Development and Demonstration of a Freezing Drizzle Algorithm for Roadway Environmental Sensing Systems

Total Page:16

File Type:pdf, Size:1020Kb

Development and Demonstration of a Freezing Drizzle Algorithm for Roadway Environmental Sensing Systems Development and Demonstration of a Freezing Drizzle Algorithm for Roadway Environmental Sensing Systems http://aurora-program.org Aurora Project 2007-04 Final Report October 2012 About Aurora Aurora is an international program of collaborative research, development and deployment in the field of road and weather information systems (RWIS), serving the interests and needs of public agencies. The Aurora vision is to deploy RWIS to integrate state-of-the-art road and weather forecasting technologies with coordinated, multi-agency weather monitoring infrastructures. It is hoped this will facilitate advanced road condition and weather monitoring and forecasting capabilities for efficient highway maintenance, and the provision of real-time information to travelers. Disclaimer Notice The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors. The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation. The sponsors do not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. Non-Discrimination Statement Iowa State University does not discriminate on the basis of race, color, age, religion, national origin, sexual orientation, gender identity, genetic information, sex, marital status, disability, or status as a U.S. veteran. Inquiries can be directed to the Director of Equal Opportunity and Compliance, 3280 Beardshear Hall, (515) 294-7612. Iowa Department of Transportation Statements Federal and state laws prohibit employment and/or public accommodation discrimination on the basis of age, color, creed, disability, gender identity, national origin, pregnancy, race, religion, sex, sexual orientation or veteran’s status. If you believe you have been discriminated against, please contact the Iowa Civil Rights Commission at 800-457-4416 or the Iowa Department of Transportation affirmative action officer. If you need accommodations because of a disability to access the Iowa Department of Transportation’s services, contact the agency’s affirmative action officer at 800-262-0003. The preparation of this report was financed in part through funds provided by the Iowa Department of Transportation through its “Second Revised Agreement for the Management of Research Conducted by Iowa State University for the Iowa Department of Transportation” and its amendments. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Iowa Department of Transportation or the U.S. Department of Transportation Federal Highway Administration. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. Aurora Project 2007-04 4. Title and Subtitle 5. Report Date Development and Demonstration of a Freezing Drizzle Algorithm for Roadway October 2012 Environmental Sensing Systems 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Leon Osborne Aurora Project 2007-04 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Surface Transportation Weather Research Center University of North Dakota 11. Contract or Grant No. Grand Forks, North Dakota 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Aurora Program Federal Highway Administration Final Report Iowa Department of Transportation U.S. Department of Transportation 14. Sponsoring Agency Code 800 Lincoln Way 1200 New Jersey Avenue SE Pooled Fund SPR 72-00-0003-042 Ames, Iowa 50010 Washington, DC 20590 15. Supplementary Notes Visit www.aurora-program.org for color PDFs of this and other research reports. 16. Abstract The primary goal of this project is to demonstrate the accuracy and utility of a freezing drizzle algorithm that can be implemented on roadway environmental sensing systems (ESSs). The types of problems related to the occurrence of freezing precipitation range from simple traffic delays to major accidents that involve fatalities. Freezing drizzle can also lead to economic impacts in communities with lost work hours, vehicular damage, and downed power lines. There are means for transportation agencies to perform preventive and reactive treatments to roadways, but freezing drizzle can be difficult to forecast accurately or even detect as weather radar and surface observation networks poorly observe these conditions. The detection of freezing precipitation is problematic and requires special instrumentation and analysis. The Federal Aviation Administration (FAA) development of aircraft anti-icing and deicing technologies has led to the development of a freezing drizzle algorithm that utilizes air temperature data and a specialized sensor capable of detecting ice accretion. However, at present, roadway ESSs are not capable of reporting freezing drizzle. This study