Gas Lasers 1St Edition Kindle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Application of the Theory of Laser to Nitrogen Laser Pumped Dye Laser
SD9900039 AN APPLICATION OF THE THEORY OF LASER TO NITROGEN LASER PUMPED DYE LASER FATIMA AHMED OSMAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics. UNIVERSITY OF KHARTOUM FACULTY OF SCIENCE DEPARTMENT OF PHYSICS MARCH 1998 \ 3 0-44 In this thesis we gave a general discussion on lasers, reviewing some of are properties, types and applications. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw. It was noticed that the produced radiation possesses ^ characteristic^ different from those of other types of laser. This' characteristics determine^ the tunability i.e. the possibility of choosing the appropriately required wave-length of radiation for various applications. DEDICATION TO MY BELOVED PARENTS AND MY SISTER NADI A ACKNOWLEDGEMENTS I would like to express my deep gratitude to my supervisor Dr. AH El Tahir Sharaf El-Din, for his continuous support and guidance. I am also grateful to Dr. Maui Hammed Shaded, for encouragement, and advice in using the computer. Thanks also go to Ustaz Akram Yousif Ibrahim for helping me while conducting the experimental part of the thesis, and to Ustaz Abaker Ali Abdalla, for advising me in several respects. I also thank my teachers in the Physics Department, of the Faculty of Science, University of Khartoum and my colleagues and co- workers at laser laboratory whose support and encouragement me created the right atmosphere of research for me. Finally I would like to thank my brother Salah Ahmed Osman, Mr. -
HD DVD: Manufacturing Was Developed.This Recorder Is Equipped with a 257Nm Gas Laser (Frequency Doubled Ar+ Laser)
paper r& white d Six years ago, the LDM 3692 DUV recorder HD DVD: Manufacturing was developed.This recorder is equipped with a 257nm gas laser (frequency doubled Ar+ laser). All options with regards to future for- mats were still open at that time.The recorder features two recording spots, with a wobble The New Format option on both. This recorder is an adequate R&D tool to record HD DVD. BY DR. DICK VERHAART, from 740nm to 400nm. To read these smaller For HD DVD stamper manufacturing, a Singulus Mastering information structures, it is necessary to use recorder with a 266nm solid state laser was PETER KNIPS, blue diode lasers with a wavelength of 405nm developed. This system contains a stable and Singulus EMould instead of the 650nm red lasers used for CD easy to operate solid state laser, with a much DIETER WAGNER, and DVD. longer lifetime than the gas laser. As all pro- Singulus Technologies AG An advanced copy protection system will posed next-generation formats require only The third generation of optical disc formats is give better protection than what was avail- one spot, the system has a single recording set to arrive on the market by the end of this able for CD and DVD with mandatory serializ- spot. Spot deflection, required to create the year.As with Blu-ray Disc, the HD DVD format ing of each single HD DVD. The serialization groove wobble in the recordable and was developed to tremendously increase the will take place on the aluminum covered layer rewritable formats, is available as an option. -
Argon-Ion and Helium-Neon Lasers
Argon-Ion and Helium- Neon Lasers The one source for gas lasers What makes Lumentum the choice for argon-ion and helium-neon (HeNe) lasers? Whether you are involved in medical research, semiconductor manufacturing, high-speed printing, or Your Source for another demanding application, we have the expertise, commitment, and technology to ensure you get the best solution for your need. With more than 35 years of experience, we have an unmatched Successful gas laser production requires extraordinary care understanding of the gas laser market. That understanding has during the manufacturing process. Every individual throughout led us to devote extensive resources to help establish a premier, each production stage, from engineering and procurement to Gas Lasers high-volume manufacturing facility. Located in Thailand, the manufacturing and quality control, is attuned to the highly facility produces lasers of the highest standard. And we maintain sensitive nature of the applications for which these products are that standard through regional quality management, on-site used. Consequently, we can assure the steady supply of quality supplier quality engineering, and regular quality audits. products to our customers around the globe. Our products are being used in customers’ new systems and as replacement components in the large installed base of existing systems. 2 3 Key Gas Laser Applications Known for their longevity and predictable electrical and optical performance characteristics, our lasers are being used in a wide variety of applications. Medical Research University, medical, and government laboratories on the cusp of new discoveries rely on instruments designed with Lumentum argon-ion and HeNe lasers for cell mapping, genome analysis, and DNA sequencing. -
