Gas Lasers 1St Edition Kindle

Total Page:16

File Type:pdf, Size:1020Kb

Gas Lasers 1St Edition Kindle GAS LASERS 1ST EDITION PDF, EPUB, EBOOK E W McDaniel | 9781483218687 | | | | | Gas Lasers 1st edition PDF Book This article needs additional citations for verification. Reviews 0. The information bounces off the satellite to a ground earth station, and the data is uploaded into a database. Main article: Ion laser. True, choosing this option allows a fabricator to get the lowest gas price per unit, but rarely are these bulk tanks really the best option for small or medium-sized laser operations. You are connected as. The CO 2 laser, in particular, ranges in cw power from few Watts to kWs, making these lasers ideal for many industrial applications including welding and drilling. Another commonly used gas laser is the argon-ion laser. They are also used in applications, such as holography, where mode stability is important. Carbon monoxide or "CO" lasers have the potential for very large outputs, but the use of this type of laser is limited by the toxicity of carbon monoxide gas. So, another unusual feature of the excimers is that they do not require an optical amplifier. Gas lasers can be classified in terms of the type of transitions that lead to their operation: atomic or molecular. Bennet and D. Chemical lasers are powered by a chemical reaction, and can achieve high powers in continuous operation. Notice the two mirrors that seal the two ends of the bore. Still, because of their long operating lifetime of 20, hours or more and their relatively low manufacturing cost, He-Ne lasers are among the most popular gas lasers. Hidden categories: Articles needing additional references from January All articles needing additional references All articles with unsourced statements Articles with unsourced statements from October Commons category link is on Wikidata. Because assist gases are used in high volumes, the source tanks will be larger too. Introduction II. A few months after Maiman announced his invention of the pulsed ruby laser, Ali Javan and his associates W. This sends daily tank readings to the gas vendor, which collects the data to build a detailed history of gas usage. Human operators must be protected from this deadly gas. As a result, when the laser's temperature changes as it heats up due to the large electric current within the electromagnetic pump discharge, the optical path length, and therefore the modal character of the laser output, remains relatively unchanged. Bennett, Jr. Ferrous metals require oxygen flows of about standard cubic feet per hour SCFH , while nonferrous metal requires nitrogen assist gas to flow at about 3, SCFH. Bulk tanks traditionally start at 1, gallons and go all the way up to 13, gallons. Beam expander Beam homogenizer B Integral Chirped pulse amplification Gain-switching Gaussian beam Injection seeder Laser beam profiler M squared Mode-locking Multiple-prism grating laser oscillator Multiphoton intrapulse interference phase scan Optical amplifier Optical cavity Optical isolator Output coupler Q-switching Regenerative amplification. The Copper vapor laser , with two spectral lines of green Where is your gas vendor located? In this sense, then, chemical lasers are self-pumped. Herriott announced their creation of a cw He-Ne laser. Operations managers are always on the line for costs. Transport Coefficients 5. Indeed, some vendors listed as "approved" may no longer exist. Remember Me. The actual piping from the tanks to your system need to enter the equation. This is most commonly accomplished by circulating water, either directly from tap or from commercially produced chillers, in closed coils that surround the plasma a gas of charged ions tube and parts of the electric power supply. They also require a separate booster system to attain required assist-gas flow rates for laser operations. For this reason, all pipes purchased for the installation must be cleaned and capped. Rotational Population Transfer IV. Why is the word "white" in quotations? Connect with:. Electronic levels are shown as "bent rungs" because in the molecule atoms can change their separation distance and therefore their electronic energy. Read more from this issue. Your review was sent successfully and is now waiting for our team to publish it. Gas Lasers 1st edition Writer Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic operating principles of major gas laser types. Forgot password? This can be done by adjusting the spectral response of the mirrors or by using a dispersive element Littrow prism in the cavity. Finally, because of their high power argon-ion lasers require active cooling. They were invented by George C. Human operators must be protected from this deadly gas. Metal-vapor lasers are gas lasers that typically generate ultraviolet wavelengths. Still, because of their long operating lifetime of 