Vocabulaire D'optique Vocabulaire D'optique Version 1.0 (Dernière Mise À Jour : 2019-03-30)

Total Page:16

File Type:pdf, Size:1020Kb

Vocabulaire D'optique Vocabulaire D'optique Version 1.0 (Dernière Mise À Jour : 2019-03-30) - Institut de l'information scientifique et technique - Vocabulaire d'optique Vocabulaire d'optique Version 1.0 (dernière mise à jour : 2019-03-30) Vocabulaire utilisé pour l’indexation des références bibliographiques de la base de données PASCAL jusqu’en 2014, dans le domaine de l'optique. Des versions de cette ressource en anglais, espagnol et allemand sont également disponibles. La ressource est en ligne sur le portail terminologique Loterre : https://www.loterre.fr Légende • Syn : Synonyme. • → : Renvoi vers le terme préférentiel. • EN : Préférentiel anglais. • ES : Préférentiel espagnol. • DE : Préférentiel allemand. • TS : Terme spécifique. • TG : Terme générique. • TA : Terme associé. • URI : URI du concept (cliquer pour le voir en ligne). Cette ressource est diffusée sous licence Creative Commons Attribution 4.0 International : TABLE DES MATIÈRES Index alphabétique 4 Entrées terminologiques 5 Liste des entrées 240 Index alphabétique de aberration chromatique à axicon p. 7 -22 de balayage en Z à bruit quantique p. 23 -26 de calcul bidimensionnel à cytométrie en flux p. 27 -49 de décharge capillaire à dynamique spatio-temporelle p. 50 -65 de EBIC à extensométrie p. 66 -80 de fabrication à fusion superficielle p. 81 -91 de gain optique à gyrotron p. 92 -97 de halogénure à hyperpolarisabilité électrique p. 98 -101 de illusion de Müller-Lyer à isotope du carbone p. 102 -112 de jauge de contrainte à jonction supraconductrice p. 113 -113 de KGW à krypton p. 114 -114 de L-alanine à luminescence p. 129 -130 de macroparticule à myopie p. 131 -154 de nano-aimant à nuage sombre p. 155 -158 de objet de phase à ozone p. 159 -165 de paire de photons à pyrométrie p. 174 -182 de qualité d'image à quasicristal p. 183 -183 de radar à rutile p. 184 -197 de saturation d'absorption à système visuel p. 198 -219 de Ta2O5 à turbulence optique p. 220 -229 de ultra-réfraction à usinage laser p. 230 -230 de valeur propre à Vycor p. 231 -235 de waxicon à waxicon p. 236 -236 de xénon à xérographie p. 237 -237 de zéolite à zoom p. 239 -239 Vocabulaire d'optique | 4 Entrées terminologiques Vocabulaire d'optique | 5 ( (Al,In)As → arséniure d'aluminium indium (Ga,Mn)As → arséniure de gallium manganèse 6 | Vocabulaire d'optique ABSORPTION DES ONDES ÉLECTROMAGNÉTIQUES ablation laser Syn : · ablation au laser A · ablation par laser TG : technique optique EN : laser ablation aberration chromatique ES : ablación láser TG : aberration optique DE : Laserablation URI : http://data.loterre.fr/ark:/67375/FMC-HL693RZ8-H EN : chromatic aberration ES : aberración cromática DE : chromatische Aberration ablation par laser URI : http://data.loterre.fr/ark:/67375/FMC-C53LQLFT-C → ablation laser aberration d'ouverture absorbant saturable → aberration sphérique Syn : absorbeur saturable TG : matériau non linéaire aberration de sphéricité EN : saturable absorber → aberration sphérique ES : absorbente saturable DE : sättigbarer Absorber URI : http://data.loterre.fr/ark:/67375/FMC-C0KPGDP8-M aberration géométrique Syn : aberration monochromatique absorbeur saturable TG : aberration optique → absorbant saturable TS : · aberration sphérique · astigmatisme · courbure de champ absorption à 2 photons · distorsion → absorption à deux photons EN : monochromatic aberration ES : aberracion geométrica DE : monochromatische Aberration absorption à deux photons URI : http://data.loterre.fr/ark:/67375/FMC-HPHNZPHR-Q Syn : · absorption à 2 photons · absorption biphotonique aberration monochromatique · absorption de 2 photons TG : absorption non linéaire → aberration géométrique EN : two-photon absorption ES : absorción de dos fotones aberration optique DE : zwei-Photonen-Absorption