Photonics Systems - Introduction Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50
[email protected] eportal.pwr.wroc.pl Copying and processing permitted for non- www.patela.net commercial purposes, on condition that proper reference to the source is given. © Sergiusz Patela, 2001-6 Fiber-optic-transmission milestones 1854 - Demonstration of optical waveguide principle in water jets (J. Tyndal) 1960 - Laser (ruby, T. Maiman) 1972 - 4 dB/km multimode fiber 1982 - Single mode fiber reported 1991 - SONET telecommunications standards created 1995 - DWDM deployment began 1998 - > 1 Tb/s in one fiber 2000 - L-band system introduced (1570-1610nm) 40 Gb/s transmission in one channel. © Sergiusz Patela, 2001-6 Photonics Systems - Introduction 2/23 Fiber optic link Light detector Light source „noise” (receiver) (transmitter) Electrical output signal Electrical input signal Lightguide with splices connectors and couplers © Sergiusz Patela, 2001-6 Photonics Systems - Introduction 3/23 Light wave Light wave: electromagnetic wave (signal carrier) characterized by intensity, phase (coherence level), wavelength (frequency), polarization and propagation direction. Physical phenomena and effects that explain how waveguide works: • Light wave frequency Light = electromagnetic wave of frequency 3x1014Hz, (almost million GHz). • Total internal reflection effect and extremely low glass attenuation Fibers can guide light at long distances without regeneration • Wave nature of light and fiber modes Many waveguide parameters and construction details can be explained only if one takes into account that light is a wave guided by a structure of very low cross-section. © Sergiusz Patela, 2001-6 Photonics Systems - Introduction 4/23 Construction of optical fiber Core Cladding Cover © Sergiusz Patela, 2001-6 Photonics Systems - Introduction 5/23 Total internal reflection n2 n1 Total internal reflection at the border core-cladding Fiber diameter: 10 to 50 µm at 1 m distance creates 10 000 reflections.