investigates the use of the methods developed for the FAA and the National Weather Service (NWS) within a roadway environment to detect the occurrence of freezing drizzle using a combination of icing detection equipment and available ESS sensors. The work performed in this study incorporated the algorithm developed initially and further modified for work with the FAA for aircraft icing. The freezing drizzle algorithm developed for the FAA was applied using data from standard roadway ESSs. The work performed in this study lays the foundation for addressing the central question of interest to winter maintenance professionals as to whether it is possible to use roadside freezing precipitation detection (e.g., icing detection) sensors to determine the occurrence of pavement icing during freezing precipitation events and the rates at which this occurs. 17. Key Words 18. Distribution Statement ESS—freezing drizzle algorithm—freezing rain—pavement conditions— No restrictions. precipitation—Rosemount 872C2 sensor—RWFRF 19. Security Classification (of this 20. Security Classification (of this 21. No. of Pages 22. Price report) page) Unclassified. Unclassified. 21 NA Form DOT F 1700.7 (8-72) Reproduction of completed page authorized DEVELOPMENT AND DEMONSTRATION OF A FREEZING DRIZZLE ALGORITHM FOR ROADWAY ENVIRONMENTAL SENSING SYSTEMS Final Report October 2012 Author Leon Osborne Surface Transportation Weather Research Center University of North Dakota Grand Forks, North Dakota Sponsored by the Aurora Program, the Iowa Department of Transportation, and the Federal Highway Administration (FHWA) FHWA Pooled Fund Study SPR-3(042): AK, IA, IL, IN, KS, MI, MN, ND, NV, NY, OH, Ontario MOT, PA, Quebec MOT, SD, Sweden NRA, TN, UT, VA, WI Preparation of this report was financed in part through funds provided by the Iowa Department of Transportation through its Research Management Agreement with the Institute for Transportation (Aurora Project 2007-04) A report from Aurora Program Institute for Transportation Iowa State University 2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 Phone: 515-294-8103 Fax: 515-294-0467 www.intrans.iastate.edu TABLE OF CONTENTS ACKNOWLEDGMENTS ............................................................................................................ vii INTRODUCTION ...........................................................................................................................1 BACKGROUND .............................................................................................................................1 Detection ..............................................................................................................................2 METHODOLOGY ..........................................................................................................................3 Rosemount Freezing Rain Sensor ........................................................................................3 Data Collection ....................................................................................................................4 Data Collection and Analysis...............................................................................................6 RESULTS ........................................................................................................................................9 CONCLUSIONS............................................................................................................................10 RECOMMENDATIONS ...............................................................................................................11 REFERENCES ..............................................................................................................................12 APPENDIX A. ROSEMOUNT SENSOR SPECIFICATIONS ....................................................13 Description .........................................................................................................................13 Specifications .....................................................................................................................13 v LIST OF FIGURES Figure 1. Rosemount 872C2 icing detector .....................................................................................4 Figure 2. The Rosemount Aerospace Corporation Model 872C2 icing detector
Recommended publications
  • High-Resolution Simulations of Freezing Drizzle and Freezing Rain and Comparisons to Observations
    High-resolution simulations of freezing drizzle and freezing rain and comparisons to observations Greg Thompson Research Applications Laboratory National Center for Atmospheric Research additional contributions by: Roy Rasmussen, Trude Eidhammer, Kyoko Ikeda, Changhai Liu, Pedro Jimenez, Mei Xu, Stan Benjamin Winterwind 7 Feb 2017, Skelleftea, Sweden Outline • Brief History • High-Resolution Forecasts o Supercooled water drops aloft o Ground icing • Verification o Weather Research & Forecasting, WRF o High Resolution Rapid Refresh, HRRR • Next steps o Time-lag ensemble average o Making clouds better o WISLINE project and AROME model With respect to Numerical Weather Prediction The microphysics scheme is a component in a weather model responsible for: • Condensing water vapor into droplets • Model collisions with other droplets to become drizzle/rain • Creating ice crystals via droplet freezing or vapor-to-ice conversion • Growing ice crystals to snow size • Letting snow collect cloud water droplets (riming or accretion) • Large drops freeze into hail, snow rimes heavily to create graupel • Making rain, snow, and graupel fall to earth • etc. The treatment of processes going between water vapor, liquid water, and ice. Cloud physics & precipitation NCAR-RAL microphysics scheme Scheme version/generation Research or operational model Reisner, Rasmussen, Bruintjes (1998MWR) MM5 Rapid Update Cycle (RUC) Thompson, Rasmussen, Manning (2004MWR) MM5 WRF RUC Thompson, Field, Rasmussen, Hall (2008MWR) MM5 WRF & HWRF RUC Rapid Refresh (RAP) High-Res
    [Show full text]
  • FAA Advisory Circular AC 91-74B
    U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Pilot Guide: Flight in Icing Conditions Date:10/8/15 AC No: 91-74B Initiated by: AFS-800 Change: This advisory circular (AC) contains updated and additional information for the pilots of airplanes under Title 14 of the Code of Federal Regulations (14 CFR) parts 91, 121, 125, and 135. The purpose of this AC is to provide pilots with a convenient reference guide on the principal factors related to flight in icing conditions and the location of additional information in related publications. As a result of these updates and consolidating of information, AC 91-74A, Pilot Guide: Flight in Icing Conditions, dated December 31, 2007, and AC 91-51A, Effect of Icing on Aircraft Control and Airplane Deice and Anti-Ice Systems, dated July 19, 1996, are cancelled. This AC does not authorize deviations from established company procedures or regulatory requirements. John Barbagallo Deputy Director, Flight Standards Service 10/8/15 AC 91-74B CONTENTS Paragraph Page CHAPTER 1. INTRODUCTION 1-1. Purpose ..............................................................................................................................1 1-2. Cancellation ......................................................................................................................1 1-3. Definitions.........................................................................................................................1 1-4. Discussion .........................................................................................................................6
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Short Contribution Lake-Effect Freezing Drizzle
    Arnott, J. M., and J. Chamberlain, 2014: Lake-effect freezing drizzle: A case-study analysis. J. Operational Meteor., 2 (15), 180190, doi: http://dx.doi.org/10.15191/nwajom.2014.0215. Journal of Operational Meteorology Short Contribution Lake-Effect Freezing Drizzle: A Case-Study Analysis JUSTIN M. ARNOTT National Weather Service, Gaylord, Michigan JON CHAMBERLAIN National Weather Service, Rapid City, South Dakota (Manuscript received 30 July 2013; review completed 26 February 2014) ABSTRACT A series of lake-effect freezing drizzle events occurred southeast of Lake Michigan during the 2009–2010 cool season. These events occurred under an anomalous flow pattern, were not anticipated by forecasters, and in more than one case, led to the issuance of advisories for slick travel conditions and ice accrual. Given the potential impacts of such events on the public and aviation communities—as well as limited previous research on lake-effect freezing precipitation—two case studies are performed. Despite their rarity, a common synoptic and mesoscale evolution is found in these freezing drizzle cases. Whereas the thermodynamic environment initially is supportive for lake-effect snow, a lowering capping inversion and a loss of moisture above this level diminishes the potential production of cloud ice. While this typically results in the end of lake-effect precipitation, these cases transitioned to freezing drizzle and are hypothesized to have resulted from a lack of cloud condensation nuclei in the air mass arriving from the lakes. Mesoscale model soundings projected the evolution of the thermodynamic environment. A conceptual summary of these events is presented that, given suggestive model guidance, includes tools to help forecasters better anticipate future similar events.