URI : http://data.loterre.fr/ark:/67375/FMC-QT6M435F-F TG : phénomène optique TS : · aberration chromatique · aberration géométrique absorption à trois photons EN : optical aberration TG : absorption non linéaire ES : aberración óptica EN : three-photon absorption DE : Abbildungsfehler ES : absorción de tres fotones URI : http://data.loterre.fr/ark:/67375/FMC-WBNCFQBB-L DE : drei-Photonen-Absorption URI : http://data.loterre.fr/ark:/67375/FMC-FG7SDKHW-C aberration sphérique Syn : · aberration de sphéricité absorption biphotonique · aberration d'ouverture → absorption à deux photons TG : aberration géométrique EN : spherical aberration ES : aberración esférica absorption de 2 photons DE : sphärische Aberration → absorption à deux photons URI : http://data.loterre.fr/ark:/67375/FMC-B2PV10RP-5 absorption des ondes électromagnétiques ablation au laser Syn : absorption électromagnétique → ablation laser TG : phénomène optique EN : electromagnetic wave absorption ES : absorción de ondas electromagnéticas DE : absorption von elektromagnetischen Wellen URI : http://data.loterre.fr/ark:/67375/FMC-HJM47QRD-4 Vocabulaire d'optique | 7 ABSORPTION DIFFÉRENTIELLE absorption différentielle absorption saturable inverse TG : phénomène optique TG : · absorption non linéaire EN : differential absorption · absorption saturable ES : absorción diferencial EN : reverse saturable absorption DE : differentielle Absorption ES : absorción saturable inversa URI : http://data.loterre.fr/ark:/67375/FMC-RPJP8L5K-6 DE : umgekehrt sättigbare Absorption URI : http://data.loterre.fr/ark:/67375/FMC-TWTR77XH-9 absorption électromagnétique → absorption des ondes électromagnétiques accélérateur linéaire EN : linear accelerator ES : acelerador lineal absorption électromagnétiquement induite DE : Linearbeschleuniger TG : effet non linéaire URI : http://data.loterre.fr/ark:/67375/FMC-N65LJMVH-H EN : electromagnetically induced absorption ES : absorción inducida electromagnéticamente DE : elektromagnetisch induzierte Absorption accélération de particule URI : http://data.loterre.fr/ark:/67375/FMC-QGPPS4NN-C EN : particle acceleration ES : aceleración de partículas DE : Teilchen beschleunigen absorption multiphotonique URI : http://data.loterre.fr/ark:/67375/FMC-Q2FPTF6G-V TG : absorption non linéaire EN : multiphoton absorption ES : absorción multifotónica accéléromètre DE : Multiphotonenabsorption TG : dispositif de mesure URI : http://data.loterre.fr/ark:/67375/FMC-FP5R6VLR-X EN : accelerometer ES : acelerómetro DE : Beschleunigungssensor absorption non linéaire URI : http://data.loterre.fr/ark:/67375/FMC-G59PP035-1 TG : effet non linéaire TS : · absorption à deux photons · absorption à trois photons accès multiple par répartition en code · absorption multiphotonique EN : code division multiple access · absorption par état excité ES : acceso múltiple división código · absorption saturable DE : Kodeteilmehrfachzugriff · absorption saturable inverse URI : http://data.loterre.fr/ark:/67375/FMC-XDTS9DSV-V EN : nonlinear absorption ES : absorción no lineal accord de phase DE : nichtlineare Absorption URI : http://data.loterre.fr/ark:/67375/FMC-VNKXVGTC-J TG : propriété optique EN : phase matching ES : ajuste de fase absorption optique saturable DE : Phasenanpassung → absorption saturable URI : http://data.loterre.fr/ark:/67375/FMC-QP9MZL8L-N absorption par état excité achromatisme TG : absorption non linéaire EN : achromatism EN : excited-state absorption ES : acromatismo ES : absorción en estado excitado DE : Achromatismus URI : http://data.loterre.fr/ark:/67375/FMC-D2VKB6MV-M DE : Absorption aus angeregten Zustanden URI : http://data.loterre.fr/ark:/67375/FMC-RDTJXW7G-M absorption saturable Syn : absorption optique saturable TG : absorption non linéaire TS : absorption saturable inverse EN : saturable absorption ES : absorción saturable DE : sättigbare Absorption URI : http://data.loterre.fr/ark:/67375/FMC-H4FBD1JP-X 8 | Vocabulaire d'optique ACTIONNEUR acier acier inoxydable TG : matériau métallique TG : acier TS : · acier allié TS : acier inoxydable austénitique · acier austénitique EN : stainless steel · acier faiblement allié ES : acero inoxidable · acier galvanisé DE : Edelstahl · acier inoxydable URI : http://data.loterre.fr/ark:/67375/FMC-BXNP70W0-G · acier liquide · acier non allié acier inoxydable austénitique · acier rapide EN : steel TG : acier inoxydable ES : acero EN : austenitic stainless steel DE : Stahl ES : acero inoxidable austenitico URI : http://data.loterre.fr/ark:/67375/FMC-QFGB29PG-3 DE : rostfreiem Austenit-Stahl URI : http://data.loterre.fr/ark:/67375/FMC-SFF2M7TR-R acier à outil rapide acier liquide → acier rapide TG : acier EN : molten steel acier allié ES : acero líquido TG : acier DE : flüssiger Stahl EN : alloy steel URI : http://data.loterre.fr/ark:/67375/FMC-BFMTZ20X-4 ES : acero aleado DE : Legierungsstahl acier non allié URI : http://data.loterre.fr/ark:/67375/FMC-V87197NC-Q Syn : · acier carbone · acier au carbone acier au carbone · acier doux → acier non allié TG : acier EN : carbon steel ES : acero sin alear acier austénitique DE : unlegierter Stahl TG : acier URI : http://data.loterre.fr/ark:/67375/FMC-FR9LCFCK-S EN : austenitic steel ES : acero austenítico acier rapide DE : austenitischer Stahl URI : http://data.loterre.fr/ark:/67375/FMC-JG0SJFJL-G Syn : acier à outil rapide TG : acier EN : high speed tool steel acier carbone ES : acero rápido → acier non allié DE : Schnellstahl URI : http://data.loterre.fr/ark:/67375/FMC-B4X8JZBC-6 acier doux → acier non allié acrylamide TG : composé chimique EN : acrylamide acier faiblement allié ES : acrilamida TG : acier DE : Acrylamid EN : low alloy steel URI : http://data.loterre.fr/ark:/67375/FMC-Q7SPNPVH-0 ES : acero ligeramente aliado DE : niedrig legiertem Stahl actionneur URI : http://data.loterre.fr/ark:/67375/FMC-DSG3NSGK-Q EN : actuator ES : accionador acier
Recommended publications
  • Second Nasa Conference on Laser Energy Conversion
    NASA SP-395 SECOND NASA CONFERENCE ON LASER ENERGY CONVERSION (NASA-SP-395) SECOND NASA CONFERENCE ON N76-21505 LASEB ENERGY CONVERSION (NASA) 196 p HC THRU CSCL 20E N76-2152U- Unclas H1/36 24950 A conference held at NASA AMES RESEARCH CENfER Moffett Field, California January 27-28, 1975 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION REPRODUCED BY *irfiffn'"' *" "IJ*<^ U-S. DEPARTMENT OF COMMERCE NATIONAL TECHN.CAT ERCE INFORMATION SERVICE SPRINGRELD. VA 22161 NASA SP-395 SECOND NASA CONFERENCE ON LASER ENERGY CONVERSION Proceedings of a conference held at the NASA Ames Research Center, Moffett Field, California, on January 27—28, 1975 Edited by Kenneth W. Billman Scientific and Technical Information Office 1976 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. For sale by the National Technical Information Service Springfield, Virginia 22161 Price - $7.00 PREFACE Approximately 75 scientists gathered at Ames Research Center, NASA, Moffett Field, California on 27-28 January 1975 to attend the 2nd NASA Conference on Laser Energy Conversion. They heard the presentations of 18 technical papers and participated enthusiastically in « the discussions that followed. It was generally agreed, and evidenced by comments made during the final summary discussion, that they were both informed and stimulated by the results of initial studies and developments made in certain converter areas, by the advances made in ancillary devices and techniques, and by the possibilities of the more speculative approaches to this newly developing area of advanced technology. Why hold a laser energy conversion conference? To answer this we must first answer another question: why is NASA interested in laser power transmission? Quite simply because it may _ ultimately allow space missions which would be impossible by other means.