Quanta-Ray Lab-Series Pulsed Nd:YAG Lasers
Quanta-Ray Lab-Series Pulsed Nd:YAG Lasers User’s Manual 1335 Terra Bella Avenue Mountain View, CA 94043 Part Number 0000-311A, Rev. A June 2003 Preface This manual contains information you need in order to safely install, align, operate, maintain and service your Quanta-Ray Lab-Series pulsed Nd:YAG laser on a day-to-day basis. Also described is the installation and operation of the HG harmonic generator and IHS internal harmonic separator. The system comprises three main elements: the Lab-Series laser head, the power supply and a table-top controller. (The system can also be controlled remotely via the front panel RS-232 serial port.) An optional Model WA-1 heat exchanger may also be present. The “Introduction” contains a brief description of these three components and is followed by an important chapter on laser safety. The Lab-Series is a Class IV laser and, as such, emits laser radiation which can permanently damage eyes and skin, ignite fires and vaporize substances. Moreover, focused back-reflections of even a small percentage of its output energy can destroy expensive internal optical components. This section contains information about these hazards and offers suggestions on how to safe- guard against them. To minimize the risk of injury or expensive repairs, be sure to read this chapter—then carefully follow these instructions. This chapter also contains information regarding system compliance to CDRH and CE regulations. “Laser Description” contains a short section on laser theory regarding the Nd:YAG crystal rods that are used in the Lab-Series laser. Also included is a discussion of the second, third and fourth harmonic laser output gener- ated by the system. -
Experimental Results on Advanced Inertial Fusion Schemes Obtained
NUKLEONIKA 2012;57(1):3−10 ORIGINAL PAPER Experimental results Dimitri Batani, Leonida A. Gizzi, Petra Koester, Luca Labate, on advanced inertial fusion Javier Honrubia, Luca Antonelli, Alessio Morace, Luca Volpe, Jorge J. Santos, Guy Schurtz, schemes obtained Sebastien Hulin, Xavier Ribeyre, Philippe Nicolai, Benjamin Vauzour, within the HiPER project Fabien Dorchies, Wiger Nazarov, John Pasley, Maria Richetta, Kate Lancaster, Christopher Spindloe, Martin Tolley, David Neely, Michaela Kozlová, Jaroslav Nejdl, Bedrich Rus, Jerzy Wołowski, Jan Badziak Abstract. This paper presents the results of experiments conducted within the Work Package 10 (fusion experimental programme) of the HiPER project. The aim of these experiments was to study the physics relevant for advanced ignition schemes for inertial confinement fusion, i.e. the fast ignition and the shock ignition. Such schemes allow to achieve a higher fusion gain compared to the indirect drive approach adopted in the National Ignition Facility in United States, which is important for the future inertial fusion energy reactors and for realising the inertial fusion with smaller facilities. Key words: advanced ignition schemes • fast ignition • shock ignition • inertial fusion • propagation of fast electrons • short-pulse ultra-high-intensity laser • shock compressed matter • cylindrical implosions Introduction D. Batani , J. J. Santos, G. Schurtz, S. Hulin, In 2006 the European Strategy Forum on Research X. Ribeyre, P. Nicolai, B. Vauzour, F. Dorchies Infrastructures (ESFRI) included the HiPER Project CELIA, Université de Bordeaux/CNRS/CEA, (European High Power Laser Energy Research Facility) Talence, 33405, France, in the European roadmap for Research Infrastructures. Tel.: +33 0 5 4000 3753, Fax: + 33 0 5 4000 2580, The goals of the HiPER project are to perform a feasi- E-mail: [email protected] bility study, choose a design and then construct a high- -energy laser facility for research on the production of L. -
Second Nasa Conference on Laser Energy Conversion
NASA SP-395 SECOND NASA CONFERENCE ON LASER ENERGY CONVERSION (NASA-SP-395) SECOND NASA CONFERENCE ON N76-21505 LASEB ENERGY CONVERSION (NASA) 196 p HC THRU CSCL 20E N76-2152U- Unclas H1/36 24950 A conference held at NASA AMES RESEARCH CENfER Moffett Field, California January 27-28, 1975 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION REPRODUCED BY *irfiffn'"' *" "IJ*<^ U-S. DEPARTMENT OF COMMERCE NATIONAL TECHN.CAT ERCE INFORMATION SERVICE SPRINGRELD. VA 22161 NASA SP-395 SECOND NASA CONFERENCE ON LASER ENERGY CONVERSION Proceedings of a conference held at the NASA Ames Research Center, Moffett Field, California, on January 27—28, 1975 Edited by Kenneth W. Billman Scientific and Technical Information Office 1976 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. For sale by the National Technical Information Service Springfield, Virginia 22161 Price - $7.00 PREFACE Approximately 75 scientists gathered