20, hours or more and their relatively low manufacturing cost, He-Ne lasers are among the most popular gas lasers. You don't necessarily need bulk tanks either. Also, note that rotational levels are not shown. Published Date: 1st January Some of these wavelengths are:. In this way the 4s and 5s levels in neon get populated. We value your input. Even more interesting is the operation of one of the most common of these lasers, the hydrogen-fluoride laser that operates in the IR at 4. Problem: A company purchases four lasers with four start- up kits for lasing gas delivery Hidden Cost: Redundant equipment and gas cylinders Solution: A well-designed gas delivery system can feed multiple machines with one set of regulators and cylinders. It takes more energy to ionize an atom than to excite it. On the other hand, the halide gases are highly reactive. The emphasis is on processes occurring in gas discharges and the analytical methods used to calculate important process rates. McDaniel William L. It is the atomic transitions in the neon that produces the laser light. Please sign in to your acccount Email. Automation and Robotics. Archived from the original on When you read an eBook on VitalSource Bookshelf, enjoy such features as: Access online or offline, on mobile or desktop devices Bookmarks, highlights and notes sync across all your devices Smart study tools such as note sharing and subscription, review mode, and Microsoft OneNote integration Search and navigate content across your entire Bookshelf library Interactive notebook and read-aloud functionality Look up additional information online by highlighting a word or phrase. Testing and Measuring. The mixed gas lasers are very useful for entertainment applications because, in addition to many colors, they can also produce a "white" beam. About the Publication. These tanks start at liters and go up to 2,, can be placed on existing pavement or a light pad, and are available with output pressures up to PSI—essential for the high flow rates laser assist gases require. Uninterrupted supply requires good service from a gas supplier. Institutional Subscription. TEA lasers are energized by a high voltage electrical discharge in a gas mixture generally at or above atmospheric pressure. A well- designed and -installed lasing gas delivery system will ensure the gas remains pure when traveling from the cylinders, through the plumbing, and into the laser system. Over time their internal components can break down, sending destructive particles into your laser system. Satellite technology can track usage and trigger delivery once the gas reaches a certain level. This Week's Trending Articles 1. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers. Gas Lasers 1st edition Reviews At times judging customer service can be subjective—but geography isn't. Electron-Density Decay Processes 7. Free Shipping Free global shipping No minimum order. In this way these ion lasers can operate in a so called single mode. Second, recall that IR light is invisible to our eyes and so special precautions are needed to protect people working around these lasers. In fact, the word excimer is short for "excited dimer," although most excimer lasers do not use two identical atoms as a strict dimer would. However, only about 1 - pulses are produced per second, so that the average power produced is about 1 - W. They typically produce ultraviolet light, and are used in semiconductor photolithography and in LASIK eye surgery. Typically these molecules include an atom belonging to the inert gas family argon, xenon, krypton and one from the halide group chlorine, fluorine, and bromine. At the end of the day, it's the service and gas quality that really matter. Gas Lasers. Archived from the original on It is not uncommon for a laser operation to use , cubic feet of nitrogen in a month. Powered by. The halides tend to be very corrosive and therefore add a great deal to the operational cost as well as the danger! Introduction II. Connect with:. Typically the laser's optical cavity mirrors, the high reflector and the output coupler, form the two sealing caps for the narrow bore tube. Laser equipment OEMs approve gases from various vendors—both independent suppliers and national chains—as long as they obtain a certificate of analysis proving they meet the OEMs' standards for quality. Gas delivery involves more than just the cylinders, regulators, and manifolds. Help Learn to edit Community portal Recent changes Upload file. Gas Lasers 1st edition Read Online Summary and Conclusions Appendix A. Excimer lasers are powered by a chemical reaction involving an excited dimer , or excimer , which is a short-lived dimeric or heterodimeric molecule formed from two species atoms , at least one of which is in an excited electronic state. Namespaces Article Talk. We are always looking for ways to improve customer experience on Elsevier.
