Review Questions Water
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Hydrogen Bond Assisted Adhesion in Portland Cement-Based Materials
136 Cerâmica 57 (2011) 136-139 Hydrogen bond assisted adhesion in Portland cement-based materials (Adesão assistida por ligação de hidrogênio em materiais à base de cimento Portland) H. L. Rossetto1,2, V. C. Pandolfelli1 1Departamento de Engenharia de Materiais - DEMa, Universidade Federal de S. Carlos - UFSCar, Rod. Washington Luiz, km 235, S. Carlos, SP 13565-590 2Instituto de Física de S. Carlos, Universidade de S. Paulo - IFSC-USP, Av. Trabalhador São-Carlense 400, S. Carlos, SP 13566-590 [email protected] Abstract Adhesion is a physical-chemical parameter able to render innovations to Portland cement-based materials. However, this concept still lacks experimental evidence to underlie further developments in this subject. This work has demonstrated how distinct substances can impart different adhesion forces after evaluating the hydration degree and the mechanical strength of non-reactive cementitious materials. The substances capable of making tridimensional hydrogen bonds, such as water, for instance, were the most effective in providing cementitious samples with improved bending strength. It implies that water is not only important because of its role in cement hydration, but also because it develops adhesion between hydrated cementitious surfaces. More than speculating the fundamental understanding on adhesion in Portland cement-based materials, the present paper intends to stimulate thinking on how to take the benefits of the water confined between the hydrated cementitious surfaces as an in-built nanoadhesive, so far little explored, but at the same time so prone to yield high performance materials. Keywords: adhesion, hydrogen bond, mechanical properties, Portland cement. Resumo Adesão é um parâmetro físico-químico que pode promover inovações em materiais à base de cimento Portland. -
UNIVERSITY of CALIFORNIA, IRVINE Kinetic Studies Of
UNIVERSITY OF CALIFORNIA, IRVINE Kinetic Studies of Multivalent Nanoparticle Adhesion DISSERTATION submitted in partial satisfaction of the requirements for the deGree of DOCTOR OF PHILOSOPHY in Biomedical EnGineerinG by MinGqiu WanG Dissertation Committee: Assistant Professor Jered Haun, Chair Associate Professor Jun Allard Professor YounG Jik Kwon 2018 © 2018 MinGqiu WanG DEDICATION To my parents, for their unconditional love and support. ii TABLE OF CONTENTS DEDICATION.......................................................................................................................... II TABLE OF CONTENTS........................................................................................................ III LIST OF FIGURES .................................................................................................................. V LIST OF TABLES ................................................................................................................. VII ACKNOWLEDGMENTS ..................................................................................................... VIII CURRICULUM VITAE ........................................................................................................... X ABSTRACT OF THE DISSERTATION ............................................................................... XI 1. INTRODUCTION ........................................................................................................... 1 1.1. TARGET NANOPARTICLE ADHESION ............................................................................................ -
Adhesion and Cohesion
Hindawi Publishing Corporation International Journal of Dentistry Volume 2012, Article ID 951324, 8 pages doi:10.1155/2012/951324 Review Article Adhesion and Cohesion J. Anthony von Fraunhofer School of Dentistry, University of Maryland, Baltimore, MD 21201, USA Correspondence should be addressed to J. Anthony von Fraunhofer, [email protected] Received 18 October 2011; Accepted 14 November 2011 Academic Editor: Cornelis H. Pameijer Copyright © 2012 J. Anthony von Fraunhofer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its impor- tance with regard to adhesive dentistry and bonding to enamel and dentin is discussed. 1. Introduction molecular attraction by which the particles of a body are uni- ted throughout the mass. In other words, adhesion is any at- Every clinician has experienced the failure of a restoration, be traction process between dissimilar molecular species, which it loosening of a crown, loss of an anterior Class V restora- have been brought into direct contact such that the adhesive tion, or leakage of a composite restoration. -
Unique Properties of Water!