    [Show full text]
  • Laser Precision Microprocessing of Materials
    Laser Precision Microprocessing of Materials Laser Precision Microprocessing of Materials A.G. Grigor’yants M.A. Kazaryan N.A. Lyabin Translated from Russian by V.E. Riecansky CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by CISP CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-138-59454-8 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
    [Show full text]
  • Laser Applications to Medicine and Biology
    BASIC PRINCIPLES OF MEDICAL LASERS leactur 7 Dr.khitam Y. Elwasife special Topics 2019-2020 Layout Fundamentals of Laser • Introduction– Properties of Laser Light– Basic Components of Laser– Basic laser operation– Types of Lasers– Laser Applications Principles – of Medical Lasers Types of Medical Lasers– Laser: Medical Applications– Laser: Surgery and Diagnostics– Laser Hazards– Laser Safety– LASER STAND FOR LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION Introduction LASER Light Amplification by Stimulated Emission of Radiation. •An optical source that emits photons in a coherent beam. •optical lasers, a device which produces any particles or electromagnetic radiations in a coherent state is called “Laser”, e.g., Atom Laser. •In most cases “laser” refers to a source of coherent photons i.e., light or other electromagnetic radiations. It is not limited to photons in the visible spectrum. There are 3 x-ray lasers, infrared lasers, UV lasers etc. Properties of Laser Light • The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light is a combination of many colors • Lasers emit light that is highly directional, that is, laser light is emitted as a relatively narrow beam in a specific direction. Ordinary light, such as from a light bulb, is emitted in many directions away from the source. • The light from a laser is said to be coherent, which means that the wavelengths of the laser light are in phase in space and time. Ordinary light can be a mixture of many wavelengths. Ordinary Light vs. Laser Light Ordinar Laser y Light Light Basic Concepts: Laser is a narrow beam of light of a single wavelength (monochromatic) in which each wave is in phase (coherent) with other near it.
    [Show full text]
  • Blackbody Radiation and Optical Sources
    01/03/2021 Blackbody Radiation and Optical Sources Optical Engineering Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Prof. Elias N. Glytsis, School of ECE, NTUA 2 Wave-Particle Duality of Light De Broglie (1924): λ = h / p, h = 6.62607015 × 10-34 J sec, p = momentum (exact according to NIST 2018-2019) Φορτίο Ηλεκτρονίου: e = 1.602176634 × 10-19 Coulombs (exact according to NIST 2018-2019) Photons (zero rest mass) Particles (non-zero rest mass) https://physics.nist.gov/cgi-bin/cuu/Category?view=pdf&All+values.x=71&All+values.y=12 Prof. Elias N. Glytsis, School of ECE, NTUA 3 Light Sources Incoherent Light Sources Incandescent Sources Blackbody Radiators Discharge Lamps Line (Spectral) Sources) High-Intensity Sources Fluorescent Lamps Light Emitting Diodes (LED) Coherent Light Sources LASERS (Light Amplification via Stimulated Emission of Radiation) Prof. Elias N. Glytsis, School of ECE, NTUA 4 Blackbody Radiation https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_C hemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.01%3A_Blackbody_Radiation_Can not_Be_Explained_Classically Prof. Elias N. Glytsis, School of ECE, NTUA 5 Blackbody Radiation Prof. Elias N. Glytsis, School of ECE, NTUA 6 Electromagnetic Cavity Modes TEmpq Modes From Maxwell’s equations Electromagnetic Knowledge z a d TMmpq Modes y b x Dispersion Relation Prof. Elias N. Glytsis, School of ECE, NTUA 7 Blackbody Radiation 2ν q nd z c a R(ν) 1 1 2ν nb 1 c d p y 2ν b na x c m Density of Electromagnetic Modes per Frequency: Prof. Elias N. Glytsis, School of ECE, NTUA 8 Blackbody Radiation From Boltzmann’s statistics (energy of an em mode between E and E+dE): Normalization Average Energy per Electromagnetic Mode: Rayleigh-Jeans Equation Prof.