Recommended publications
  • An Application of the Theory of Laser to Nitrogen Laser Pumped Dye Laser
    SD9900039 AN APPLICATION OF THE THEORY OF LASER TO NITROGEN LASER PUMPED DYE LASER FATIMA AHMED OSMAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics. UNIVERSITY OF KHARTOUM FACULTY OF SCIENCE DEPARTMENT OF PHYSICS MARCH 1998 \ 3 0-44 In this thesis we gave a general discussion on lasers, reviewing some of are properties, types and applications. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw. It was noticed that the produced radiation possesses ^ characteristic^ different from those of other types of laser. This' characteristics determine^ the tunability i.e. the possibility of choosing the appropriately required wave-length of radiation for various applications. DEDICATION TO MY BELOVED PARENTS AND MY SISTER NADI A ACKNOWLEDGEMENTS I would like to express my deep gratitude to my supervisor Dr. AH El Tahir Sharaf El-Din, for his continuous support and guidance. I am also grateful to Dr. Maui Hammed Shaded, for encouragement, and advice in using the computer. Thanks also go to Ustaz Akram Yousif Ibrahim for helping me while conducting the experimental part of the thesis, and to Ustaz Abaker Ali Abdalla, for advising me in several respects. I also thank my teachers in the Physics Department, of the Faculty of Science, University of Khartoum and my colleagues and co- workers at laser laboratory whose support and encouragement me created the right atmosphere of research for me. Finally I would like to thank my brother Salah Ahmed Osman, Mr.
    [Show full text]
  • HD DVD: Manufacturing Was Developed.This Recorder Is Equipped with a 257Nm Gas Laser (Frequency Doubled Ar+ Laser)
    paper r& white d Six years ago, the LDM 3692 DUV recorder HD DVD: Manufacturing was developed.This recorder is equipped with a 257nm gas laser (frequency doubled Ar+ laser). All options with regards to future for- mats were still open at that time.The recorder features two recording spots, with a wobble The New Format option on both. This recorder is an adequate R&D tool to record HD DVD. BY DR. DICK VERHAART, from 740nm to 400nm. To read these smaller For HD DVD stamper manufacturing, a Singulus Mastering information structures, it is necessary to use recorder with a 266nm solid state laser was PETER KNIPS, blue diode lasers with a wavelength of 405nm developed. This system contains a stable and Singulus EMould instead of the 650nm red lasers used for CD easy to operate solid state laser, with a much DIETER WAGNER, and DVD. longer lifetime than the gas laser. As all pro- Singulus Technologies AG An advanced copy protection system will posed next-generation formats require only The third generation of optical disc formats is give better protection than what was avail- one spot, the system has a single recording set to arrive on the market by the end of this able for CD and DVD with mandatory serializ- spot. Spot deflection, required to create the year.As with Blu-ray Disc, the HD DVD format ing of each single HD DVD. The serialization groove wobble in the recordable and was developed to tremendously increase the will take place on the aluminum covered layer rewritable formats, is available as an option.
    [Show full text]
  • Argon-Ion and Helium-Neon Lasers
    Argon-Ion and Helium- Neon Lasers The one source for gas lasers What makes Lumentum the choice for argon-ion and helium-neon (HeNe) lasers? Whether you are involved in medical research, semiconductor manufacturing, high-speed printing, or Your Source for another demanding application, we have the expertise, commitment, and technology to ensure you get the best solution for your need. With more than 35 years of experience, we have an unmatched Successful gas laser production requires extraordinary care understanding of the gas laser market. That understanding has during the manufacturing process. Every individual throughout led us to devote extensive resources to help establish a premier, each production stage, from engineering and procurement to Gas Lasers high-volume manufacturing facility. Located in Thailand, the manufacturing and quality control, is attuned to the highly facility produces lasers of the highest standard. And we maintain sensitive nature of the applications for which these products are that standard through regional quality management, on-site used. Consequently, we can assure the steady supply of quality supplier quality engineering, and regular quality audits. products to our customers around the globe. Our products are being used in customers’ new systems and as replacement components in the large installed base of existing systems. 2 3 Key Gas Laser Applications Known for their longevity and predictable electrical and optical performance characteristics, our lasers are being used in a wide variety of applications. Medical Research University, medical, and government laboratories on the cusp of new discoveries rely on instruments designed with Lumentum argon-ion and HeNe lasers for cell mapping, genome analysis, and DNA sequencing.