Name: _______ANSWER KEY_______________ Class: _____ Date: _______________ Unique Properties of Water! Word Bank: Adhesion Evaporation Polar Surface tension Cohesion Freezing Positive Universal solvent Condensation Melting Sublimation Dissolve Negative 1. The electrons are not shared equally between the hydrogen and oxygen atoms of water creating a Polar molecule. 2. The polarity of water allows it to dissolve most substances. Because of this it is referred to as the universal solvent 3. Water molecules stick to other water molecules. This property is called cohesion. 4. Hydrogen bonds form between adjacent water molecules because the positive charged hydrogen end of one water molecule attracts the negative charged oxygen end of another water molecule. 5. Water molecules stick to other materials due to its polar nature. This property is called adhesion. 6. Hydrogen bonds hold water molecules closely together which causes water to have high surface tension. This is why water tends to clump together to form drops rather than spread out into a thin film. 7. Condensation is when water changes from a gas to a liquid. 8. Sublimation is when water changes from a solid directly to a gas. 9. Freezing is when water changes from a liquid to a solid. 10. Melting is when water changes from a solid to a liquid. 11. Evaporation is when water changes from a liquid to a gas. 12. Why does ice float? Water expands as it freezes, so it is LESS DENSE AS A SOLID. 13. What property refers to water molecules resembling magnets? How are these alike? Polar bonds create positive and negative ends of the molecule. -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
Hydraulics Manual Glossary G - 3
Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B. -
Glossary of Terms
Glossary of English/Spanish Superfund & WQARF Terms (Note: You may access the bookmark menu at the left to navigate this document more efficiently.) Any ADEQ translation or communication in a language other than English is unofficial and not binding on the State of Arizona. Cualquier traducción o comunicado de ADEQ en un idioma diferente al inglés no es oficial y no sujetará al Estado de Arizona a ninguna obligación jurídica. A Absorption: The passage of one substance into or through another. Absorción: Absorción es el paso de una sustancia a través de otra. Acre-foot: A quantity or volume of water covering one acre to a depth of one foot; equal to 43,560 cubic feet or 325,851 gallons. Acre-pie: Una cantidad o volumen de agua que cubre un acre a una profundidad de un pie; es un equivalente a 43.560 pies cúbicos o 325.851 galones. Activated Carbon: Adsorptive particles or granules of carbon usually obtained by heating carbon (such as wood). These particles or granules have a high capacity to selectively remove certain trace and soluble materials from water. Carbono Activo: Partículas or gránulos de carbono que se obtienen generalmente por medio del calentamiento de carbono (como la madera). Estas partículas o gránulos tienen una alta capacidad de eliminar selectivamente ciertos rastros y materiales solubles del agua. Acute: Occurring over a short period of time; used to describe brief exposures and effects which appear promptly after exposure. Grave: Ocurre durante corto tiempo; se usa para describir breves exposiciones y los efectos que aparecen rapidamente después de una sola exposición. -
Periodic Table of the Elements Notes
Periodic Table of the Elements Notes Arrangement of the known elements based on atomic number and chemical and physical properties. Divided into three basic categories: Metals (left side of the table) Nonmetals (right side of the table) Metalloids (touching the zig zag line) Basic Organization by: Atomic structure Atomic number Chemical and Physical Properties Uses of the Periodic Table Useful in predicting: chemical behavior of the elements trends properties of the elements Atomic Structure Review: Atoms are made of protons, electrons, and neutrons. Elements are atoms of only one type. Elements are identified by the atomic number (# of protons in nucleus). Energy Levels Review: Electrons are arranged in a region around the nucleus called an electron cloud. Energy levels are located within the cloud. At least 1 energy level and as many as 7 energy levels exist in atoms Energy Levels & Valence Electrons Energy levels hold a specific amount of electrons: 1st level = up to 2 2nd level = up to 8 3rd level = up to 8 (first 18 elements only) The electrons in the outermost level are called valence electrons. Determine reactivity - how elements will react with others to form compounds Outermost level does not usually fill completely with electrons Using the Table to Identify Valence Electrons Elements are grouped into vertical columns because they have similar properties. These are called groups or families. Groups are numbered 1-18. Group numbers can help you determine the number of valence electrons: Group 1 has 1 valence electron. Group 2 has 2 valence electrons. Groups 3–12 are transition metals and have 1 or 2 valence electrons. -
Using Xenon-133 and a Scintillation Camera to Evaluate Pulmonary Function