    [Show full text]
  • Surface Analysis Correlated with Structural and Mechanical Properties of Laser Irradiated Brass
    Materials Sciences and Applications, 2015, 6, 23-32 Published Online January 2015 in SciRes. http://www.scirp.org/journal/msa http://dx.doi.org/10.4236/msa.2015.61004 Surface Analysis Correlated with Structural and Mechanical Properties of Laser Irradiated Brass Shahbaz Ahmad*, Shazia Bashir, Daniel Yousaf, Nisar Ali, Tousif Hussain Center for Advanced Studies in Physics, Government College University, Lahore, Pakistan Email: *[email protected] Received 17 October 2014; revised 10 November 2014; accepted 8 December 2014 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Brass targets were irradiated with various laser pulses of Excimer laser ranging from 1200 to 3000 for constant fluence of 3.4 J/cm2 in oxygen atmosphere (100 Torr). The surface morphology and crystallographic analyses were performed by using Scanning Electron Microscope (SEM) and X-Ray Diffractometer (XRD). SEM analysis reveals the formation of laser-induced micro-sized cavi- ties, bumps, cones and wave-like ridges with non-uniform shape and density distribution. These features are formed for all number of pulses; however with increasing number of pulses from 1200 to 2400, the density of cavities decreases whereas, the wave-like ridges become more pro- nounced and bump-formation is vanished. For maximum number of 3000 shots, the appearance of cones and wave-like ridges becomes diffusive, whereas the density and size of cavities increase again. XRD analysis demonstrates that no new phases are formed in irradiated brass. However, the change in peak intensity along with lower and higher angle shifting is observed which is at- tributed to generation of laser induced stresses.
    [Show full text]
  • Copper Vapor Laser Drilling of Copper, Iron, and Titanium Foils In
    Copper vapor laser drilling of copper, iron,, and titanium foils In atmospheric pressure air and argon J. S. Lash and R. M. Gilgenbach fntense Energy Beam Interaction Laboratory, Nucieat Engineering Departmerzr. The University of Michigan, Ann Arbor, Michigan 48109-2104 (Received 19 March 1993; acceptedfor publication 27 July 1993) A copper vapor laser (5 11 and 578 nm) is used to drill submillimeter diameter holes in 0.025- 0.127 mm thick foils of copper, iron, and titanium. Foils are machined in atmospheric pressure air and argon. The laser is repetitively pulsed at 10 kHz with a per pulse energyof 0.5 mJ giving an averagepower of 5 W at the sample surface for a pulse width of 40 ns. A p-i-n photodiode and a photomultiplier tube detector are connectedto a digital-display timing circuit that records the number of incident laser pulses used to drill through the sample. The number of pulses is converted to an averagedrilling time and can provide an estimate for the averagelaser energy used to drill the hole. Typical data for all three materials with a per-pulse fluence of 0.7 J/cm2 ranged from 0.1 to 500 s to produce holes of -0.3 mm diameter. Drilling times decreasedin some casesby an order of magnitude when machining in air. This is attributed to the increased laser absorption of the metal-oxide layer formed in air and was especially noticeable with titanium. A continuous wave thermal model is used to compare experimental data as well as verify the thermal machining mechanism.
    [Show full text]
  • ∑ on the Delay Time of the Total Signal from a Set of Transmitters
    Technical Physics, Vol. 50, No. 1, 2005, pp. 1–10. Translated from Zhurnal TekhnicheskoÏ Fiziki, Vol. 75, No. 1, 2005, pp. 3–13. Original Russian Text Copyright © 2005 by Bukhman. THEORETICAL AND MATHEMATICAL PHYSICS On the Delay Time of the Total Signal from a Set of Transmitters N. S. Bukhman Samara State Academy of Architecture and Civil Engineering, 443001 Samara, Russia e-mail: [email protected] Received April 15, 2004 Abstract—The time dependence of the total signal from a group of closely spaced acoustic or electromagnetic transmitters radiating the same (up to an amplitude factor) signals is considered. If the duration of the partial signal is sufficiently long, the time dependence of the signal from the set of transmitters turns out to be close to that of the signal from a single transmitter up to a delay time. This delay does not necessarily coincide with the time it takes for an optical (or acoustic) signal to pass from the transmitters to the observation point. At different points of the space, this delay time may exceed, or be shorter than, the light (sound) delay time and also may be positive or negative. This follows from the backward or forward extrapolation of the time dependence of the signal when variously delayed and attenuated copies of the same signal that are produced by different transmit- ters are added up (i.e., interfere). One result of such an extrapolation, which arises upon transmitting a signal with its leading or trailing edge cut off, is the reconstruction of its time dependence, i.e., the detection of the nontransmitted part of the signal.
    [Show full text]
  • Optics Terminology Resource Optics Terminology Resource Version 1.0 (Last Updated: 2019-03-30)
    - Institute for scientific and technical information - Optics terminology resource Optics terminology resource Version 1.0 (Last updated: 2019-03-30) Terminology resource used for indexing bibliographical records dealing with “Optics” in the PASCAL database, until 2014. French, Spanish and German versions of this vocabulary are also available. This vocabulary is browsable online at: https://www.loterre.fr Legend • Syn: Synonym. • → : Corresponding Preferred Term. • FR: French Preferred Term. • ES: Spanish Preferred Term. • DE: German Preferred Term. • NT: Narrower Term. • BT: Broader Term. • RT: Related Term. • URI: Concept's URI (link to the online view). This resource is licensed under a Creative Commons Attribution 4.0 International license: TABLE OF CONTENTS Alphabetical Index 4 Terminological entries 5 List of entries 243 Alphabetical index from 1/f noise to 1/f noise p. 7 -7 from 2R signal regeneration to 2R signal regeneration p. 8 -8 from 3R signal regeneration to 3R signal regeneration p. 9 -9 from ABCD matrix to azo dye p. 10 -22 from backlighting to Butterworth filter p. 26 -30 from cadmium alloy to Czochralski method p. 36 -46 from dark cloud to dysprosium barium cuprate p. 50 -55 from EBIC to eye tracking p. 59 -66 from F2 laser to fuzzy logic p. 70 -76 from g-factor to gyrotron p. 78 -83 from H-like ion to hysteresis loop p. 87 -90 from ice to IV-VI semiconductor p. 99 -100 from Jahn-Teller effect to Josephson junction p. 101 -101 from Kagomé lattice to Kurtosis parameter p. 102 -103 from lab-on-a-chip to Lyot filter p.
    [Show full text]
  • Characterization of High-End State-Of-Art Copper Bromide Lasers
    BULGARIAN ACADEMY OF SCIENCES INSTITUTE OF SOLID STATE PHYSICS “ACAD. GEORGI NADJAKOV” Dimo N. Astadjov High-End State-of-Art Copper Bromide Vapor Lasers: Optical, Electric and Thermal Properties Research and development of copper bromide vapor lasers in Laboratory of metal vapor lasers Latest 20+ years 2017 Sofia - Bulgaria٠ To my parents, Kleopatra & Nikola, This book is devoted. 2 Copper bromide vapor laser is the most successful sealed-off version of a plenty of copper vapor lasers launched, studied and produced for the last half of century. Being first reported in 1975, it became the leading and long-lasting R&D&T project followed by the Laboratory of metal vapor lasers in Institute of solid state physics of the Bulgarian Academy of Sciences ever since. This manuscript gathers major research & development results of the last studies unfolding unexplored and unknown optical, electric and thermal properties of CuBr laser held in the Laboratory of metal vapor lasers during foregoing 20+ years. Some of these new aftermaths are record-high power, efficiency and lifetime of CuBr laser; comprehensive studies of energy dissipation and dynamics of the electric field of CuBr laser; achievement of high-brightness diffraction-limited throughout-pulse emission of master-oscillator power- amplifier (MOPA) CuBr laser and high focusability of CuBr laser emission low-affected by beam profile intensity variations. Dimo Nikolov Astadjov, 2017 3 CONTENTS Preface…………………………………………………………………………………6 1. Milestones in the history of copper bromide vapor laser……………………………...8 2. Power, efficiency and lifetime of copper bromide vapor laser………………….........11 2.1. Small-bore CuBr laser with 1.4 W/cm3 average output power.............................11 2.2.
    [Show full text]
  • University of Oklahoma Graduate College
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE THEORETICAL STUDIES OF MULTI-MODE NOON STATES FOR APPLICATIONS IN QUANTUM METROLOGY AND PROPOSALS OF EXPERIMENTAL SETUPS FOR THEIR GENERATION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By LU ZHANG Norman, Oklahoma 2018 THEORETICAL STUDIES OF MULTI-MODE NOON STATES FOR APPLICATIONS IN QUANTUM METROLOGY AND PROPOSALS OF EXPERIMENTAL SETUPS FOR THEIR GENERATION A DISSERTATION APPROVED FOR THE SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING BY Dr. Kam Wai Clifford Chan, Chair Dr. Pramode Verma Dr. Alberto Marino Dr. Samuel Cheng Dr. Gregory MacDonald Dr. Robert Huck 1 c Copyright by LU ZHANG 2018 All Rights Reserved. Acknowledgements I would like to express my deepest appreciation to my committee chair Dr. Kam Wai Cliff Chan, who has been a supportive and accommodating advisor to me. For the past five years, we have been working together on multiple projects in the field of quantum metrology, in which he has valuable insight, and always provides helpful comments and suggestions. With his help, I learned time management skills to work more efficiently, how to think like a scientist, and how to become a researcher. I truly appreciate his trust in me and the financial support from him and Dr. Verma, which made it possible for me to complete my doctorate degree. I am also extremely grateful of all the other committee members, Dr. Pramode Verma, Dr. Alberto Marino, Dr. Samuel Cheng, Dr. Gregory MacDonald, and Dr. Robert Huck, for their help over the past few years and precious comments on the dissertation.
    [Show full text]
  • Quantum State Entanglement Creation, Characterization, and Application
    “When two systems, of which we know the states by their respective representatives, enter into temporary physical interaction due to known forces between them, and when after a time of mutual influence the systems separate again, then they can no longer be described in the same way as before, viz. by endowing each of them with a representative of its own. I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought. By the interaction, the two representatives (or ψ-functions) have become entangled.” —Erwin Schrödinger (1935) 52 Los Alamos Science Number 27 2002 Quantum State Entanglement Creation, characterization, and application Daniel F. V. James and Paul G. Kwiat ntanglement, a strong and tious technological goal of practical two photons is denoted |HH〉,where inherently nonclassical quantum computation. the first letter refers to Alice’s pho- Ecorrelation between two or In this article, we will describe ton and the second to Bob’s. more distinct physical systems, was what entanglement is, how we have Alice and Bob want to measure described by Erwin Schrödinger, created entangled quantum states of the polarization state of their a pioneer of quantum theory, as photon pairs, how entanglement can respective photons. To do so, each “the characteristic trait of quantum be measured, and some of its appli- uses a rotatable, linear polarizer, a mechanics.” For many years, entan- cations to quantum technologies. device that has an intrinsic trans- gled states were relegated to being mission axis for photons. For a the subject of philosophical argu- given angle φ between the photon’s ments or were used only in experi- Classical Correlation and polarization vector and the polariz- ments aimed at investigating the Quantum State Entanglement er’s transmission axis, the photon fundamental foundations of physics.
    [Show full text]
  • Received ©St«
    Laser Ablation/Ionization Characterization of Solids: Second Interim Progress Report of the Strategic Environmental Research Development Program RECEIVED DEC171M7 ©ST« • by W. P. Hess, B. A. Bushaw, M. I. McCarthy, J. A. Campbell, S. D. Colsdh Pacific Northwest National Laboratory* PO Box 999, Richland, WA 99352 and J. T. Dickinson Washington State University Department of Physics Pullman, WA 99164-2814 USA DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED dT\ •Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by B attelle under Contract No. DE-AC06-76RLO 1830. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,.completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any spe- cific commercial product, process, or service by trade name, trademark, manufac- turer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Si- TABLE OF CONTENTS I. INTRODUCTION 1 H. PROJECT DESCRIPTION 2 m. ACCOMPLISHMENTS 3 A. Laser Ablation Mass Spectrometry 12 a. Resonant Laser Ablation 13 b. Nonresonant Laser Ablation 14 c. Theoretical Studies 16 B.
    [Show full text]