    [Show full text]
  • Quanta-Ray Lab-Series Pulsed Nd:YAG Lasers
    Quanta-Ray Lab-Series Pulsed Nd:YAG Lasers User’s Manual 1335 Terra Bella Avenue Mountain View, CA 94043 Part Number 0000-311A, Rev. A June 2003 Preface This manual contains information you need in order to safely install, align, operate, maintain and service your Quanta-Ray Lab-Series pulsed Nd:YAG laser on a day-to-day basis. Also described is the installation and operation of the HG harmonic generator and IHS internal harmonic separator. The system comprises three main elements: the Lab-Series laser head, the power supply and a table-top controller. (The system can also be controlled remotely via the front panel RS-232 serial port.) An optional Model WA-1 heat exchanger may also be present. The “Introduction” contains a brief description of these three components and is followed by an important chapter on laser safety. The Lab-Series is a Class IV laser and, as such, emits laser radiation which can permanently damage eyes and skin, ignite fires and vaporize substances. Moreover, focused back-reflections of even a small percentage of its output energy can destroy expensive internal optical components. This section contains information about these hazards and offers suggestions on how to safe- guard against them. To minimize the risk of injury or expensive repairs, be sure to read this chapter—then carefully follow these instructions. This chapter also contains information regarding system compliance to CDRH and CE regulations. “Laser Description” contains a short section on laser theory regarding the Nd:YAG crystal rods that are used in the Lab-Series laser. Also included is a discussion of the second, third and fourth harmonic laser output gener- ated by the system.
    [Show full text]
  • Experimental Results on Advanced Inertial Fusion Schemes Obtained
    NUKLEONIKA 2012;57(1):3−10 ORIGINAL PAPER Experimental results Dimitri Batani, Leonida A. Gizzi, Petra Koester, Luca Labate, on advanced inertial fusion Javier Honrubia, Luca Antonelli, Alessio Morace, Luca Volpe, Jorge J. Santos, Guy Schurtz, schemes obtained Sebastien Hulin, Xavier Ribeyre, Philippe Nicolai, Benjamin Vauzour, within the HiPER project Fabien Dorchies, Wiger Nazarov, John Pasley, Maria Richetta, Kate Lancaster, Christopher Spindloe, Martin Tolley, David Neely, Michaela Kozlová, Jaroslav Nejdl, Bedrich Rus, Jerzy Wołowski, Jan Badziak Abstract. This paper presents the results of experiments conducted within the Work Package 10 (fusion experimental programme) of the HiPER project. The aim of these experiments was to study the physics relevant for advanced ignition schemes for inertial confinement fusion, i.e. the fast ignition and the shock ignition. Such schemes allow to achieve a higher fusion gain compared to the indirect drive approach adopted in the National Ignition Facility in United States, which is important for the future inertial fusion energy reactors and for realising the inertial fusion with smaller facilities. Key words: advanced ignition schemes • fast ignition • shock ignition • inertial fusion • propagation of fast electrons • short-pulse ultra-high-intensity laser • shock compressed matter • cylindrical implosions Introduction D. Batani , J. J. Santos, G. Schurtz, S. Hulin, In 2006 the European Strategy Forum on Research X. Ribeyre, P. Nicolai, B. Vauzour, F. Dorchies Infrastructures (ESFRI) included the HiPER Project CELIA, Université de Bordeaux/CNRS/CEA, (European High Power Laser Energy Research Facility) Talence, 33405, France, in the European roadmap for Research Infrastructures. Tel.: +33 0 5 4000 3753, Fax: + 33 0 5 4000 2580, The goals of the HiPER project are to perform a feasi- E-mail: [email protected] bility study, choose a design and then construct a high- -energy laser facility for research on the production of L.
    [Show full text]
  • Second Nasa Conference on Laser Energy Conversion
    NASA SP-395 SECOND NASA CONFERENCE ON LASER ENERGY CONVERSION (NASA-SP-395) SECOND NASA CONFERENCE ON N76-21505 LASEB ENERGY CONVERSION (NASA) 196 p HC THRU CSCL 20E N76-2152U- Unclas H1/36 24950 A conference held at NASA AMES RESEARCH CENfER Moffett Field, California January 27-28, 1975 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION REPRODUCED BY *irfiffn'"' *" "IJ*<^ U-S. DEPARTMENT OF COMMERCE NATIONAL TECHN.CAT ERCE INFORMATION SERVICE SPRINGRELD. VA 22161 NASA SP-395 SECOND NASA CONFERENCE ON LASER ENERGY CONVERSION Proceedings of a conference held at the NASA Ames Research Center, Moffett Field, California, on January 27—28, 1975 Edited by Kenneth W. Billman Scientific and Technical Information Office 1976 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. For sale by the National Technical Information Service Springfield, Virginia 22161 Price - $7.00 PREFACE Approximately 75 scientists gathered at Ames Research Center, NASA, Moffett Field, California on 27-28 January 1975 to attend the 2nd NASA Conference on Laser Energy Conversion. They heard the presentations of 18 technical papers and participated enthusiastically in « the discussions that followed. It was generally agreed, and evidenced by comments made during the final summary discussion, that they were both informed and stimulated by the results of initial studies and developments made in certain converter areas, by the advances made in ancillary devices and techniques, and by the possibilities of the more speculative approaches to this newly developing area of advanced technology. Why hold a laser energy conversion conference? To answer this we must first answer another question: why is NASA interested in laser power transmission? Quite simply because it may _ ultimately allow space missions which would be impossible by other means.
    [Show full text]
  • Litron LPY10J Specifications
    Litron Ultra High Energy Lasers General Features • Up to 10J at 1064nm • Up to 5J at 532nm • Telescopic or Super-Gaussian coupled resonators • Birefringence compensation • Rugged industrial build • Optional seeder package LPY10J • 3rd and 4th harmonics available • Full RS232 software control Ultra High Energy Pulsed Nd:YAG Laser and LabVIEW™ drivers The LPY10J laser systems offer Q-switched output energies of 10 Joules at 1064nm from a proven design platform. The self-supporting invar frame has been utilised for many years in industrial and scientific applications where Applications robustness and stability are paramount. • Ti:Sa pumpimg • Shot peening In addition to the standard configuration, there are several options available; injection seeder to provide a narrow linewidth, harmonic generation units to • LIBS provide outputs up to the 4th harmonic, automated wavelength selection, • Holography energy monitoring and automatic output peaking and continuous tracking. • Plasma physics TECHNICAL DATA Resonator Type GRM Stable Telescopic Model LPYG 10J-1 LPYG 10J-5 LPYST 10J-1 LPYST 10J-5 Repetition Rate (Hz) 1 5 1 5 Output Energy (J) (1a) 1064nm 10 10 10 10 532nm 5 5 5 5 355nm (1b) 2.5 2.5 2.5 2.5 266nm 0.8 0.8 0.8 0.8 Telescopic stable beam profile at 5J, 532nm, 5Hz. Pulse Stability (±%) (2) 1064nm <2 <2 <2 <2 532nm <4 <4 <4 <4 355nm <6 <6 <6 <6 266nm <10 <10 <10 <10 Pulse Length (ns) (3) 1064nm 7-11 7-11 20-22 20-22 532nm 7-11 7-11 20-22 20-22 355nm 6-10 6-10 19-21 19-21 266nm 5-9 5-9 18-20 18-20 Pulsewidth at 5J, 532nm, 5Hz.
    [Show full text]
  • Nonlinear Systems for Frequency Conversion from Ir to Rf
    NONLINEAR SYSTEMS FOR FREQUENCY CONVERSION FROM IR TO RF Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Electro-Optics By Brian D. Dolasinski, M.S. UNIVERSITY OF DAYTON Dayton, OH December 2014 NONLINEAR SYSTEMS FOR FREQUENCY CONVERSION FROM IR TO RF Name: Dolasinski, Brian David APPROVED BY: ___________________ ___________________ Joseph W. Haus, Ph.D. Partha Banerjee, Ph.D. Advisory Committee Committee Member Chairman Director Associate Professor Electro-Optics Electro-Optics Program Program ___________________ ___________________ Imad Agha, Ph.D. Adam Cooney, Ph.D. Committee Member Committee Member Assistant Professor Research Physicist Physics Program AFRL ___________________ ___________________ John G. Weber, Ph.D. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean Dean School of Engineering School of Engineering ii ABSTRACT NONLINEAR SYSTEMS FOR CONVERSION FROM IR TO RF Name: Dolasinski, Brian David University of Dayton Advisor: Dr. Joseph W. Haus The objective of this dissertation is to evaluate and develop novel sources for tunable narrowband IR generation, tunable narrowband THz generation, and ultra- wideband RF generation to be used in possible non-destructive evaluation systems. Initially a periodically poled Lithium Niobate (PPLN) based optical parametric amplifier (OPA) is designed using a double-pass configuration where a small part of the pump is used on the first pass to generate a signal, which is reflected and filtered by an off- axis etalon. The portion of the pump that is not phase matched on the first pass is retro- reflected back into the PPLN crystal and is co-aligned with the narrow bandwidth filtered signal and amplified.
    [Show full text]
  • Laser Precision Microprocessing of Materials
    Laser Precision Microprocessing of Materials Laser Precision Microprocessing of Materials A.G. Grigor’yants M.A. Kazaryan N.A. Lyabin Translated from Russian by V.E. Riecansky CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by CISP CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-138-59454-8 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
    [Show full text]
  • Low Temperature Laser-Induced Selective Area Growth of Compound Semiconductor
    LOW TEMPERATURE LASER-INDUCED SELECTIVE AREA GROWTH OF COMPOUND SEMICONDUCTOR SUDARSAN UPPILI B.Sc, Madurai University, 1981 B.E, Indian Institute of Science, 1984 A dissertation submitted to the faculty of the Oregon Graduate Institute of Science and Technology in partial fulfillment for the degree Doctor of Philosophy in Materials Science April, 1990 The dissertation "Low temperature laser-induced selective area growth of compound semiconductorsN by SUDARSAN UPPILI has been examined and approved by the following Examination Committee: Raj Solanki, Thesis Advisor ' Professor I William E. Wood, Thesis Advisor Professor -- - 1, Robert M. Drosd Adjunct Professor - - Kck H. Dedetian Professor I dedicate this dissertation to my father iii ACKNOWLEDGEMENTS I am most grateful to my advisors, Professors Raj Solanki and William E. Wood for encouraging me to undertake this research. Professor Solanki equipped me initially with a delight for laser chemical processing, then guided my research from start to finish. I owe to him a debt of gratitude much greater than I have paid. My appreciation goes to Professor Wood for allowing me to work on an inter-departmental project with Applied Physics and Electrical Engineering department. I enjoyed the discussions with Dr. Robert Drosd during the course of the work. 1 thank Professors Raj Solanki, William Wood, Jack Devletian, and Dr. Robert Drosd for serving on my examination committee. I appreciate very much the invaluble co-operation I recieved from Nyles Cody and Taner Dosloglou. I thank Devanathan, Parthasarathy, Rajesh Digde, Vivek Dikshit, and Ajay Chadda for their assistance during compiling of this dissertation. My special thanks goes to Devanathan for keeping a constant watch on my lunch time.
    [Show full text]
  • Set-Up and Evaluation of Laser-Driven Miniflyer System
    SET-UP AND EVALUATION OF LASER-DRIVEN MINIFLYER SYSTEM A Thesis Presented to The Academic Faculty by Christopher W. Miller In Partial Fulfillment of the Requirements for the Degree Master of Science in the George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology May 2009 SET-UP AND EVALUATION OF LASER-DRIVEN MINIFLYER SYSTEM Approved by: Professor Naresh Thadhani, Advisor Materials Science and Engineering Georgia Institute of Technology Professor Suman Das Mechanical Engineering Georgia Institute of Technology Dr. Mario Fajardo Principal Research Chemist US Air Force Research Laboratory Professor Min Zhou Mechanical Engineering Georgia Institute of Technology Date Approved: 1 April 2009 To my wife, Liz. iii ACKNOWLEDGEMENTS I want to thank Dr. Thadhani for guiding me through the creation of this thesis. Also, thanks to all of the members of the High Strain Rate Laboratory for providing insight and information during all stages of my graduate career and the writing of this thesis. Finally, I want to thank the members of my committee who set aside time to read and review my thesis{especially Mario Fajardo who traveled many miles for my oral presentation. Research was funded by ONR/MURI grants no. N00014-07-1-0740 and no. N00014-08-1-0982. iv TABLE OF CONTENTS DEDICATION . iii ACKNOWLEDGEMENTS . iv LIST OF TABLES . vii LIST OF FIGURES . viii SUMMARY . xii I INTRODUCTION . 1 1.1 Research Motivation . 1 1.2 Overview of Thesis . 2 II BACKGROUND . 3 2.1 Shock Physics Experiments . 3 2.2 Laser-Driven Miniflyer System . 8 2.3 Variables Influencing the Design of the Laser-Driven Miniflyer System 11 2.3.1 Window Materials .
    [Show full text]
  • MASS SPECTROMETRY by Michal Kliman Dissertation Submi
    ADVANCED STRUCTURAL AND SPATIAL ANALYSIS OF LIPIDS USING ION MOBILITY – MASS SPECTROMETRY By Michal Kliman Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August, 2011 Nashville, Tennessee Approved: Professor John A. McLean Professor Terry P. Lybrand Professor H. Alex Brown Professor Christopher J. Janetopoulos Dedicated to Viera, my loving wife, my companion and best friend, our loves Peter, Agatha and Esther, Dad Cyril, Mom Marianna, Sister Mariana, and the Brothers and Sisters in Faith. ii ACKNOWLEDGEMENTS I would like to first thank my advisor, Dr. John A. McLean, for unwavering encouragement, superb advice and for exemplifying and leading in the art of telling a good story. I was fortunate to join Dr. McLean’s laboratory when it first formed, and helped to set up and christen by work the first instruments and optics with and alongside great coworkers Larissa Fenn, Whitney Ridenour, Randi Gant-Branum, Sophie Zhao, Josh Kerr, Sevugarajan Sundarapandian, Ablatt Mahsut, Jeff Enders, Cody Goodwin, Jody May, Jay Forsythe, Seth Byers, Kelly Hines, and Alyssa Granger. I have since witnessed the growth and success of this group, and savored every fruitful conversation and collaboration within and without the laboratory. My academic journey was greatly enriched through training with Eric Dawson, Jarrod Smith, and Jonathan Sheehan, through collaborative work with Niranjana Vijayakrishnan, Dr. Kendal Broadie, Gus Wright, Libin Xu, Keri Tallman, Dr. Ned Porter, Dr. David Hercules, Dr. Zeljka Korade, and Dr. Brian Bachmann. Colleagues from outside of Vanderbilt campus, including Misha Ugarov, Tom Egan, Dr.
    [Show full text]