at Ames Research Center, NASA, Moffett Field, California on 27-28 January 1975 to attend the 2nd NASA Conference on Laser Energy Conversion. They heard the presentations of 18 technical papers and participated enthusiastically in « the discussions that followed. It was generally agreed, and evidenced by comments made during the final summary discussion, that they were both informed and stimulated by the results of initial studies and developments made in certain converter areas, by the advances made in ancillary devices and techniques, and by the possibilities of the more speculative approaches to this newly developing area of advanced technology. Why hold a laser energy conversion conference? To answer this we must first answer another question: why is NASA interested in laser power transmission? Quite simply because it may _ ultimately allow space missions which would be impossible by other means. -
Litron LPY10J Specifications
Litron Ultra High Energy Lasers General Features • Up to 10J at 1064nm • Up to 5J at 532nm • Telescopic or Super-Gaussian coupled resonators • Birefringence compensation • Rugged industrial build • Optional seeder package LPY10J • 3rd and 4th harmonics available • Full RS232 software control Ultra High Energy Pulsed Nd:YAG Laser and LabVIEW™ drivers The LPY10J laser systems offer Q-switched output energies of 10 Joules at 1064nm from a proven design platform. The self-supporting invar frame has been utilised for many years in industrial and scientific applications where Applications robustness and stability are paramount. • Ti:Sa pumpimg • Shot peening In addition to the standard configuration, there are several options available; injection seeder to provide a narrow linewidth, harmonic generation units to • LIBS provide outputs up to the 4th harmonic, automated wavelength selection, • Holography energy monitoring and automatic output peaking and continuous tracking. • Plasma physics TECHNICAL DATA Resonator Type GRM Stable Telescopic Model LPYG 10J-1 LPYG 10J-5 LPYST 10J-1 LPYST 10J-5 Repetition Rate (Hz) 1 5 1 5 Output Energy (J) (1a) 1064nm 10 10 10 10 532nm 5 5 5 5 355nm (1b) 2.5 2.5 2.5 2.5 266nm 0.8 0.8 0.8 0.8 Telescopic stable beam profile at 5J, 532nm, 5Hz. Pulse Stability (±%) (2) 1064nm <2 <2 <2 <2 532nm <4 <4 <4 <4 355nm <6 <6 <6 <6 266nm <10 <10 <10 <10 Pulse Length (ns) (3) 1064nm 7-11 7-11 20-22 20-22 532nm 7-11 7-11 20-22 20-22 355nm 6-10 6-10 19-21 19-21 266nm 5-9 5-9 18-20 18-20 Pulsewidth at 5J, 532nm, 5Hz. -
Nonlinear Systems for Frequency Conversion from Ir to Rf
NONLINEAR SYSTEMS FOR FREQUENCY CONVERSION FROM IR TO RF Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Electro-Optics By Brian D. Dolasinski, M.S. UNIVERSITY OF DAYTON Dayton, OH December 2014 NONLINEAR SYSTEMS FOR FREQUENCY CONVERSION FROM IR TO RF Name: Dolasinski, Brian David APPROVED BY: ___________________ ___________________ Joseph W. Haus, Ph.D. Partha Banerjee, Ph.D. Advisory Committee Committee Member Chairman Director Associate Professor Electro-Optics Electro-Optics Program Program ___________________ ___________________ Imad Agha, Ph.D. Adam Cooney, Ph.D. Committee Member Committee Member Assistant Professor Research Physicist Physics Program AFRL ___________________ ___________________ John G. Weber, Ph.D. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean Dean School of Engineering School of Engineering ii ABSTRACT NONLINEAR SYSTEMS FOR CONVERSION FROM IR TO RF Name: Dolasinski, Brian David University of Dayton Advisor: Dr. Joseph W. Haus The objective of this dissertation is to evaluate and develop novel sources for tunable narrowband IR generation, tunable narrowband THz generation, and ultra- wideband RF generation to be used in possible non-destructive evaluation systems. Initially a periodically poled Lithium Niobate (PPLN) based optical parametric amplifier (OPA) is designed using a double-pass configuration where a small part of the pump is used on the first pass to generate a signal, which is reflected and filtered by an off- axis etalon. The portion of the pump that is not phase matched on the first pass is retro- reflected back into the PPLN crystal and is co-aligned with the narrow bandwidth filtered signal and amplified. -
Laser Precision Microprocessing of Materials
Laser Precision Microprocessing of Materials Laser Precision Microprocessing of Materials A.G. Grigor’yants M.A. Kazaryan N.A. Lyabin Translated from Russian by V.E. Riecansky CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by CISP CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-138-59454-8 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. -
Low Temperature Laser-Induced Selective Area Growth of Compound Semiconductor
LOW TEMPERATURE LASER-INDUCED SELECTIVE AREA GROWTH OF COMPOUND SEMICONDUCTOR SUDARSAN UPPILI B.Sc, Madurai University, 1981 B.E, Indian Institute of Science, 1984 A dissertation submitted to the faculty of the Oregon Graduate Institute of Science and Technology in partial fulfillment for the degree Doctor of Philosophy in Materials Science April, 1990 The dissertation "Low temperature laser-induced selective area growth of compound semiconductorsN by SUDARSAN UPPILI has been examined and approved by the following Examination Committee: Raj Solanki, Thesis Advisor ' Professor I William E. Wood, Thesis Advisor Professor -- - 1, Robert M. Drosd Adjunct Professor - - Kck H. Dedetian Professor I dedicate this dissertation to my father iii ACKNOWLEDGEMENTS I am most grateful to my advisors, Professors Raj Solanki and William E. Wood for encouraging me to undertake this research. Professor Solanki equipped me initially with a delight for laser chemical processing, then guided my research from start to finish. I owe to him a debt of gratitude much greater than I have paid. My appreciation goes to Professor Wood for allowing me to work on an inter-departmental project with Applied Physics and Electrical Engineering department. I enjoyed the discussions with Dr. Robert Drosd during the course of the work. 1 thank Professors Raj Solanki, William Wood, Jack Devletian, and Dr. Robert Drosd for serving on my examination committee. I appreciate very much the invaluble co-operation I recieved from Nyles Cody and Taner Dosloglou. I thank Devanathan, Parthasarathy, Rajesh Digde, Vivek Dikshit, and Ajay Chadda for their assistance during compiling of this dissertation. My special thanks goes to Devanathan for keeping a constant watch on my lunch time. -
Set-Up and Evaluation of Laser-Driven Miniflyer System
SET-UP AND EVALUATION OF LASER-DRIVEN MINIFLYER SYSTEM A Thesis Presented to The Academic Faculty by Christopher W. Miller In Partial Fulfillment of the Requirements for the Degree Master of Science in the George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology May 2009 SET-UP AND EVALUATION OF LASER-DRIVEN MINIFLYER SYSTEM Approved by: Professor Naresh Thadhani, Advisor Materials Science and Engineering Georgia Institute of Technology Professor Suman Das Mechanical Engineering Georgia Institute of Technology Dr. Mario Fajardo Principal Research Chemist US Air Force Research Laboratory Professor Min Zhou Mechanical Engineering Georgia Institute of Technology Date Approved: 1 April 2009 To my wife, Liz. iii ACKNOWLEDGEMENTS I want to thank Dr. Thadhani for guiding me through the creation of this thesis. Also, thanks to all of the members of the High Strain Rate Laboratory for providing insight and information during all stages of my graduate career and the writing of this thesis. Finally, I want to thank the members of my committee who set aside time to read and review my thesis{especially Mario Fajardo who traveled many miles for my oral presentation. Research was funded by ONR/MURI grants no. N00014-07-1-0740 and no. N00014-08-1-0982. iv TABLE OF CONTENTS DEDICATION . iii ACKNOWLEDGEMENTS . iv LIST OF TABLES . vii LIST OF FIGURES . viii SUMMARY . xii I INTRODUCTION . 1 1.1 Research Motivation . 1 1.2 Overview of Thesis . 2 II BACKGROUND . 3 2.1 Shock Physics Experiments . 3 2.2 Laser-Driven Miniflyer System . 8 2.3 Variables Influencing the Design of the Laser-Driven Miniflyer System 11 2.3.1 Window Materials . -
MASS SPECTROMETRY by Michal Kliman Dissertation Submi
ADVANCED STRUCTURAL AND SPATIAL ANALYSIS OF LIPIDS USING ION MOBILITY – MASS SPECTROMETRY By Michal Kliman Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August, 2011 Nashville, Tennessee Approved: Professor John A. McLean Professor Terry P. Lybrand Professor H. Alex Brown Professor Christopher J. Janetopoulos Dedicated to Viera, my loving wife, my companion and best friend, our loves Peter, Agatha and Esther, Dad Cyril, Mom Marianna, Sister Mariana, and the Brothers and Sisters in Faith. ii ACKNOWLEDGEMENTS I would like to first thank my advisor, Dr. John A. McLean, for unwavering encouragement, superb advice and for exemplifying and leading in the art of telling a good story. I was fortunate to join Dr. McLean’s laboratory when it first formed, and helped to set up and christen by work the first instruments and optics with and alongside great coworkers Larissa Fenn, Whitney Ridenour, Randi Gant-Branum, Sophie Zhao, Josh Kerr, Sevugarajan Sundarapandian, Ablatt Mahsut, Jeff Enders, Cody Goodwin, Jody May, Jay Forsythe, Seth Byers, Kelly Hines, and Alyssa Granger. I have since witnessed the growth and success of this group, and savored every fruitful conversation and collaboration within and without the laboratory. My academic journey was greatly enriched through training with Eric Dawson, Jarrod Smith, and Jonathan Sheehan, through collaborative work with Niranjana Vijayakrishnan, Dr. Kendal Broadie, Gus Wright, Libin Xu, Keri Tallman, Dr. Ned Porter, Dr. David Hercules, Dr. Zeljka Korade, and Dr. Brian Bachmann. Colleagues from outside of Vanderbilt campus, including Misha Ugarov, Tom Egan, Dr.