    [Show full text]
  • P> P 6.9 FREEZING DRIZZLE FORMATION OVER the OREGON CASCADES DURING IMPROVE II
    P 6.9 FREEZING DRIZZLE FORMATION OVER THE OREGON CASCADES DURING IMPROVE II R.M. Rasmussen1*, K. Ikeda1, G. Thompson1, and I. Geresdi2 1National Center for Atmospheric Research, Boulder, Colorado 2University of Pecs, Hungary 1. INTRODUCTION The results of icing studies in the above field programs have suggested that icing conditions A number of recent field programs have (either supercooled liquid water or freezing drizzle), focused on the meteorological conditions leading to tends to be minimized when the radar reflectivity is aircraft icing (WISP: Rasmussen et al. (1992), greater than 5 dBZ. Since cloud droplets and CFDE: Isaac et al. (1999), NASA Glenn, Miller et al. drizzle have radar reflectivities less that 0 dBZ, the 1998). These programs have primarily focused on presence of 5 dBZ or greater typically indicates the aircraft icing conditions over relatively flat terrain presence of ice. Ice reduces liquid water and (Front Range of Colorado, New Foundland, and drizzle water content through depositional and Cleveland) in association with cold fronts, warm accretional growth, thus limiting the build up of fronts, and other features associated with mid- supercooled liquid water and drizzle (Geresdi et al. latitude cyclones (Bernstein et al. 1997). One of the 2004). Since vertical motions in many of the icing key results coming out of these and other studies is clouds observed in previous icing programs are the significantly higher frequency of freezing drizzle typically weak (< 10 cm/s) (Cober et al. 1996, than previous thought (1 – 2% of all icing conditions Rasmussen et al. 1995, Murakami 1992), it does not versus 0.1% previously (Bernstein 2000, Rauber et take much ice to significantly deplete the water al.
    [Show full text]
  • Chapter 12: Freezing Precipitation and Ice Storms
    Chapter 12: Freezing Precipitation and Ice Storms • Supercooled Water • Vertical Structure of Freezing Precipitation • Weather Pattern of Freezing Precipitation • Distribution of Freezing Precipitation Freezing Precipitation • Freezing precipitation is rain or drizzle that freezes on surfaces and leads to the development of an ice glaze. • Freezing precipitation is responsible for about 20% of all winter weather-related injuries. • Freezing precipitation occurs in about a fourth of all winter weather events in the continental US. • Ice storm is defined as a freezing precipitation weather event with ice accumulation of at least 0.25 in (0.64cm). • Half of the freezing precipitation events qualify as ice storms. Weather / E. Rocky Cyclone • East of the Cyclone: A wide region of clouds develops north of the warm front. The clouds are deepest close to the surface position of the front and becomes thin and high far north of the front. • Northwest of the Cyclone: Air north of the cyclone center flows westward and rises on the slope of the Rockies, which produces heavy snow and blizzard conditions along the east side of the Rockies and eastward onto the Great Plains. Precipitations “Precipitation is any liquid or solid water particle that falls from the atmosphere and reaches the ground.” Water Vapor Saturated Need cloud nuclei Cloud Droplet formed around Cloud Nuclei Need to fall down Precipitation Radius = 100 times Volume = 1 million times Growth by Condensation Condensation about condensation nuclei initially forms most cloud drops. Insufficient process to generate precipitation. Collision • Collector drops collide with smaller drops. • Due to compressed air beneath falling drop, there is an inverse relationship between collector drop size and collision efficiency.
    [Show full text]
  • Weather Symbol Full Chart
    CLOUD Code Code Code SKY mph knots ABBREVIATION cH High Cloud Description cM Middle Cloud Description cL Low Cloud Description Nh N COVERAGE ff Cu of fair weather with little vertical development Filaments of Ci, or “mares tails,” scattered Thin As (most of cloud layer semi-transparent) No clouds Calm Calm Symbolic Station Model and not increasing and seemingly flattened 0 St or Fs = Stratus or 1 1 1 Fractostratus Cu of considerable development, generally Dense Ci and patches or twisted sheaves, Thick As, greater part sufficiently dense to Less than one-tenth 1 - 2 1 - 2 usually not increasing, sometimes like remains towering with or without other Cu or Sc bases or one-tenth Ci = Cirrus hide sun (or moon), or Ns 1 2 of Cb; or towers or tufts 2 2 all at the same level Two-tenths or Cb with tops lacking clear cut outlines but 3 - 8 3 - 7 Dense Ci, often anvil-shaped, derived from Thin Ac, mostly semi-transparent; cloud elements three tenths ff Cs = Cirrus distinctly not cirriform or anvil-shaped, or associated with Cb not changing much and at a single level 2 H 3 3 3 with or without Cu, Sc or St C Four-tenths 9 - 14 8 - 12 Cc = Cirrocumulus Ci, often hook-shaped,gradually spreading Thin Ac in patches; cloud elements continually Sc formed by the spreading out of Cu; Cu 3 dd 4 over the sky and usually thickening as a whole 4 changing and/or occurring at more than one level 4 often present also T T CM Five-tenths Ac = Altocumulus Ci and Cs, often in converging bands, or Cs alone; 15 - 20 13 - 17 PPP Thin Ac in bands or in a layer gradually
    [Show full text]
  • EOAR-Raport Tech-Bibliothèque
    Estuary and Gulf of St. Lawrence Marine EEEcosystemEcosystem OOOverviewOverview and AAAssessmentAssessment RRReportReport R. Dufour and P. Ouellet (editors) Science Branch Department of Fisheries and Oceans Maurice–Lamontagne Institut 850, route de la Mer Mont–Joli (Québec) G5H 3Z4 2007 Canadian Technical Report of Fisheries and Aquatic Sciences 2744E Canadian Technical Report of Fisheries and Aquatic Sciences Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences. Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts . Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925. Rapport technique canadien des sciences halieutiques et aquatiques Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique.
    [Show full text]
  • Icao Eur Doc Xxx
    Appendix P to EANPG/53 Report (paragraph 4.6.25 (a) refers) ICAO EUR DOC XXX INTERNATIONAL CIVIL AVIATION ORGANIZATION GUIDANCE MATERIAL ON WINTER CONDITIONS FOR THE EUROPEAN REGION - First Draft Edition – August 2011 PREPARED BY THE EUROPEAN AND NORTH ATLANTIC OFFICE OF ICAO pagina 1 Guidance Material on Winter conditions for the European Region THE DESIGNATIONS AND THE PRESENTATION OF MATERIAL IN THIS PUBLICATION DO NOT IMPLY THE EXPRESSION OF ANY OPINION WHATSOEVER ON THE PART OF ICAO CONCERNING THE LEGAL STATUS OF ANY COUNTRY, TERRITORY, CITY OR AREA OF ITS AUTHORITIES, OR CONCERNING THE DELIMITATION OF ITS FRONTIERS OR BOUNDARIES. pagina 2 May 2011 Guidance Material on Winter conditions for the European Region TABLE OF CONTENTS 1 INTRODUCTION ..............................................................................................................................4 2 OBJECTIVE.......................................................................................................................................4 3 SCOPE .............................................................................................................................................4 4 DEFINITIONS....................................................................................................................................5 5 BACKGROUND….............................................................................................................................6 6 ASSESSMENT OF CURRENT PRACTICE ………………………………………………………….....7 7 CURRENT ICAO PROVISIONS............................................................................………………….17
    [Show full text]
  • An Analysis of Freezing Rain, Freezing Drizzle, and Ice Pellets Across the United States and Canada: 1976±90
    APRIL 2004 CORTINAS ET AL. 377 An Analysis of Freezing Rain, Freezing Drizzle, and Ice Pellets across the United States and Canada: 1976±90 JOHN V. C ORTINAS JR.* Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma BEN C. BERNSTEIN National Center for Atmospheric Research, Boulder, Colorado CHRISTOPHER C. ROBBINS NOAA/National Weather Service, Fort Worth, Texas J. WALTER STRAPP Meteorological Service of Canada, Downsview, Ontario, Canada (Manuscript received 20 May 2003, in ®nal form 14 October 2003) ABSTRACT A comprehensive analysis of freezing rain, freezing drizzle, and ice pellets was conducted using data from surface observations across the United States and Canada. This study complements other studies of freezing precipitation in the United States and Canada, and provides additional information about the temporal charac- teristics of the distribution. In particular, it was found that during this period 1) spatial variability in the annual frequency of freezing precipitation and ice pellets is large across the United States and Canada, and these precipitation types occur most frequently across the central and eastern portions of the United States and Canada, much of Alaska, and the northern shores of Canada; 2) freezing precipitation and ice pellets occur most often from December to March, except in northern Canada and Alaska where it occurs during the warm season, as well; 3) freezing rain and freezing drizzle appear to be in¯uenced by the diurnal solar cycle; 4) freezing precipitation is often short lived; 5) most freezing rain and freezing drizzle are not mixed with other precipitation types, whereas most reports of ice pellets included other types of precipitation; 6) freezing precipitation and ice pellets occur most frequently with a surface (2 m) temperature slightly less than 08C; and 7) following most freezing rain events, the surface temperature remains at or below freezing for up to 10 h, and for up to 25 h for freezing drizzle.
    [Show full text]
  • Models and Characteristics of Freezing Rain and Freezing Drizzle for Aircraft Icing Applications
    DOT/FAA/AR-09/45 Models and Characteristics of Air Traffic Organization NextGen & Operations Planning Freezing Rain and Freezing Office of Research and Technology Development Drizzle for Aircraft Icing Washington, DC 20591 Applications Richard K. Jeck January 2010 Final Report This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.act.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-09/45 4. Title and Subtitle 5. Report Date MODELS AND CHARACTERISTICS OF FREEZING RAIN AND FREEZING January 2010 DRIZZLE FOR AIRCRAFT ICING APPLICATIONS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Richard K. Jeck 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Federal Aviation Administration William J. Hughes Technical Center Airport and Aircraft Safety R&D Group Flight Safety Team 11.
    [Show full text]
  • Changes in Ice Storm Frequency Across the United States
    [This page intentionally left blank.] Changes in Ice Storm Frequency Across the United States Southern Climate Impacts Planning Program University of Oklahoma Carly Kovacik and Kevin Kloesel June 2014 Suggested Citation: Kovacik, C., and K. Kloesel, 2014: Changes in Ice Storm Frequency Across the United States. Southern Climate Impacts Planning Program, 21 pp. [Available online at http://www.southernclimate.org/publications/ Ice_Storm_Frequency.pdf]. Changes in Ice Storm Frequency Across the United States Carly Kovacik Winter weather has a pronounced impact on both life and property across the United States. Numerous studies have been conducted on these types of events to better understand their meteorological features and associated hazards to improve short-term forecast ability. A majority of these studies have focused on severe snowstorm and blizzard events, however, mixed precipitation events and ice storms are also of great hazard. Ice storms are dangerous and destructive winter weather events. Freezing rain and freezing drizzle can produce hazardous environmental conditions with significant societal impacts that may last from several days to several weeks. Industries that are most affected by these events include power, transportation, aviation, insurance, and public safety. Minor glaze accumulations typically result in pedestrian and traffic accidents, while severe ice accumulations lead to power outages, property damage, closings of ground and air transportation, and physical injury. Such harsh impacts warrant further research on this topic to improve short-term weather forecasting, to understand changes in frequency and impacts over time, and to improve public awareness. Freezing Rain Development: Melting process: The atmospheric characteristics of ice storms are complex and complicated to forecast, as freezing rain often forms in narrow bands contained within a broader region of precipitation.
    [Show full text]