10. Culllulonimbus 40 CHAPTER IV Orographic influences 1. Occurrence, structure and shapes of orographic clouds . 43 2. Changes in the shape and structure of clouds due to orographic influences 44 CHAPTER V Clouds as seen from aircraft 1. Special problellls involved . 45 (1) Differences between the observation of clouds frolll aircraft and frolll the earth's surface . 45 (2) Field of vision . 45 (3) Appearance of clouds. 45 (4) Icing . -
Short Contribution Lake-Effect Freezing Drizzle
Arnott, J. M., and J. Chamberlain, 2014: Lake-effect freezing drizzle: A case-study analysis. J. Operational Meteor., 2 (15), 180190, doi: http://dx.doi.org/10.15191/nwajom.2014.0215. Journal of Operational Meteorology Short Contribution Lake-Effect Freezing Drizzle: A Case-Study Analysis JUSTIN M. ARNOTT National Weather Service, Gaylord, Michigan JON CHAMBERLAIN National Weather Service, Rapid City, South Dakota (Manuscript received 30 July 2013; review completed 26 February 2014) ABSTRACT A series of lake-effect freezing drizzle events occurred southeast of Lake Michigan during the 2009–2010 cool season. These events occurred under an anomalous flow pattern, were not anticipated by forecasters, and in more than one case, led to the issuance of advisories for slick travel conditions and ice accrual. Given the potential impacts of such events on the public and aviation communities—as well as limited previous research on lake-effect freezing precipitation—two case studies are performed. Despite their rarity, a common synoptic and mesoscale evolution is found in these freezing drizzle cases. Whereas the thermodynamic environment initially is supportive for lake-effect snow, a lowering capping inversion and a loss of moisture above this level diminishes the potential production of cloud ice. While this typically results in the end of lake-effect precipitation, these cases transitioned to freezing drizzle and are hypothesized to have resulted from a lack of cloud condensation nuclei in the air mass arriving from the lakes. Mesoscale model soundings projected the evolution of the thermodynamic environment. A conceptual summary of these events is presented that, given suggestive model guidance, includes tools to help forecasters better anticipate future similar events. -
P> P 6.9 FREEZING DRIZZLE FORMATION OVER the OREGON CASCADES DURING IMPROVE II
P 6.9 FREEZING DRIZZLE FORMATION OVER THE OREGON CASCADES DURING IMPROVE II R.M. Rasmussen1*, K. Ikeda1, G. Thompson1, and I. Geresdi2 1National Center for Atmospheric Research, Boulder, Colorado 2University of Pecs, Hungary 1. INTRODUCTION The results of icing studies in the above field programs have suggested that icing conditions A number of recent field programs have (either supercooled liquid water or freezing drizzle), focused on the meteorological conditions leading to tends to be minimized when the radar reflectivity is aircraft icing (WISP: Rasmussen et al. (1992), greater than 5 dBZ. Since cloud droplets and CFDE: Isaac et al. (1999), NASA Glenn, Miller et al. drizzle have radar reflectivities less that 0 dBZ, the 1998). These programs have primarily focused on presence of 5 dBZ or greater typically indicates the aircraft icing conditions over relatively flat terrain presence of ice. Ice reduces liquid water and (Front Range of Colorado, New Foundland, and drizzle water content through depositional and Cleveland) in association with cold fronts, warm accretional growth, thus limiting the build up of fronts, and other features associated with mid- supercooled liquid water and drizzle (Geresdi et al. latitude cyclones (Bernstein et al. 1997). One of the 2004). Since vertical motions in many of the icing key results coming out of these and other studies is clouds observed in previous icing programs are the significantly higher frequency of freezing drizzle typically weak (< 10 cm/s) (Cober et al. 1996, than previous thought (1 – 2% of all icing conditions Rasmussen et al. 1995, Murakami 1992), it does not versus 0.1% previously (Bernstein 2000, Rauber et take much ice to significantly deplete the water al. -
Snow, Weather, and Avalanches
SNOW, WEATHER, AND AVALANCHES: Observation Guidelines for Avalanche Programs in the United States SNOW, WEATHER, AND AVALANCHES: Observation Guidelines for Avalanche Programs in the United States 3rd Edition 3rd Edition Revised by the American Avalanche Association Observation Standards Committee: Ethan Greene, Colorado Avalanche Information Center Karl Birkeland, USDA Forest Service National Avalanche Center Kelly Elder, USDA Forest Service Rocky Mountain Research Station Ian McCammon, Snowpit Technologies Mark Staples, USDA Forest Service Utah Avalanche Center Don Sharaf, Valdez Heli-Ski Guides/American Avalanche Institute Editor — Douglas Krause — Animas Avalanche Consulting Graphic Design — McKenzie Long — Cardinal Innovative © American Avalanche Association, 2016 ISBN-13: 978-0-9760118-1-1 American Avalanche Association P.O. Box 248 Victor, ID. 83455 [email protected] www. americanavalancheassociation.org Citation: American Avalanche Association, 2016. Snow, Weather and Avalanches: Observation Guidelines for Avalanche Programs in the United States (3rd ed). Victor, ID. FRONT COVER PHOTO: courtesy Flathead Avalanche Center BACK COVER PHOTO: Chris Marshall 2 PREFACE It has now been 12 years since the American Avalanche Association, in cooperation with the USDA Forest Service National Ava- lanche Center, published the inaugural edition of Snow, Weather and Avalanches: Observational Guidelines for Avalanche Programs in the United States. As those of us involved in that first edition grow greyer and more wrinkled, a whole new generation of avalanche professionals is growing up not ever realizing that there was a time when no such guidelines existed. Of course, back then the group was smaller and the reference of the day was the 1978 edition of Perla and Martinelli’s Avalanche Handbook. -
PHAK Chapter 12 Weather Theory
Chapter 12 Weather Theory Introduction Weather is an important factor that influences aircraft performance and flying safety. It is the state of the atmosphere at a given time and place with respect to variables, such as temperature (heat or cold), moisture (wetness or dryness), wind velocity (calm or storm), visibility (clearness or cloudiness), and barometric pressure (high or low). The term “weather” can also apply to adverse or destructive atmospheric conditions, such as high winds. This chapter explains basic weather theory and offers pilots background knowledge of weather principles. It is designed to help them gain a good understanding of how weather affects daily flying activities. Understanding the theories behind weather helps a pilot make sound weather decisions based on the reports and forecasts obtained from a Flight Service Station (FSS) weather specialist and other aviation weather services. Be it a local flight or a long cross-country flight, decisions based on weather can dramatically affect the safety of the flight. 12-1 Atmosphere The atmosphere is a blanket of air made up of a mixture of 1% gases that surrounds the Earth and reaches almost 350 miles from the surface of the Earth. This mixture is in constant motion. If the atmosphere were visible, it might look like 2211%% an ocean with swirls and eddies, rising and falling air, and Oxygen waves that travel for great distances. Life on Earth is supported by the atmosphere, solar energy, 77 and the planet’s magnetic fields. The atmosphere absorbs 88%% energy from the sun, recycles water and other chemicals, and Nitrogen works with the electrical and magnetic forces to provide a moderate climate. -
Chapter 12: Freezing Precipitation and Ice Storms
Chapter 12: Freezing Precipitation and Ice Storms • Supercooled Water • Vertical Structure of Freezing Precipitation • Weather Pattern of Freezing Precipitation • Distribution of Freezing Precipitation Freezing Precipitation • Freezing precipitation is rain or drizzle that freezes on surfaces and leads to the development of an ice glaze. • Freezing precipitation is responsible for about 20% of all winter weather-related injuries. • Freezing precipitation occurs in about a fourth of all winter weather events in the continental US. • Ice storm is defined as a freezing precipitation weather event with ice accumulation of at least 0.25 in (0.64cm). • Half of the freezing precipitation events qualify as ice storms. Weather / E. Rocky Cyclone • East of the Cyclone: A wide region of clouds develops north of the warm front. The clouds are deepest close to the surface position of the front and becomes thin and high far north of the front. • Northwest of the Cyclone: Air north of the cyclone center flows westward and rises on the slope of the Rockies, which produces heavy snow and blizzard conditions along the east side of the Rockies and eastward onto the Great Plains. Precipitations “Precipitation is any liquid or solid water particle that falls from the atmosphere and reaches the ground.” Water Vapor Saturated Need cloud nuclei Cloud Droplet formed around Cloud Nuclei Need to fall down Precipitation Radius = 100 times Volume = 1 million times Growth by Condensation Condensation about condensation nuclei initially forms most cloud drops. Insufficient process to generate precipitation. Collision • Collector drops collide with smaller drops. • Due to compressed air beneath falling drop, there is an inverse relationship between collector drop size and collision efficiency. -
Weather Symbol Full Chart
CLOUD Code Code Code SKY mph knots ABBREVIATION cH High Cloud Description cM Middle Cloud Description cL Low Cloud Description Nh N COVERAGE ff Cu of fair weather with little vertical development Filaments of Ci, or “mares tails,” scattered Thin As (most of cloud layer semi-transparent) No clouds Calm Calm Symbolic Station Model and not increasing and seemingly flattened 0 St or Fs = Stratus or 1 1 1 Fractostratus Cu of considerable development, generally Dense Ci and patches or twisted sheaves, Thick As, greater part sufficiently dense to Less than one-tenth 1 - 2 1 - 2 usually not increasing, sometimes like remains towering with or without other Cu or Sc bases or one-tenth Ci = Cirrus hide sun (or moon), or Ns 1 2 of Cb; or towers or tufts 2 2 all at the same level Two-tenths or Cb with tops lacking clear cut outlines but 3 - 8 3 - 7 Dense Ci, often anvil-shaped, derived from Thin Ac, mostly semi-transparent; cloud elements three tenths ff Cs = Cirrus distinctly not cirriform or anvil-shaped, or associated with Cb not changing much and at a single level 2 H 3 3 3 with or without Cu, Sc or St C Four-tenths 9 - 14 8 - 12 Cc = Cirrocumulus Ci, often hook-shaped,gradually spreading Thin Ac in patches; cloud elements continually Sc formed by the spreading out of Cu; Cu 3 dd 4 over the sky and usually thickening as a whole 4 changing and/or occurring at more than one level 4 often present also T T CM Five-tenths Ac = Altocumulus Ci and Cs, often in converging bands, or Cs alone; 15 - 20 13 - 17 PPP Thin Ac in bands or in a layer gradually