USING XENON-133 AND A SCINTILLATION CAMERA TO EVALUATE PULMONARY FUNCTION Merle K. Loken and Hugh D. Westgate University of Minnesota Hospitals, Minneapolis, Minnesota During the past several years considerable atten monary-function laboratory (6—9). Thus because of tion has been given to evaluating pulmonary disease their universal availability, the noble gases are being using radioisotopic techniques. The majority of the used more extensively, and, of these gases, ‘33Xehas radioactive preparations used for these studies can the best physical characteristics (5, 10—13). be divided into two general categories : colloidal In this paper we report our preliminary experience aggregates of albumin and radioactive gases. Macro using an Anger scintillation camera to record pul aggregates labeled with 1311or 99@'Tchave been used monary uptake and clearance of ‘33Xein patients extensivelyfor determining regional pulmonary per referred to our service for pulmonary-function evalu fusion and, as such, are useful for evaluating patients ation. The radioactive xenon was administered either with suspected pulmonary emboli (1—5). The dis by inhalation or intravenous injection. tribution of these macroaggregates in the lung is usually determined by conventional rectilinear scan MATERIALS AND METHODS ning although the scintillation camera has also been We obtain 133Xe in 1-curie ampules at approxi used effectively (4,5). mately biweekly intervals from Oak Ridge National To obtain information on ventilation and diffusion Laboratory. The gas is contained in a volume of one of the radioactive gases—oxygen, carbon dioxide, about 5 cc at a pressure of about 10 mmHg (Fig. 1). krypton or xenon—must be used. -
The Oxygen and Carbon Dioxide Compensation Points of C3
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 11230-11233, November 1995 Plant Biology The oxygen and carbon dioxide compensation points of C3 plants: Possible role in regulating atmospheric oxygen (photosynthetic carbon/02 inhibition/photorespiration/Nicotiana tobacum/Spinacea oleracea) N. E. TOLBERT*, C. BENKERt, AND E. BECKt *Department of Biochemistry, Michigan State University, East Lansing, MI 48824; and tLehrstuhl Fur Pflanzenphysiologie, Universitat Bayreuth, 95440 Bayreuth, Germany Contributed by N. E. Tolbert, August 15, 1995 ABSTRACT The 02 and CO2 compensation points (02 F bisphosphate to sustain the C2 cycle. Refixation of CO2 and C02 F) of plants in a closed system depend on the ratio of generates the same amount of 02 as taken up during the C2 CO2 and 02 concentrations in air and in the chloroplast and cycle. There is no net CO2 and 02 gas exchange during the specificities of ribulose bisphosphate carboxylase/oxyge- photorespiration (11) unless the complete C2 cycle is blocked nase (Rubisco). The photosynthetic 02 F is defined as the or metabolically interrupted by accumulation or removal of atmospheric 02 level, with a given CO2 level and temperature, products such as glycine or serine. Photorespiration dissipates at which net 02 exchange is zero. In experiments with C3 excess photosynthetic capacity (ATP and NADPH) without plants, the 02 F with 220 ppm CO2 is 23% 02; 02 F increases CO2 reduction or net 02 change. Photosynthetic carbon me- to 27% with 350 ppm CO2 and to 35% 02 with 700 ppm CO2. tabolism is a competition between CO2 and 02 for the dual At 02 levels below the 02 F, C02 uptake and reduction are activities of Rubisco, based on the ratio of CO2 and 02 accompanied by net 02 evolution. -
Surface Modification of Polytetrafluoroethylene (PTFE) with Vacuum UV Radiation from Helium Microwave Plasma to Enhance the Adhesion of Sputtered Copper Xiaolu Liao
Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2004 Surface modification of polytetrafluoroethylene (PTFE) with Vacuum UV radiation from helium microwave plasma to enhance the adhesion of sputtered copper Xiaolu Liao Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Liao, Xiaolu, "Surface modification of polytetrafluoroethylene (PTFE) with Vacuum UV radiation from helium microwave plasma to enhance the adhesion of sputtered copper" (2004). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. SURFACE MODIFICATION OF POLYTETRAFLUOROETHYLENE (PTFE) WITH VACUUM UV RADIATION FROM HELIUM MICROWAVE PLASMA TO ENHANCE THE ADHESION OF SPUTTERED COPPER Xiaolu Liao Thesis SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF CHEMISTRY ROCHESTER INSTITUTE OF THE TECHNOLOGY ROCHESTER, NEW YORK March, 2004 SURFACE MODIFICATION OF POL YTETRAFLUOROETHYLENE (PTFE) WITH VACUUM UV RADIATION FROM HELIUM MICROWAVE PLASMA TO ENHANCE THE ADHESION OF SPUTIERED COPPER XIAOLU LlAO March,2004 Approved: Gerald A. Takacs Thesis Advisor T. C. Morrill Department Head COPYRIGHT STATEMENT Title of Thesis: SURFACE MODIFICATION OF POLYTETRAFLUOROETHYLENE (PTFE) WITH VACUUM UV RADIATION FROM HELIUM MICROWAVE PLASMA TO ENHANCE THE ADHESION OF SPUTTERED COPPER I, Xiaolu Liao, hereby grants permission to the Wallace Memorial Library, of Rochester Institute of Technology, to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit.