The International Classification for Seasonal Snow on the Ground
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PRECIPITATION What Does a 60 Percent Chance of Precipitation Mean?
PRECIPITATION What does a 60 percent chance of precipitation mean? http://www.cbc.ca/news/canada/ottawa/canada-weather-forecast-no-50-per-cent-forecast-1.4206067 The probability of (PoP) does not mean • the percent of time precipitation will be observed over the area; or • the percentage of meteorologists who believe precipitation will fall! The most common definition among meteorologists is the probability that at least one one-hundredth inch of liquid-equivalent precipitation will fall in a single spot. Here’s a good way to grasp a PoP of 60 percent: If we had ten tomorrows with identical weather conditions, any given point would receive rain on six (60 percent) of those days. And rain would not fall on four of those days — on any given point. Remember: this PoP is a forecast for 10 potential tomorrows, not a forecast for the next 10 days! Although this may be confusing, weather forecasters have no problem thinking of tomorrow’s weather as a group of potential tomorrows. One thing you can take to the bank: as the PoP increases, precipitation grows more likely. In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. So many types… Rain Sleet Drizzle Hail Snow Graupel Thundersnow Fog and mist are technically SUSPENSIONS and not precipitation SYMBOLS RAINSHOWERS are identified on weather maps as a dot over a triangle Heavier rain as a series of dots, more when rain is heavier Rain - and other forms of precipitation - occur when Basically… warm moist air cools and condensation occurs. -
Simulations of the Sea Ice Thermal Microwave Emissivity
Simulations of the sea ice thermal microwave emissivity Rasmus Tonboe, Danish Meteorological Institute A short introduction to sea ice for microwave radiometry New ice First-year ice First-year ice Ridges/ deformed ice Multiyear ice Melt-ponds Refrozen meltponds Emission modelling why and where? • Estimation of uncertainties in sea ice concentration, sea ice thickness, snow surface temperature… • For simplification of forward models to reduce the computational cost or to reduce the number of free parameters. • Understanding limitations and ambiguities for example between salinity, thickness and ice concentration in thin ice thickness estimation using SMOS. • For planning of field campaigns which parameters to sample. • For use in parameter retrieval or data assimilation for example in snow cover retrival. Forward emission and scattering models • Empirical models: the gradient ratio snow thickness algorithm, ice concentration algorithms. • Semi-empirical models: the OSISAF near 50GHz emissivity model • Sofisticated physical models: for example MEMLS with multiple layers, multiple reflections, volume and surface scattering interaction. These models are valid in the range roughly 1-100 GHz and some of these principles can also be used at higher frequencies (>100GHz). However, for ICI frequencies (183- 664GHz) the emission processes are from a shallow layer at the snow surface and the models for permittivity and scattering have not been tested in this range. The snow thickness algorithm -an empirical regression model The line slope and offset -
Analysis of Thundersnow Storms Over Northern Colorado
DECEMBER 2015 K U M J I A N A N D D E I E R L I N G 1469 Analysis of Thundersnow Storms over Northern Colorado MATTHEW R. KUMJIAN Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania WIEBKE DEIERLING Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado (Manuscript received 13 January 2015, in final form 12 August 2015) ABSTRACT Lightning flashes during snowstorms occur infrequently compared to warm-season convection. The rarity of such thundersnow events poses an additional hazard because the lightning is unexpected. Because cloud electrification in thundersnow storms leads to relatively few lightning discharges, studying thundersnow events may offer insights into mechanisms for charging and possible thresholds required for lightning dis- charges. Observations of four northern Colorado thundersnow events that occurred during the 2012/13 winter are presented. Four thundersnow events in one season strongly disagrees with previous climatologies that used surface reports, implying thundersnow may be more common than previously thought. Total lightning information from the Colorado Lightning Mapping Array and data from conterminous United States light- ning detection networks are examined to investigate the snowstorms’ electrical properties and to compare them to typical warm-season thunderstorms. Data from polarimetric WSR-88Ds near Denver, Colorado, and Cheyenne, Wyoming, are used to reveal the storms’ microphysical structure and determine operationally relevant signatures related to storm electrification. Most lightning occurred within convective cells containing graupel and pristine ice. However, one flash occurred in a stratiform snowband, apparently triggered by a tower. Depolarization streaks were observed in the radar data prior to the flash, indicating electric fields strong enough to orient pristine ice crystals. -
Proceedings, International Snow Science Workshop, Breckenridge, Colorado, 2016
Proceedings, International Snow Science Workshop, Breckenridge, Colorado, 2016 POLAR CIRCUS AVALANCHE RESPONSE, FEBRUARY 5-11, 2015 Stephen Holeczi* and Grant Statham Parks Canada Visitor Safety, Lake Louise, Alberta, Canada ABSTRACT: On the evening of February 5, 2015, two Canadian Military Search and Rescue Technicians (SAR Tech) on an official training exercise were descending after an ascent of Polar Circus, a 700m water ice climb located in Banff National Park in the Canadian Rockies. In deteriorating weather, one member of the team was swept away by an avalanche, un-roped, above an ice feature known as “The Pencil”. His partner was left to descend alone and initiate a search. The climbers were not carrying avalanche safety equipment and the partner could not find any surface clues on his descent. Six days later, his body was recovered by Parks Canada SAR staff. This paper will focus on how searchers conducted their risk assessments, an analysis of the exposure time to rescuers, and will advocate to encourage climbers to wear avalanche safety gear. KEYWORDS: avalanche, mitigation, risk, exposure 1.0 Introduction dark. Visitor Safety Specialists (VSS) in Banff were notified by phone at 23:30. Polar Circus is a popular waterfall ice climb in the Canadian Rockies. It climbs at a moderate grade Feb. 6: An initial helicopter recce that morning by and sees almost daily ascents during the winter. (VSS) from Banff could not locate any surface Many consider it an “alpine climb” since it clues and the avalanche victim was deemed to be traverses large alpine slopes and is subject to deceased. -
Snow Avalanches J
, . ^^'- If A HANDBOOK OF FORECASTING AND CONTROL MEASURE! Agriculture Handbook No. 194 January 1961 FOREST SERVICE U.S. DEPARTMENT OF AGRICULTURE Ai^ JANUARY 1961 AGRICULTURE HANDBOOK NO. 194 SNOW AVALANCHES J A Handbook of Forecasting and Control Measures k FSH2 2332.81 SNOW AVALANCHES :}o U^»TED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE SNOW AVALANCHES FSH2 2332.81 Contents INTRODUCTION 6.1 Snow Study Chart 6.2 Storm Plot and Storm Report Records CHAPTER 1 6.3 Snow Pit Studies 6.4 Time Profile AVALANCHE HAZARD AND PAST STUDIES CHAPTER 7 CHAPTER 2 7 SNOW STABILIZATION 7.1 Test and Protective Skiing 2 PHYSICS OF THE SNOW COVER 7.2 Explosives 2.1 The Solid Phase of the Hydrologie Cycle 7.21 Hand-Placed Charges 2.2 Formation of Snow in the Atmosphere 7.22 Artillery 2.3 Formation and Character of the Snow Cover CHAPTER 8 2.4 Mechanical Properties of Snow 8 SAFETY 2.5 Thermal Properties of the Snow Cover 8.1 Safety Objectives 2.6 Examples of Weather Influence on the Snow Cover 8.2 Safety Principles 8.3 Safety Regulations CHAPTER 3 8.31 Personnel 8.32 Avalanche Test and Protective Skiing 3 AVALANCHE CHARACTERISTICS 8.33 Avalanche Blasting 3.1 Avalanche Classification 8.34 Exceptions to Safety Code 3.11 Loose Snow Avalanches 3.12 Slab Avalanches CHAPTER 9 3.2 Tyi)es 3.3 Size 9 AVALANCHE DEFENSES 3.4 Avalanche Triggers 9.1 Diversion Barriers 9.2 Stabilization Barriers CHAPTER 4 9.3 Barrier Design Factors 4 TERRAIN 9.4 Reforestation 4.1 Slope Angle CHAPTER 10 4.2 Slope Profile 4.3 Ground Cover and Vegetation 10 AVALANCHE RESCUE 4.4 Slope -
In This Issue Forest Service National Avalanche Center Skiing Steep, Open, and Un-Groomed Terrain Means That from the President
VOLUME 28, NO. 1 • OCTOBER 2009 December 17, 2008 Toledo Bowl Little Cottonwood Canyon, Utah Photo by Bruce Tremper There we were! I was up with Liam Fitzgerald and the boys looking at a human-triggered avalanche in Season the nearby bowl when we got a call that someone triggered this slide. Liam and I went over to have a look. We talked with the folks who triggered it. The tracks tell the story. Roundup Four people skied the straight south facing slope, then the fifth decided to put a track in where it wraps around a little east facing. He collapsed the slope and it 2008/09 pulled out the slide above and to the side, and he scooted off and was not caught. It was the first avalanche of the big avalanche cycle. The notorious depth hoar with a rain crust on top with more facets above the crust was slowly being overloaded by new snow. The south-facing slopes were very stable, but as soon as you wrapped around to the east, you were in a different world. It’s a common scenario in depth hoar climates where people get a quick education in the importance of aspect. These folks lived to tell the tale and I got a great educational photo in the process. In This Issue Forest Service National Avalanche Center skiing steep, open, and un-groomed terrain means that From the President. 2 The Forest Service National Avalanche Center (FSNAC) there are 8.5-million skier visits to inbounds avalanche From the Editor . 2 thanks and congratulates all of you in the snow-safety terrain. -
US Marine Corps MWTC Cold Weather
UNITED STATES MARINE CORPS Mountain Warfare Training Center Bridgeport, California 93517-5001 COLD WEATHER MEDICINE COURSE TABLE OF CONTENTS CHAP TITLE 1 MOUNTAIN SAFETY (WINTER) 2 SURVIVAL KIT 3 COLD WEATHER CLOTHING 4 WINTER WARFIGHTING LOAD REQUIREMENTS 5 NOMENCLATURE AND CARE OF MILITARY SKI EQUIPMENT 6 MILITARY SNOWSHOE MOVEMENT 7 PREVENTIVE MEDICINE 8 PATIENT ASSESSMENT 9 TRIAGE 10 TACTICAL COMBAT CASUALTY CARE 11 LAND NAVIGATION REVIEW 12 NUTRITION 13 HYPOTHERMIA 14 FREEZING / NEAR FREEZING TISSUE INJURIES 15 EXTREME COLD WEATHER TENT 16 PERSONAL / TEAM STOVES 17 TEN MAN ARCTIC TENT 18 BURN MANAGEMENT 19 MISCELLANEOUS COLD WEATHER MEDICAL PROBLEMS 20 CASEVACS AND CASEVAC REPORTING 21 HIGH ALTITUDE HEALTH PROBLEMS 22 ENVIRONMENTAL HAZARDS 1 23 ENVIRONMENTAL HAZARDS 2 24 AVALANCHE SEARCH ORGANIZATION 25 AVALANCHE TRANSCEIVERS 26 BIVOUAC ROUTINE 27 WILDERNESS ORTHOPEDIC TRAUMA 28 COLD WEATHER LEADERSHIP PROBLEMS 29 SUBMERSION INCIDENTS 30 REQUIREMENTS FOR SURVIVAL 31 SURVIVAL SIGNALING 32 SURVIVAL SNOW SHELTERS AND FIRES 33 SKIJORING UNITED STATES MARINE CORPS Mountain Warfare Training Center Bridgeport, California 93517-5001 FMST.07.18 10/22/01 STUDENT HANDOUT MOUNTAIN SAFETY (WINTER) TERMINAL LEARNING OBJECTIVE. Given a unit in a wilderness environment and necessary equipment and supplies, apply the principles of mountain safety, to prevent death or injury per the references. (FMST.07.18) ENABLING LEARNING OBJECTIVE. 1. Without the aid of references, and given the acronym "BE SAFE MARINE", list in writing the 12 principles of mountain safety, in accordance with the references. (FMST.07.18a) OUTLINE. 1. P LANNING AND PREPARATION. (FMST.07.18a) As in any military operation, planning and preparation constitute the keys to success. -
METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR)
U.S. DEPARTMENT OF TRANSPORTATION N JO 7900.11 NOTICE FEDERAL AVIATION ADMINISTRATION Effective Date: Air Traffic Organization Policy September 1, 2018 Cancellation Date: September 1, 2019 SUBJ: METAR/SPECI Reporting Changes for Snow Pellets (GS) and Hail (GR) 1. Purpose of this Notice. This Notice coincides with a revision to the Federal Meteorological Handbook (FMH-1) that was effective on November 30, 2017. The Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) approved the changes to the reporting requirements of small hail and snow pellets in weather observations (METAR/SPECI) to assist commercial operators in deicing operations. 2. Audience. This order applies to all FAA and FAA-contract weather observers, Limited Aviation Weather Reporting Stations (LAWRS) personnel, and Non-Federal Observation (NF- OBS) Program personnel. 3. Where can I Find This Notice? This order is available on the FAA Web site at http://faa.gov/air_traffic/publications and http://employees.faa.gov/tools_resources/orders_notices/. 4. Cancellation. This notice will be cancelled with the publication of the next available change to FAA Order 7900.5D. 5. Procedures/Responsibilities/Action. This Notice amends the following paragraphs and tables in FAA Order 7900.5. Table 3-2: Remarks Section of Observation Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Volcanic eruptions must be reported whenever first noted. Pre-eruption activity must not be reported. (Use Volcanic Eruptions 14.20 X X PIREPs to report pre-eruption activity.) Encode volcanic eruptions as described in Chapter 14. Distribution: Electronic 1 Initiated By: AJT-2 09/01/2018 N JO 7900.11 Remarks Section of Observation Element Paragraph Brief Description METAR SPECI Whenever tornadoes, funnel clouds, or waterspouts begin, are in progress, end, or disappear from sight, the event should be described directly after the "RMK" element. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
11Th International Conference on the Physics and Chemistry of Ice, PCI
11th International Conference on the Physics and Chemistry of Ice (PCI-2006) Bremerhaven, Germany, 23-28 July 2006 Abstracts _______________________________________________ Edited by Frank Wilhelms and Werner F. Kuhs Ber. Polarforsch. Meeresforsch. 549 (2007) ISSN 1618-3193 Frank Wilhelms, Alfred-Wegener-Institut für Polar- und Meeresforschung, Columbusstrasse, D-27568 Bremerhaven, Germany Werner F. Kuhs, Universität Göttingen, GZG, Abt. Kristallographie Goldschmidtstr. 1, D-37077 Göttingen, Germany Preface The 11th International Conference on the Physics and Chemistry of Ice (PCI- 2006) took place in Bremerhaven, Germany, 23-28 July 2006. It was jointly organized by the University of Göttingen and the Alfred-Wegener-Institute (AWI), the main German institution for polar research. The attendance was higher than ever with 157 scientists from 20 nations highlighting the ever increasing interest in the various frozen forms of water. As the preceding conferences PCI-2006 was organized under the auspices of an International Scientific Committee. This committee was led for many years by John W. Glen and is chaired since 2002 by Stephen H. Kirby. Professor John W. Glen was honoured during PCI-2006 for his seminal contributions to the field of ice physics and his four decades of dedicated leadership of the International Conferences on the Physics and Chemistry of Ice. The members of the International Scientific Committee preparing PCI-2006 were J.Paul Devlin, John W. Glen, Takeo Hondoh, Stephen H. Kirby, Werner F. Kuhs, Norikazu Maeno, Victor F. Petrenko, Patricia L.M. Plummer, and John S. Tse; the final program was the responsibility of Werner F. Kuhs. The oral presentations were given in the premises of the Deutsches Schiffahrtsmuseum (DSM) a few meters away from the Alfred-Wegener-Institute. -
Ice Engineering and Avalanche Forecasting and Control Gold, L
NRC Publications Archive Archives des publications du CNRC Ice engineering and avalanche forecasting and control Gold, L. W.; Williams, G. P. This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Publisher’s version / Version de l'éditeur: Technical Memorandum (National Research Council of Canada. Division of Building Research); no. DBR-TM-98, 1969-10-23 NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=50c4a1f1-0608-4db2-9ccd-74b038ef41bb https://publications-cnrc.canada.ca/fra/voir/objet/?id=50c4a1f1-0608-4db2-9ccd-74b038ef41bb Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. -
Snowpack and Firn Densification in the Energy Exascale Earth System Model
https://doi.org/10.5194/gmd-2020-247 Preprint. Discussion started: 13 August 2020 c Author(s) 2020. CC BY 4.0 License. Snowpack and firn densification in the Energy Exascale Earth System Model (E3SM) (version 1.2) Adam M. Schneider1, Charles S. Zender1, and Stephen F. Price2 1University of California, Irvine, Department of Earth System Science, Croul Hall, Irvine, CA 92697-3100 2Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A. Correspondence: Adam Schneider ([email protected]) Abstract. Earth’s largest island, Greenland, and the Antarctic continent are both covered by massive ice sheets. A large fraction of their surfaces consist of multi-year snow, known as firn, which has undergone a process of densification since falling from the atmosphere. Until now this firn densification has not been fully accounted for in the U.S. Department of Energy’s Energy Exascale Earth System Model (E3SM). Here, we expand the E3SM Land Model (ELM) snowpack from 1 m to up to 60 m to 5 enable more accurate simulation of snowpack evolution. We test four densification models in a series of century-scale land surface simulations forced by atmospheric re-analyses, and evaluate these parameterizations against empirical density-versus- depth data. To tailor candidate densification models for use across the ice sheets’ dry-snow zones, we optimize parameters using a regularized least squares algorithm applied to two distinct stages of densification. We find that a dynamic implementation of a semi-empirical compaction model, originally calibrated to measurements from the Antarctic peninsula, gives results more 10 consistent with ice core measurements from the cold, dry snow zones of Greenland and Antarctica, compared to when using the original ELM snow compaction physics.